1
|
Xue Q, Swevers L, Taning CNT. Plant and insect virus-like particles: emerging nanoparticles for agricultural pest management. PEST MANAGEMENT SCIENCE 2023; 79:2975-2991. [PMID: 37103223 DOI: 10.1002/ps.7514] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 04/20/2023] [Accepted: 04/27/2023] [Indexed: 06/05/2023]
Abstract
Virus-like particles (VLPs) represent a biodegradable, biocompatible nanomaterial made from viral coat proteins that can improve the delivery of antigens, drugs, nucleic acids, and other substances, with most applications in human and veterinary medicine. Regarding agricultural viruses, many insect and plant virus coat proteins have been shown to assemble into VLPs accurately. In addition, some plant virus-based VLPs have been used in medical studies. However, to our knowledge, the potential application of plant/insect virus-based VLPs in agriculture remains largely underexplored. This review focuses on why and how to engineer coat proteins of plant/insect viruses as functionalized VLPs, and how to exploit VLPs in agricultural pest control. The first part of the review describes four different engineering strategies for loading cargo at the inner or the outer surface of VLPs depending on the type of cargo and purpose. Second, the literature on plant and insect viruses the coat proteins of which have been confirmed to self-assemble into VLPs is reviewed. These VLPs are good candidates for developing VLP-based agricultural pest control strategies. Lastly, the concepts of plant/insect virus-based VLPs for delivering insecticidal and antiviral components (e.g., double-stranded RNA, peptides, and chemicals) are discussed, which provides future prospects of VLP application in agricultural pest control. In addition, some concerns are raised about VLP production on a large scale and the short-term resistance of hosts to VLP uptake. Overall, this review is expected to stimulate interest and research exploring plant/insect virus-based VLP applications in agricultural pest management. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Qi Xue
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Luc Swevers
- Insect Molecular Genetics and Biotechnology, Institute of Biosciences and Applications, National Centre for Scientific Research "Demokritos", Athens, Greece
| | - Clauvis Nji Tizi Taning
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| |
Collapse
|
2
|
Penrice-Randal R, Hartley C, Beliavskaia A, Dong X, Brandner-Garrod L, Whitten M, Bell-Sakyi L. New Cell Lines Derived from Laboratory Colony Triatoma infestans and Rhodnius prolixus, Vectors of Trypanosoma cruzi, Do Not Harbour Triatoma Virus. INSECTS 2022; 13:906. [PMID: 36292854 PMCID: PMC9603895 DOI: 10.3390/insects13100906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/27/2022] [Accepted: 10/03/2022] [Indexed: 06/16/2023]
Abstract
Triatomine bugs of the genera Triatoma and Rhodnius are vectors of Chagas disease, a neglected tropical disease of humans in South America caused by Trypanosoma cruzi. Triatoma virus (TrV), a natural pathogen of Triatoma infestans, has been proposed as a possible tool for the bio-control of triatomine bugs, but research into this virus has been hampered by a lack of suitable host cells for in vitro propagation. Here we report establishment and partial characterisation of continuous cell lines from embryos of T. infestans (TIE/LULS54) and Rhodnius prolixus (RPE/LULS53 and RPE/LULS57). RNAseq screening by a sequence-independent, single primer amplification approach confirmed the absence of TrV and other RNA viruses known to infect R. prolixus, indicating that these new cell lines could be used for propagation of TrV.
Collapse
Affiliation(s)
- Rebekah Penrice-Randal
- Department of Infection Biology and Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, 146 Brownlow Hill, Liverpool L3 5RF, UK
| | - Catherine Hartley
- Department of Infection Biology and Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, 146 Brownlow Hill, Liverpool L3 5RF, UK
| | - Alexandra Beliavskaia
- Department of Infection Biology and Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, 146 Brownlow Hill, Liverpool L3 5RF, UK
| | - Xiaofeng Dong
- Department of Infection Biology and Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, 146 Brownlow Hill, Liverpool L3 5RF, UK
| | - Luke Brandner-Garrod
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| | - Miranda Whitten
- Swansea University Institute of Life Science, College of Medicine, Swansea University, Singleton Park, Swansea SA2 8PP, UK
| | - Lesley Bell-Sakyi
- Department of Infection Biology and Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, 146 Brownlow Hill, Liverpool L3 5RF, UK
| |
Collapse
|
3
|
de Brito TF, Coelho VL, Cardoso MA, Brito IADA, Berni MA, Zenk FL, Iovino N, Pane A. Transovarial transmission of a core virome in the Chagas disease vector Rhodnius prolixus. PLoS Pathog 2021; 17:e1009780. [PMID: 34407148 PMCID: PMC8372912 DOI: 10.1371/journal.ppat.1009780] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Accepted: 07/02/2021] [Indexed: 01/09/2023] Open
Abstract
Triatomine assassin bugs comprise hematophagous insect vectors of Trypanosoma cruzi, the causative agent of Chagas disease. Although the microbiome of these species has been investigated to some extent, only one virus infecting Triatoma infestans has been identified to date. Here, we describe for the first time seven (+) single-strand RNA viruses (RpV1-7) infecting Rhodnius prolixus, a primary vector of Chagas disease in Central and South America. We show that the RpVs belong to the Iflaviridae, Permutotetraviridae and Solemoviridae and are vertically transmitted from the mothers to the progeny via transovarial transmission. Consistent with this, all the RpVs, except RpV2 that is related to the entomopathogenic Slow bee paralysis virus, established persistent infections in our R. prolixus colony. Furthermore, we show that R. prolixus ovaries express 22-nucleotide viral siRNAs (vsiRNAs), but not viral piRNAs, that originate from the processing of dsRNA intermediates during viral replication of the RpVs. Interestingly, the permutotetraviruses and sobemoviruses display shared pools of vsiRNAs that might provide the basis for a cross-immunity system. The vsiRNAs are maternally deposited in the eggs, where they likely contribute to reduce the viral load and protect the developing embryos. Our results unveil for the first time a complex core virome in R. prolixus and begin to shed light on the RNAi-based antiviral defenses in triatomines.
Collapse
Affiliation(s)
| | - Vitor Lima Coelho
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Maira Arruda Cardoso
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Mateus Antonio Berni
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fides Lea Zenk
- Department of Chromatin Regulation, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Nicola Iovino
- Department of Chromatin Regulation, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Attilio Pane
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
4
|
Maria Vasconcelos Queiroz A, Aleksandrovna Yanshina Y, Thays da Silva Rodrigues E, Luciano Neves Santos F, Alejandra Fiorani Celedon P, Maheshwari S, Beatriz Gabelli S, Stephanie Peucelle Rubio C, Durana A, Guérin DMA, Sousa Silva M. Antibodies response induced by recombinant virus-like particles from Triatoma virus and chimeric antigens from Trypanosoma cruzi. Vaccine 2021; 39:4723-4732. [PMID: 34053789 DOI: 10.1016/j.vaccine.2021.05.039] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 05/04/2021] [Accepted: 05/14/2021] [Indexed: 12/30/2022]
Abstract
BACKGROUND The infection caused by the protozoan Trypanosoma cruzi affects humans and is called as Chagas disease. Currently, the main measures available to reduce the incidence of this disease are drug treatment and vector control. Traditionally, the development of vaccines occurs mainly through the use of antigenic candidates of the etiologic agent in the form of a vaccine preparation. Virus-like particles (VLPs) are structures analogous to viral capsids composed essentially of structural proteins and are widely used in vaccination protocols because of their immunostimulatory properties. In this context, the objective of this study was to use strategies in a murine immunization model to characterize the immunostimulatory capacity of VLPs from Triatoma virus (TrV-VLPs), analysed in the presence or absence of the aluminium vaccine adjuvant. In parallel, to characterize the immunogenic behaviour of four T. cruzi chimeric recombinant proteins (mix-IBMP) associated with TrV-VLPs or aluminium vaccine adjuvant. METHOD We immunized BALB/c mice once or twice, depending on the strategy, and collected serum samples at 15, 30 and 45 days after the immunization. Subsequently, serum samples from animals immunized with TrV-VLPs were used to determine total IgG, IgG1, IgG2a, IgG2b and IgG3 anti-TrV-VLPs by enzyme-linked immunosorbent assay (ELISA). RESULTS Data obtained demonstrate the ability of TrV-VLPs to preferably induce IgG2b and IgG3 type antibodies in the absence of aluminium adjuvant. In fact, the use of aluminium did not interfere with the total IgG profile of anti-TrV-VLPs. Interestingly, mix-IBMP had a better profile of total IgG, IgG1 and IgG3 subclasses when mixed with TrV-VLPs. CONCLUSION In conclusion, these results suggest the potential of TrV-VLPs as a vaccine adjuvant and the use of T. cruzi chimeric antigens as a rational strategy for the development of vaccines against the experimental model of Chagas disease.
Collapse
Affiliation(s)
- Aline Maria Vasconcelos Queiroz
- Postgraduate Programme in Pharmaceutical Sciences, Federal University of Rio Grande do Norte, Rua Gen, Gustavo Cordeiro de Farias, 384, 59012-570 Natal, Brazil; Immunoparasitology Laboratory, Department of Clinical and Toxicological Analysis, Federal University of Rio Grande do Norte, Rua Gen, Gustavo Cordeiro de Farias, 384, 59012-570 Natal, Brazil
| | - Yulia Aleksandrovna Yanshina
- Global Health and Tropical Medicine, Institute of Hygiene and Tropical Medicine, Universidade Nova de Lisboa, Rua da Juqueira, 100, 1800-166 Lisbon, Portugal
| | - Emily Thays da Silva Rodrigues
- Immunoparasitology Laboratory, Department of Clinical and Toxicological Analysis, Federal University of Rio Grande do Norte, Rua Gen, Gustavo Cordeiro de Farias, 384, 59012-570 Natal, Brazil
| | - Fred Luciano Neves Santos
- Advanced Public Health Laboratory, Gonçalo Moniz Institute, Fiocruz, Rua Waldemar Falcão, 121, 40296-710 Salvador, Brazil.
| | | | - Sweta Maheshwari
- School of Medicine, Johns Hopkins University, 725 N Wolfe St, Baltimore, MD 21205, USA
| | | | - Carla Stephanie Peucelle Rubio
- Departamento de Bioquímica y Biología Molecular, Instituto Biofisika, Universidad del País Vasco (UBF, CSIC, UPV-EHU), B° Sarriena S/N, 48940 Leioa, Bizkaia, Spain; Ikosaedrika Biologicals S.L. ZITEK Edificio Rectorado UPV/EHU, B° Sarriena S/N, 48940 Leioa, Vizcaya, Spain
| | - Aritz Durana
- Instituto Biofisika (CSIC, UPV/EHU), Fundación Biofísica Bizkaia, B° Sarriena S/N, 48940 Leioa, Vizcaya, Spain
| | - Diego M A Guérin
- Departamento de Bioquímica y Biología Molecular, Instituto Biofisika, Universidad del País Vasco (UBF, CSIC, UPV-EHU), B° Sarriena S/N, 48940 Leioa, Bizkaia, Spain; Ikosaedrika Biologicals S.L. ZITEK Edificio Rectorado UPV/EHU, B° Sarriena S/N, 48940 Leioa, Vizcaya, Spain.
| | - Marcelo Sousa Silva
- Postgraduate Programme in Pharmaceutical Sciences, Federal University of Rio Grande do Norte, Rua Gen, Gustavo Cordeiro de Farias, 384, 59012-570 Natal, Brazil; Immunoparasitology Laboratory, Department of Clinical and Toxicological Analysis, Federal University of Rio Grande do Norte, Rua Gen, Gustavo Cordeiro de Farias, 384, 59012-570 Natal, Brazil; Global Health and Tropical Medicine, Institute of Hygiene and Tropical Medicine, Universidade Nova de Lisboa, Rua da Juqueira, 100, 1800-166 Lisbon, Portugal.
| |
Collapse
|
5
|
Abstract
Virus-like particles (VLPs) are self-assembling platforms composed of viral structural proteins. They are used for a variety of purposes, ranging from the study of virus assembly to vaccine development. VLPs can be produced in plants, bacteria, yeast, and insect and mammalian cells. The baculovirus expression system is one of the most commonly used systems for production of VLPs in eukaryotic cells. This chapter provides a brief overview of the main strategies used to generate recombinant baculoviruses and the applications of insect virus-derived VLPs in basic and applied research. It then describes detailed protocols for generation of recombinant baculoviruses, screening for their expression of VLPs in insect cells, and VLP purification.
Collapse
Affiliation(s)
- Radhika Gopal
- Department of Cell and Molecular Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Anette Schneemann
- Department of Cell and Molecular Biology, The Scripps Research Institute, La Jolla, CA, USA.
| |
Collapse
|
6
|
Sánchez-Eugenia R, Durana A, López-Marijuan I, Marti GA, Guérin DMA. X-ray structure of Triatoma virus empty capsid: insights into the mechanism of uncoating and RNA release in dicistroviruses. J Gen Virol 2016; 97:2769-2779. [DOI: 10.1099/jgv.0.000580] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Rubén Sánchez-Eugenia
- Instituto Biofisika (CSIC, UPV/EHU), Barrio Sarriena S/N, 48940 Leioa, Bizkaia, Spain
| | - Aritz Durana
- Instituto Biofisika (CSIC, UPV/EHU), Barrio Sarriena S/N, 48940 Leioa, Bizkaia, Spain
- Fundación Biofísica Bizkaia, Barrio Sarriena S/N, 48940 Leioa, Bizkaia, Spain
| | - Ibai López-Marijuan
- Instituto Biofisika (CSIC, UPV/EHU), Barrio Sarriena S/N, 48940 Leioa, Bizkaia, Spain
- Fundación Biofísica Bizkaia, Barrio Sarriena S/N, 48940 Leioa, Bizkaia, Spain
| | - Gerardo A. Marti
- Centro de Estudios Parasitológicos y de Vectores (CEPAVE-CCT-La Plata-CONICET-UNLP), Boulevard 120 e/61 y 62, 1900 La Plata, Argentina
| | - Diego M. A. Guérin
- Instituto Biofisika (CSIC, UPV/EHU), Barrio Sarriena S/N, 48940 Leioa, Bizkaia, Spain
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencia y Tecnología, Universidad del País Vasco (UPV/EHU), Barrio Sarriena S/N, 48940 Leioa, Bizkaia, Spain
| |
Collapse
|
7
|
Triatoma virus recombinant VP4 protein induces membrane permeability through dynamic pores. J Virol 2015; 89:4645-54. [PMID: 25673713 DOI: 10.1128/jvi.00011-15] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
UNLABELLED In naked viruses, membrane breaching is a key step that must be performed for genome transfer into the target cells. Despite its importance, the mechanisms behind this process remain poorly understood. The small protein VP4, encoded by the genomes of most viruses of the order Picornavirales, has been shown to be involved in membrane alterations. Here we analyzed the permeabilization activity of the natively nonmyristoylated VP4 protein from triatoma virus (TrV), a virus belonging to the Dicistroviridae family within the Picornavirales order. The VP4 protein was produced as a C-terminal maltose binding protein (MBP) fusion to achieve its successful expression. This recombinant VP4 protein is able to produce membrane permeabilization in model membranes in a membrane composition-dependent manner. The induced permeability was also influenced by the pH, being greater at higher pH values. We demonstrate that the permeabilization activity elicited by the protein occurs through discrete pores that are inserted on the membrane. Sizing experiments using fluorescent dextrans, cryo-electron microscopy imaging, and other, additional techniques showed that recombinant VP4 forms heterogeneous proteolipidic pores rather than common proteinaceous channels. These results suggest that the VP4 protein may be involved in the membrane alterations required for genome transfer or cell entry steps during dicistrovirus infection. IMPORTANCE During viral infection, viruses need to overcome the membrane barrier in order to enter the cell and replicate their genome. In nonenveloped viruses membrane fusion is not possible, and hence, other mechanisms are implemented. Among other proteins, like the capsid-forming proteins and the proteins required for viral replication, several viruses of the order Picornaviridae contain a small protein called VP4 that has been shown to be involved in membrane alterations. Here we show that the triatoma virus VP4 protein is able to produce membrane permeabilization in model membranes by the formation of heterogeneous dynamic pores. These pores formed by VP4 may be involved in the genome transfer or cell entry steps during viral infection.
Collapse
|