1
|
Kimura M, Matsuoka R, Taniguchi S, Maruyama J, Paessler S, Oka S, Yamashita A, Fukuhara T, Matsuura Y, Tani H. Inhibitors of cannabinoid receptor 1 suppress the cellular entry of Lujo virus. Virology 2023; 587:109867. [PMID: 37633192 DOI: 10.1016/j.virol.2023.109867] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/03/2023] [Accepted: 08/09/2023] [Indexed: 08/28/2023]
Abstract
Lujo virus (LUJV), which belongs to Mammarenavirus, family Arenaviridae, has emerged as a pathogen causing severe hemorrhagic fever with high mortality. Currently, there are no effective treatments for arenaviruses, including LUJV. Here, we screened chemical compound libraries of Food and Drug Administration (FDA)-approved drugs and G protein-coupled receptor-associated drugs to identify effective antivirals against LUJV targeting cell entry using a vesicular stomatitis virus-based pseudotyped virus bearing the LUJV envelope glycoprotein (GP). Cannabinoid receptor 1 (CB1) antagonists, such as rimonabant, AM251 and AM281, have been identified as robust inhibitors of LUJV entry. The IC50 of rimonabant was 0.26 and 0.53 μM in Vero and Huh7 cells, respectively. Analysis of the cell fusion activity of the LUJV GP in the presence of CB1 inhibitors revealed that these inhibitors suppressed the fusion activity of the LUJV GP. Moreover, rimonabant, AM251 and AM281 reduced the infectivity of authentic LUJV in vitro, suggesting that the antiviral activity of CB1 antagonists against LUJV is mediated, at least in part, by inhibition of the viral entry, especially, membrane fusion. These findings suggest promising candidates for developing new therapies against LUJV infections.
Collapse
Affiliation(s)
- Miyuki Kimura
- Department of Microbiology, Faculty of Medicine, Academic Assembly, University of Toyama, Toyama, 930-0194, Japan
| | - Risa Matsuoka
- Department of Microbiology, Faculty of Medicine, Academic Assembly, University of Toyama, Toyama, 930-0194, Japan
| | - Satoshi Taniguchi
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, 77555, USA; Department of Virology I, National Institute of Infectious Diseases, Tokyo, 162-8640, Japan
| | - Junki Maruyama
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Slobodan Paessler
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Saori Oka
- Faculty of Pharma-Science, Teikyo University, Tokyo, Japan
| | | | - Takasuke Fukuhara
- Department of Microbiology and Immunology, Graduate School of Medicine, Hokkaido University, Sapporo, Japan; Laboratory of Virus Control, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - Yoshiharu Matsuura
- Laboratory of Virus Control, Research Institute for Microbial Diseases, Osaka University, Suita, Japan; Center for Infectious Disease Education and Research, Osaka University, Suita, Japan
| | - Hideki Tani
- Department of Microbiology, Faculty of Medicine, Academic Assembly, University of Toyama, Toyama, 930-0194, Japan; Department of Virology I, National Institute of Infectious Diseases, Tokyo, 162-8640, Japan; Department of Virology, Toyama Institute of Health, Toyama, 939-0363, Japan.
| |
Collapse
|
2
|
Abomughaid M, Tay ESE, Pickford R, Malladi C, Read SA, Coorssen JR, Gloss BS, George J, Douglas MW. PEMT Mediates Hepatitis C Virus-Induced Steatosis, Explains Genotype-Specific Phenotypes and Supports Virus Replication. Int J Mol Sci 2023; 24:ijms24108781. [PMID: 37240132 DOI: 10.3390/ijms24108781] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/05/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
The hepatitis C virus (HCV) relies on cellular lipid pathways for virus replication and also induces liver steatosis, but the mechanisms involved are not clear. We performed a quantitative lipidomics analysis of virus-infected cells by combining high-performance thin-layer chromatography (HPTLC) and mass spectrometry, using an established HCV cell culture model and subcellular fractionation. Neutral lipid and phospholipids were increased in the HCV-infected cells; in the endoplasmic reticulum there was an ~four-fold increase in free cholesterol and an ~three-fold increase in phosphatidyl choline (p < 0.05). The increase in phosphatidyl choline was due to the induction of a non-canonical synthesis pathway involving phosphatidyl ethanolamine transferase (PEMT). An HCV infection induced expression of PEMT while knocking down PEMT with siRNA inhibited virus replication. As well as supporting virus replication, PEMT mediates steatosis. Consistently, HCV induced the expression of the pro-lipogenic genes SREBP 1c and DGAT1 while inhibiting the expression of MTP, promoting lipid accumulation. Knocking down PEMT reversed these changes and reduced the lipid content in virus-infected cells. Interestingly, PEMT expression was over 50% higher in liver biopsies from people infected with the HCV genotype 3 than 1, and three times higher than in people with chronic hepatitis B, suggesting that this may account for genotype-dependent differences in the prevalence of hepatic steatosis. PEMT is a key enzyme for promoting the accumulation of lipids in HCV-infected cells and supports virus replication. The induction of PEMT may account for virus genotype specific differences in hepatic steatosis.
Collapse
Affiliation(s)
- Mosleh Abomughaid
- Storr Liver Centre, The Westmead Institute for Medical Research, The University of Sydney and Westmead Hospital, Sydney, NSW 2145, Australia
| | - Enoch S E Tay
- Storr Liver Centre, The Westmead Institute for Medical Research, The University of Sydney and Westmead Hospital, Sydney, NSW 2145, Australia
| | - Russell Pickford
- Bioanalytical Mass Spectrometry Facility, Mark Wainright Analytical Centre, University of New South Wales, Sydney, NSW 2052, Australia
| | - Chandra Malladi
- Department of Molecular Physiology, School of Medicine, Western Sydney University, Sydney, NSW 2751, Australia
| | - Scott A Read
- Storr Liver Centre, The Westmead Institute for Medical Research, The University of Sydney and Westmead Hospital, Sydney, NSW 2145, Australia
- Blacktown Clinical School, Western Sydney University and Blacktown Hospital, Sydney, NSW 2751, Australia
| | - Jens R Coorssen
- Department of Molecular Physiology, School of Medicine, Western Sydney University, Sydney, NSW 2751, Australia
- Department of Biological Sciences, Faculty of Mathematics and Science, Brock University, St. Catharines, ON L2S 3A1, Canada
| | - Brian S Gloss
- Westmead Research Hub, Westmead Institute for Medical Research, Sydney, NSW 2145, Australia
| | - Jacob George
- Storr Liver Centre, The Westmead Institute for Medical Research, The University of Sydney and Westmead Hospital, Sydney, NSW 2145, Australia
| | - Mark W Douglas
- Storr Liver Centre, The Westmead Institute for Medical Research, The University of Sydney and Westmead Hospital, Sydney, NSW 2145, Australia
- Centre for Infectious Diseases and Microbiology, Sydney Infectious Diseases Institute, The University of Sydney at Westmead Hospital, Sydney, NSW 2145, Australia
| |
Collapse
|
3
|
Rodriguez JL, Lopez JA, Steel JJ. Involvement of the endocannabinoid system in the inhibition of Sindbis virus replication: a preliminary study. J Cannabis Res 2021; 3:10. [PMID: 33892823 PMCID: PMC8066438 DOI: 10.1186/s42238-021-00068-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 04/13/2021] [Indexed: 01/03/2023] Open
Abstract
Background Sindbis virus (Alphaviridae) is a plus-strand RNA virus that is dependent on the host cell for replication. Cannabinoid (CB) receptors are found on most human cells, including virally infected cells. Activation of cannabinoid receptors has been shown to alter normal cellular physiology. This study aimed to assess how agonist (ACEA) or antagonists/inverse agonist (AM251) of the cannabinoid receptors would alter the cellular environment and impact Sindbis virus replication. Methods Human hepatoma (Huh7) cells were used as our model for viral replication. Cells were infected with Sindbis virus (SINV) and then treated with CB agonist (ACEA) (10 μM) or antagonist/inverse agonist (AM-251) (10 μM) and virus replication was monitored. A double subgenomic Sindbis virus containing a green fluorescent protein (GFP) reporter gene inserted into a 3′ subgenomic promoter was utilized for these assays to quickly measure viral replication. GFP fluorescent cells were analyzed using flow cytometry to measure the percentage of cells expressing the viral reporter and also quantify the levels of GFP fluorescence. Result Treatment of SINV-infected Huh7 cells with CB1 receptor antagonist/inverse agonist (AM251, 10 μM) resulted in a significant decrease in viral replication, while infected cells treated with a CB1 receptor agonist (ACEA, 10 μM) resulted in a significant increase of viral infection. The data indicates that activation of CB1 receptor by cannabinoids significantly influences the ability of Sindbis virus to replicate in the host cell. Conclusion Blocking CB1 receptor activity with 10 μM AM251 reduced viral replication, but activating the CB1 receptor with 10 μM ACEA resulted in an increase in viral infection. These results indicate cannabinoids may significantly impact a virus replicating in human liver cells. Future confirmation with other viruses and cell lines will be performed to better understand the impact of cannabinoids on viral infections.
Collapse
Affiliation(s)
- Juan L Rodriguez
- Biology Department, Colorado State University-Pueblo, 2200 Bonforte Blvd LS220, Pueblo, CO, 81001, USA.
| | - Joseph A Lopez
- Biology Department, Colorado State University-Pueblo, 2200 Bonforte Blvd LS220, Pueblo, CO, 81001, USA
| | - J Jordan Steel
- Biology Department, Colorado State University-Pueblo, 2200 Bonforte Blvd LS220, Pueblo, CO, 81001, USA.,Department of Biology, US Air Force Academy, 2355 Faculty Dr. DFB, Colorado Springs, CO, USA
| |
Collapse
|
4
|
Cinar R, Iyer MR, Kunos G. Dual inhibition of CB 1 receptors and iNOS, as a potential novel approach to the pharmacological management of acute and long COVID-19. Br J Pharmacol 2021; 179:2121-2127. [PMID: 33769552 PMCID: PMC8251289 DOI: 10.1111/bph.15461] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 03/15/2021] [Accepted: 03/21/2021] [Indexed: 12/14/2022] Open
Abstract
COVID‐19 (SARS‐CoV‐2) causes multiple inflammatory complications, resulting not only in severe lung inflammation but also harm to other organs. Although the current focus is on the management of acute COVID‐19, there is growing concern about long‐term effects of COVID‐19 (Long Covid), such as fibroproliferative changes in the lung, heart and kidney. Therefore, the identification of therapeutic targets not only for the management of acute COVID‐19 but also for preventing Long Covid are needed, and would mitigate against long‐lasting health burden and economic costs, in addition to saving lives. COVID‐19 induces pathological changes via multiple pathways, which could be targeted simultaneously for optimal effect. We discuss the potential pathologic function of increased activity of the endocannabinoid/CB1 receptor system and inducible NO synthase (iNOS). We advocate a polypharmacology approach, wherein a single chemical entity simultaneously interacts with CB1 receptors and iNOS causing inhibition, as a potential therapeutic strategy for COVID‐19‐related health complications.
Collapse
Affiliation(s)
- Resat Cinar
- Section on Fibrotic Disorders, National Institute on Alcohol Abuse and Alcoholism (NIAAA), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Malliga R Iyer
- Section on Medicinal Chemistry, National Institute on Alcohol Abuse and Alcoholism (NIAAA), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - George Kunos
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism (NIAAA), National Institutes of Health (NIH), Bethesda, Maryland, USA
| |
Collapse
|
5
|
The therapeutic potential of second and third generation CB1R antagonists. Pharmacol Ther 2020; 208:107477. [DOI: 10.1016/j.pharmthera.2020.107477] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 01/02/2020] [Indexed: 12/25/2022]
|
6
|
Kumar N, Khandelwal N, Kumar R, Chander Y, Rawat KD, Chaubey KK, Sharma S, Singh SV, Riyesh T, Tripathi BN, Barua S. Inhibitor of Sarco/Endoplasmic Reticulum Calcium-ATPase Impairs Multiple Steps of Paramyxovirus Replication. Front Microbiol 2019; 10:209. [PMID: 30814986 PMCID: PMC6381065 DOI: 10.3389/fmicb.2019.00209] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Accepted: 01/24/2019] [Indexed: 12/31/2022] Open
Abstract
Sarco/endoplasmic reticulum calcium-ATPase (SERCA) is a membrane-bound cytosolic enzyme which is known to regulate the uptake of calcium into the sarco/endoplasmic reticulum. Herein, we demonstrate for the first time that SERCA can also regulate virus replication. Treatment of Vero cells with SERCA-specific inhibitor (Thapsigargin) at a concentration that is nontoxic to the cells significantly reduced Peste des petits ruminants virus (PPRV) and Newcastle disease virus (NDV) replication. Conversely, overexpression of SERCA rescued the inhibitory effect of Thapsigargin on virus replication. PPRV and NDV infection induced SERCA expression in Vero cells, which could be blocked by Thapsigargin. Besides inducing enhanced formation of cytoplasmic foci, Thapsigargin was shown to block viral entry into the target cells as well as synthesis of viral proteins. Furthermore, NDV was shown to acquire significant resistance to Thapsigargin upon long-term passage (P) in Vero cells. As compared to the P0 and P70-Control, the fusion (F) protein of P70-Thapsigargin virus exhibited a unique mutation at amino acid residue 104 (E104K), whereas no Thapsigargin-associated mutations were observed in HN gene. To the best of our knowledge, this is the first report describing the virus-supportive role of SERCA and a rare report suggesting that viruses may acquire resistance even in the presence of an inhibitor that targets a cellular factor.
Collapse
Affiliation(s)
- Naveen Kumar
- National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, India
| | - Nitin Khandelwal
- National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, India
| | - Ram Kumar
- National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, India
| | - Yogesh Chander
- National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, India
| | - Krishan Dutt Rawat
- National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, India
| | | | - Shalini Sharma
- Department of Veterinary Physiology and Biochemistry, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, India
| | | | - Thachamvally Riyesh
- National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, India
| | - Bhupendra N Tripathi
- National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, India
| | - Sanjay Barua
- National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, India
| |
Collapse
|
7
|
Kumar R, Khandelwal N, Chander Y, Riyesh T, Tripathi BN, Kashyap SK, Barua S, Maherchandani S, Kumar N. MNK1 inhibitor as an antiviral agent suppresses buffalopox virus protein synthesis. Antiviral Res 2018; 160:126-136. [DOI: 10.1016/j.antiviral.2018.10.022] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Revised: 10/22/2018] [Accepted: 10/24/2018] [Indexed: 11/24/2022]
|
8
|
Moreira D, Silvestre R, Cordeiro-da-Silva A, Estaquier J, Foretz M, Viollet B. AMP-activated Protein Kinase As a Target For Pathogens: Friends Or Foes? Curr Drug Targets 2017; 17:942-53. [PMID: 25882224 DOI: 10.2174/1389450116666150416120559] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 03/24/2015] [Accepted: 04/10/2015] [Indexed: 12/21/2022]
Abstract
Intracellular pathogens are known to manipulate host cell regulatory pathways to establish an optimal environment for their growth and survival. Pathogens employ active mechanisms to hijack host cell metabolism and acquire existing nutrient and energy store. The role of the cellular energy sensor AMP-activated protein kinase (AMPK) in the regulation of cellular energy homeostasis is well documented. Here, we highlight recent advances showing the importance of AMPK signaling in pathogen-host interactions. Pathogens interact with AMPK by a variety of mechanisms aimed at reprogramming host cell metabolism to their own benefit. Stimulation of AMPK activity provides an efficient process to rapidly adapt pathogen metabolism to the major nutritional changes often encountered during the different phases of infection. However, inhibition of AMPK is also used by pathogens to manipulate innate host response, indicating that AMPK appears relevant to restriction of pathogen infection. We also document the effects of pharmacological AMPK modulators on pathogen proliferation and survival. This review illustrates intricate pathogen-AMPK interactions that may be exploited to the development of novel anti-pathogen therapies.
Collapse
Affiliation(s)
| | | | | | | | | | - Benoit Viollet
- Institut Cochin, Inserm U1016, CNRS UMR8104, Université Paris Descartes, 24 rue du faubourg Saint Jacques 75014 Paris, France.
| |
Collapse
|
9
|
Ligresti A, De Petrocellis L, Di Marzo V. From Phytocannabinoids to Cannabinoid Receptors and Endocannabinoids: Pleiotropic Physiological and Pathological Roles Through Complex Pharmacology. Physiol Rev 2016; 96:1593-659. [DOI: 10.1152/physrev.00002.2016] [Citation(s) in RCA: 253] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Apart from having been used and misused for at least four millennia for, among others, recreational and medicinal purposes, the cannabis plant and its most peculiar chemical components, the plant cannabinoids (phytocannabinoids), have the merit to have led humanity to discover one of the most intriguing and pleiotropic endogenous signaling systems, the endocannabinoid system (ECS). This review article aims to describe and critically discuss, in the most comprehensive possible manner, the multifaceted aspects of 1) the pharmacology and potential impact on mammalian physiology of all major phytocannabinoids, and not only of the most famous one Δ9-tetrahydrocannabinol, and 2) the adaptive pro-homeostatic physiological, or maladaptive pathological, roles of the ECS in mammalian cells, tissues, and organs. In doing so, we have respected the chronological order of the milestones of the millennial route from medicinal/recreational cannabis to the ECS and beyond, as it is now clear that some of the early steps in this long path, which were originally neglected, are becoming important again. The emerging picture is rather complex, but still supports the belief that more important discoveries on human physiology, and new therapies, might come in the future from new knowledge in this field.
Collapse
Affiliation(s)
- Alessia Ligresti
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, Comprensorio Olivetti, Pozzuoli, Italy
| | - Luciano De Petrocellis
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, Comprensorio Olivetti, Pozzuoli, Italy
| | - Vincenzo Di Marzo
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, Comprensorio Olivetti, Pozzuoli, Italy
| |
Collapse
|
10
|
Cinar R, Iyer MR, Liu Z, Cao Z, Jourdan T, Erdelyi K, Godlewski G, Szanda G, Liu J, Park JK, Mukhopadhyay B, Rosenberg AZ, Liow JS, Lorenz RG, Pacher P, Innis RB, Kunos G. Hybrid inhibitor of peripheral cannabinoid-1 receptors and inducible nitric oxide synthase mitigates liver fibrosis. JCI Insight 2016; 1:e87336. [PMID: 27525312 PMCID: PMC4979564 DOI: 10.1172/jci.insight.87336] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 06/17/2016] [Indexed: 12/13/2022] Open
Abstract
Liver fibrosis, a consequence of chronic liver injury and a way station to cirrhosis and hepatocellular carcinoma, lacks effective treatment. Endocannabinoids acting via cannabinoid-1 receptors (CB1R) induce profibrotic gene expression and promote pathologies that predispose to liver fibrosis. CB1R antagonists produce opposite effects, but their therapeutic development was halted due to neuropsychiatric side effects. Inducible nitric oxide synthase (iNOS) also promotes liver fibrosis and its underlying pathologies, but iNOS inhibitors tested to date showed limited therapeutic efficacy in inflammatory diseases. Here, we introduce a peripherally restricted, orally bioavailable CB1R antagonist, which accumulates in liver to release an iNOS inhibitory leaving group. In mouse models of fibrosis induced by CCl4 or bile duct ligation, the hybrid CB1R/iNOS antagonist surpassed the antifibrotic efficacy of the CB1R antagonist rimonabant or the iNOS inhibitor 1400W, without inducing anxiety-like behaviors or CB1R occupancy in the CNS. The hybrid inhibitor also targeted CB1R-independent, iNOS-mediated profibrotic pathways, including increased PDGF, Nlrp3/Asc3, and integrin αvβ6 signaling, as judged by its ability to inhibit these pathways in cnr1-/- but not in nos2-/- mice. Additionally, it was able to slow fibrosis progression and to attenuate established fibrosis. Thus, dual-target peripheral CB1R/iNOS antagonists have therapeutic potential in liver fibrosis.
Collapse
Affiliation(s)
| | | | - Ziyi Liu
- Laboratory of Physiologic Studies and
| | - Zongxian Cao
- Laboratory of Oxidative Stress and Tissue Injury, National Institute on Alcohol Abuse and Alcoholism, Washington, DC, USA
| | | | - Katalin Erdelyi
- Laboratory of Oxidative Stress and Tissue Injury, National Institute on Alcohol Abuse and Alcoholism, Washington, DC, USA
| | | | | | - Jie Liu
- Laboratory of Physiologic Studies and
| | | | | | - Avi Z. Rosenberg
- Kidney Diseases Section, National Institute on Diabetes, Digestive, and Kidney Diseases, Washington, DC, USA
- Children’s National Medical Center, Washington, DC, USA
| | - Jeih-San Liow
- Molecular Imaging Branch, National Institute on Mental Health, NIH, Bethesda, Maryland, USA
| | - Robin G. Lorenz
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Pal Pacher
- Laboratory of Oxidative Stress and Tissue Injury, National Institute on Alcohol Abuse and Alcoholism, Washington, DC, USA
| | - Robert B. Innis
- Molecular Imaging Branch, National Institute on Mental Health, NIH, Bethesda, Maryland, USA
| | | |
Collapse
|
11
|
Awan Z, Tay ESE, Eyre NS, Wu LE, Beard MR, Boo I, Drummer HE, George J, Douglas MW. Calsyntenin-1 mediates hepatitis C virus replication. J Gen Virol 2016; 97:1877-1887. [PMID: 27221318 DOI: 10.1099/jgv.0.000511] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The hepatitis C virus (HCV) RNA genome of 9.6 kb encodes only 10 proteins, and so is highly dependent on host hepatocyte factors to facilitate replication. We aimed to identify host factors involved in the egress of viral particles. By screening the supernatant of HCV-infected Huh7 cells using SILAC-based proteomics, we identified the transmembrane protein calsyntenin-1 as a factor specifically secreted by infected cells. Calsyntenin-1 has previously been shown to mediate transport of endosomes along microtubules in neurons, through interactions with kinesin light chain-1. Here we demonstrate for the first time, we believe, a similar role for calsyntenin-1 in Huh7 cells, mediating intracellular transport of endosomes. In HCV-infected cells we show that calsyntenin-1 contributes to the early stages of the viral replication cycle and the formation of the replication complex. Importantly, we demonstrate in our model that silencing calsyntenin-1 disrupts the viral replication cycle, confirming the reliance of HCV on this protein as a host factor. Characterizing the function of calsyntenin-1 will increase our understanding of the HCV replication cycle and pathogenesis, with potential application to other viruses sharing common pathways.
Collapse
Affiliation(s)
- Zunaira Awan
- Storr Liver Centre, The Westmead Millennium Institute for Medical Research, The University of Sydney at Westmead Hospital, 176 Hawkesbury Rd, Westmead NSW 2145, Australia
| | - Enoch S E Tay
- Storr Liver Centre, The Westmead Millennium Institute for Medical Research, The University of Sydney at Westmead Hospital, 176 Hawkesbury Rd, Westmead NSW 2145, Australia
| | - Nicholas S Eyre
- Hepatitis C Virus Research Laboratory, School of Molecular and Biomedical Science, University of Adelaide, Adelaide, Australia
| | - Lindsay E Wu
- University of New South Wales, Sydney NSW 2052, Australia
| | - Michael R Beard
- Hepatitis C Virus Research Laboratory, School of Molecular and Biomedical Science, University of Adelaide, Adelaide, Australia
| | - Irene Boo
- Centre for Biomedical Research, Burnet Institute, 85 Commercial Rd, Melbourne VIC 3004, Australia
| | - Heidi E Drummer
- Centre for Biomedical Research, Burnet Institute, 85 Commercial Rd, Melbourne VIC 3004, Australia.,Department of Microbiology, 19 Innovation Walk, Monash University, Victoria, Australia.,Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Jacob George
- Storr Liver Centre, The Westmead Millennium Institute for Medical Research, The University of Sydney at Westmead Hospital, 176 Hawkesbury Rd, Westmead NSW 2145, Australia
| | - Mark W Douglas
- Storr Liver Centre, The Westmead Millennium Institute for Medical Research, The University of Sydney at Westmead Hospital, 176 Hawkesbury Rd, Westmead NSW 2145, Australia.,Centre for Infectious Diseases and Microbiology, Marie Bashir Institute for Infectious Diseases and Biosecurity, University of Sydney at Westmead Hospital, Westmead NSW 2145, Australia
| |
Collapse
|
12
|
Investigation of Stilbenoids as Potential Therapeutic Agents for Rotavirus Gastroenteritis. Adv Virol 2015; 2015:293524. [PMID: 26379708 PMCID: PMC4563088 DOI: 10.1155/2015/293524] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 08/06/2015] [Accepted: 08/09/2015] [Indexed: 12/20/2022] Open
Abstract
Rotavirus (RV) infections cause severe diarrhea in infants and young children worldwide. Vaccines are available but cost prohibitive for many countries and only reduce severe symptoms. Vaccinated infants continue to shed infectious particles, and studies show decreased efficacy of the RV vaccines in tropical and subtropical countries where they are needed most. Continuing surveillance for new RV strains, assessment of vaccine efficacy, and development of cost effective antiviral drugs remain an important aspect of RV studies. This study was to determine the efficacy of antioxidant and anti-inflammatory stilbenoids to inhibit RV replication. Peanut (A. hypogaea) hairy root cultures were induced to produce stilbenoids, which were purified by high performance countercurrent chromatography (HPCCC) and analyzed by HPLC. HT29.f8 cells were infected with RV in the presence stilbenoids. Cell viability counts showed no cytotoxic effects on HT29.f8 cells. Viral infectivity titers were calculated and comparatively assessed to determine the effects of stilbenoid treatments. Two stilbenoids, trans-arachidin-1 and trans-arachidin-3, show a significant decrease in RV infectivity titers. Western blot analyses performed on the infected cell lysates complemented the infectivity titrations and indicated a significant decrease in viral replication. These studies show the therapeutic potential of the stilbenoids against RV replication.
Collapse
|
13
|
Silvestri C, Paris D, Martella A, Melck D, Guadagnino I, Cawthorne M, Motta A, Di Marzo V. Two non-psychoactive cannabinoids reduce intracellular lipid levels and inhibit hepatosteatosis. J Hepatol 2015; 62:1382-90. [PMID: 25595882 DOI: 10.1016/j.jhep.2015.01.001] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Revised: 12/05/2014] [Accepted: 01/01/2015] [Indexed: 12/29/2022]
Abstract
BACKGROUND & AIMS Obesity and associated metabolic syndrome have quickly become a pandemic and a major detriment to global human health. The presence of non-alcoholic fatty liver disease (NAFLD; hepatosteatosis) in obesity has been linked to the worsening of the metabolic syndrome, including the development of insulin resistance and cardiovascular disease. Currently, there are few options to treat NAFLD, including life style changes and insulin sensitizers. Recent evidence suggests that the cannabinoids Δ(9)-tetrahydrocannabivarin (THCV) and cannabidiol (CBD) improve insulin sensitivity; we aimed at studying their effects on lipid levels. METHODS The effects of THCV and CBD on lipid levels were examined in a variety of in vitro and in vivo systems, with special emphasis on models of hepatosteatosis. Transcriptional, post-translational and metabolomic changes were assayed. RESULTS THCV and CBD directly reduce accumulated lipid levels in vitro in a hepatosteatosis model and adipocytes. Nuclear magnetic resonance- (NMR) based metabolomics confirmed these results and further identified specific metabolic changes in THCV and CBD-treated hepatocytes. Treatment also induced post-translational changes in a variety of proteins such as CREB, PRAS40, AMPKa2 and several STATs indicating increased lipid metabolism and, possibly, mitochondrial activity. These results are supported by in vivo data from zebrafish and obese mice indicating that these cannabinoids are able to increase yolk lipid mobilization and inhibit the development of hepatosteatosis respectively. CONCLUSIONS Our results suggest that THCV and CBD might be used as new therapeutic agents for the pharmacological treatment of obesity- and metabolic syndrome-related NAFLD/hepatosteatosis.
Collapse
Affiliation(s)
- Cristoforo Silvestri
- Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, Via Campi Flegrei 34, 80078, Pozzuoli, Naples, Italy
| | - Debora Paris
- Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, Via Campi Flegrei 34, 80078, Pozzuoli, Naples, Italy
| | - Andrea Martella
- Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, Via Campi Flegrei 34, 80078, Pozzuoli, Naples, Italy
| | - Dominique Melck
- Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, Via Campi Flegrei 34, 80078, Pozzuoli, Naples, Italy
| | - Irene Guadagnino
- Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, Via Campi Flegrei 34, 80078, Pozzuoli, Naples, Italy
| | - Mike Cawthorne
- Institute of Translational Medicine, Clore Laboratory, University of Buckingham, Buckingham, UK
| | - Andrea Motta
- Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, Via Campi Flegrei 34, 80078, Pozzuoli, Naples, Italy
| | - Vincenzo Di Marzo
- Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, Via Campi Flegrei 34, 80078, Pozzuoli, Naples, Italy.
| |
Collapse
|
14
|
Patsenker E, Sachse P, Chicca A, Gachet MS, Schneider V, Mattsson J, Lanz C, Worni M, de Gottardi A, Semmo M, Hampe J, Schafmayer C, Brenneisen R, Gertsch J, Stickel F, Semmo N. Elevated levels of endocannabinoids in chronic hepatitis C may modulate cellular immune response and hepatic stellate cell activation. Int J Mol Sci 2015; 16:7057-76. [PMID: 25826533 PMCID: PMC4425004 DOI: 10.3390/ijms16047057] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 03/06/2015] [Accepted: 03/23/2015] [Indexed: 12/17/2022] Open
Abstract
The endocannabinoid (EC) system is implicated in many chronic liver diseases, including hepatitis C viral (HCV) infection. Cannabis consumption is associated with fibrosis progression in patients with chronic hepatitis C (CHC), however, the role of ECs in the development of CHC has never been explored. To study this question, anandamide (AEA) and 2-arachidonoyl glycerol (2-AG) were quantified in samples of HCV patients and healthy controls by gas and liquid chromatography mass spectrometry. Fatty acid amide hydrolase (FAAH) and monoaclyglycerol lipase (MAGL) activity was assessed by [3H]AEA and [3H]2-AG hydrolysis, respectively. Gene expression and cytokine release were assayed by TaqMan PCR and ELISpot, respectively. AEA and 2-AG levels were increased in plasma of HCV patients, but not in liver tissues. Hepatic FAAH and MAGL activity was not changed. In peripheral blood mononuclear cells (PBMC), ECs inhibited IFN-γ, TNF-α, and IL-2 secretion. Inhibition of IL-2 by endogenous AEA was stronger in PBMC from HCV patients. In hepatocytes, 2-AG induced the expression of IL-6, -17A, -32 and COX-2, and enhanced activation of hepatic stellate cells (HSC) co-cultivated with PBMC from subjects with CHC. In conclusion, ECs are increased in plasma of patients with CHC and might reveal immunosuppressive and profibrogenic effects.
Collapse
Affiliation(s)
- Eleonora Patsenker
- Department of Clinical Research, University of Bern, Bern 3010, Switzerland.
| | - Philip Sachse
- Department of Clinical Research, University of Bern, Bern 3010, Switzerland.
| | - Andrea Chicca
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bern 3012, Switzerland.
| | - María Salomé Gachet
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bern 3012, Switzerland.
| | - Vreni Schneider
- Department of Clinical Research, University of Bern, Bern 3010, Switzerland.
| | - Johan Mattsson
- Department of Clinical Research, Laboratory of Phytopharmacology, Bioanalytics and Pharmacokinetics, University of Bern, Bern 3010, Switzerland.
| | - Christian Lanz
- Department of Clinical Research, Laboratory of Phytopharmacology, Bioanalytics and Pharmacokinetics, University of Bern, Bern 3010, Switzerland.
| | - Mathias Worni
- Department of Visceral Surgery and Medicine, Inselspital, University of Bern, Bern 3010, Switzerland.
| | - Andrea de Gottardi
- Department of Visceral Surgery and Medicine, Inselspital, University of Bern, Bern 3010, Switzerland.
| | - Mariam Semmo
- Department of Nephrology, Inselspital, University of Bern, Bern 3010, Switzerland.
| | - Jochen Hampe
- Department of Medicine II, Division of Gastroenterology, University of Dresden, Dresden 01307, Germany.
| | - Clemens Schafmayer
- Department of Visceral Surgery, University of Schleswig-Holstein, Campus Kiel, Kiel 24105, Germany.
| | - Rudolf Brenneisen
- Department of Clinical Research, Laboratory of Phytopharmacology, Bioanalytics and Pharmacokinetics, University of Bern, Bern 3010, Switzerland.
| | - Jürg Gertsch
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bern 3012, Switzerland.
| | - Felix Stickel
- Department of Clinical Research, University of Bern, Bern 3010, Switzerland.
| | - Nasser Semmo
- Department of Clinical Research, University of Bern, Bern 3010, Switzerland.
- Department of Visceral Surgery and Medicine, Inselspital, University of Bern, Bern 3010, Switzerland.
| |
Collapse
|