1
|
Wang Y, Liu C, Liu S, Wang Z, Hao K, Wu Y, Yu C, Yuan X. Replicase components and the untranslated region of RNA2 synergistically regulate pathogenicity differentiation among different isolates of cucumber mosaic virus. Int J Biol Macromol 2025; 294:139076. [PMID: 39753176 DOI: 10.1016/j.ijbiomac.2024.139076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 12/05/2024] [Accepted: 12/20/2024] [Indexed: 01/11/2025]
Abstract
Changes in critical sites of virus-encoded protein or cis-acting element generally determine pathogenicity differentiation among different isolates of the same plant virus. Cucumber mosaic virus (CMV) isolates, which exhibit the most extensively known host range, demonstrate notable pathogenicity differentiation. This study focuses on the severe isolate CMVFny and mild isolate CMVTA-pe, both affecting several species within the Solanaceae family, to identify the key factors regulating pathogenicity differentiation. Through a pseudo-recombination assay, the principal RNA segments regulating the pathogenicity of two CMV isolates were localized to RNA1 and RNA2, with a particular emphasis on RNA2. By generating chimeric mutants on RNA1 or RNA2 of the two isolates, the pathogenicity differentiation was suggested to be mainly associated with protein 1a of RNA1 as well as the synergistic interactions involving protein 2a as well as the 5'-untranslated region (UTR) and the 3'-UTR of RNA2. Moreover, the influence of protein 1a of RNA1 and protein 2a, 5'-UTR, and 3'-UTR of RNA2 on pathogenicity differentiation exhibited a coevolutionary pattern. This coevolutionary pattern of proteins 1a and 2a, along with the UTRs of RNA2, was also corroborated in three additional CMV isolates: CMVZMBJ, CMVWF-Ch, and CMVJN-Cu. In addition, multiple phylogenetic tree analyses revealed a synchronous evolutionary pattern among proteins 1a and 2a and the 5'-UTR and 3'-UTR of RNA2. This study provided new insights into the pathogenicity differentiation of RNA viruses.
Collapse
Affiliation(s)
- Yalan Wang
- Department of Plant Pathology, College of Plant Protection, Shandong Agricultural University, Shandong Province Key Laboratory of Agricultural Microbiology, Tai'an 271018, PR China
| | - Chunju Liu
- Shandong Weifang Tobacco Co., Ltd., Weifang, Shandong 261061, PR China
| | - Shanshan Liu
- Department of Plant Pathology, College of Plant Protection, Shandong Agricultural University, Shandong Province Key Laboratory of Agricultural Microbiology, Tai'an 271018, PR China; Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266100, PR China
| | - Zhao Wang
- Department of Plant Pathology, College of Plant Protection, Shandong Agricultural University, Shandong Province Key Laboratory of Agricultural Microbiology, Tai'an 271018, PR China
| | - Kaiqiang Hao
- Department of Plant Pathology, College of Plant Protection, Shandong Agricultural University, Shandong Province Key Laboratory of Agricultural Microbiology, Tai'an 271018, PR China
| | - Yueming Wu
- Department of Plant Pathology, College of Plant Protection, Shandong Agricultural University, Shandong Province Key Laboratory of Agricultural Microbiology, Tai'an 271018, PR China
| | - Chengming Yu
- Department of Plant Pathology, College of Plant Protection, Shandong Agricultural University, Shandong Province Key Laboratory of Agricultural Microbiology, Tai'an 271018, PR China.
| | - Xuefeng Yuan
- Department of Plant Pathology, College of Plant Protection, Shandong Agricultural University, Shandong Province Key Laboratory of Agricultural Microbiology, Tai'an 271018, PR China.
| |
Collapse
|
2
|
Shahwar D, Khan Z, Park Y. Molecular Markers for Marker-Assisted Breeding for Biotic and Abiotic Stress in Melon ( Cucumis melo L.): A Review. Int J Mol Sci 2024; 25:6307. [PMID: 38928017 PMCID: PMC11204097 DOI: 10.3390/ijms25126307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/02/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024] Open
Abstract
Melon (Cucumis melo L.) is a globally grown crop renowned for its juice and flavor. Despite growth in production, the melon industry faces several challenges owing to a wide range of biotic and abiotic stresses throughout the growth and development of melon. The aim of the review article is to consolidate current knowledge on the genetic mechanism of both biotic and abiotic stress in melon, facilitating the development of robust, disease-resistant melon varieties. A comprehensive literature review was performed, focusing on recent genetic and molecular advancements related to biotic and abiotic stress responses in melons. The review emphasizes the identification and analysis of quantitative trait loci (QTLs), functional genes, and molecular markers in two sections. The initial section provides a comprehensive summary of the QTLs and major and minor functional genes, and the establishment of molecular markers associated with biotic (viral, bacterial, and fungal pathogens, and nematodes) and abiotic stress (cold/chilling, drought, salt, and toxic compounds). The latter section briefly outlines the molecular markers employed to facilitate marker-assisted backcrossing (MABC) and identify cultivars resistant to biotic and abiotic stressors, emphasizing their relevance in strategic marker-assisted melon breeding. These insights could guide the incorporation of specific traits, culminating in developing novel varieties, equipped to withstand diseases and environmental stresses by targeted breeding, that meet both consumer preferences and the needs of melon breeders.
Collapse
Affiliation(s)
- Durre Shahwar
- Plant Genomics and Molecular Breeding Laboratory, Department of Horticultural Bioscience, Pusan National University, Miryang 50463, Republic of Korea;
| | - Zeba Khan
- Center for Agricultural Education, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh 202002, India;
| | - Younghoon Park
- Plant Genomics and Molecular Breeding Laboratory, Department of Horticultural Bioscience, Pusan National University, Miryang 50463, Republic of Korea;
- Life and Industry Convergence Research Institute, Pusan National University, Miryang 50463, Republic of Korea
| |
Collapse
|
3
|
Molecular analysis of Greek isolates of cucumber mosaic virus from vegetables shows a low prevalence of satellite RNAs and suggests the presence of host-associated virus strains. Arch Virol 2021; 166:2199-2208. [PMID: 34057609 DOI: 10.1007/s00705-021-05115-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 04/06/2021] [Indexed: 01/27/2023]
Abstract
Cucumber mosaic virus (CMV) is a generalist pathogen that infects many economically important crops in Greece. The present study was designed to evaluate the genetic variability of Greek CMV isolates in combination with their satellite RNAs (satRNAs). To achieve this goal, 77 CMV isolates were collected from symptomatic Greek vegetables, mainly tomatoes and cucurbits, alongside their neighboring crops, during a four-year period from 2015 to 2018. Phylogenetic analysis of a partial coat protein (CP) gene segment revealed that all of the isolates belong to CMV subgroups IA and IB and that they are closely related to previously reported Greek isolates. It should be noted, however, that the latter mainly included tomato isolates. Network analysis of the evolutionary relationships among the CP sequences of the Greek isolates in comparison to the corresponding sequences obtained from the GenBank database indicated two predominant common ancestors and at least three differentiated peripherals, and possibly host-associated (tomatoes, legumes, cucurbits) haplogroups (strain groups). More specifically, host-adaptive evolution can be postulated regarding the tomato isolates in subgroup IB. Necrogenic or non-necrogenic satRNAs were detected in four samples from tomato and melon, and this is the first report of non-necrogenic satRNAs in CMV in Greece.
Collapse
|
4
|
Heo KJ, Kwon SJ, Kim MK, Kwak HR, Han SJ, Kwon MJ, Rao ALN, Seo JK. Newly emerged resistance-breaking variants of cucumber mosaic virus represent ongoing host-interactive evolution of an RNA virus. Virus Evol 2020; 6:veaa070. [PMID: 33240527 PMCID: PMC7673075 DOI: 10.1093/ve/veaa070] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Understanding the evolutionary history of a virus and the mechanisms influencing the direction of its evolution is essential for the development of more durable strategies to control the virus in crop fields. While the deployment of host resistance in crops is the most efficient means to control various viruses, host resistance itself can act as strong selective pressure and thus play a critical role in the evolution of virus virulence. Cucumber mosaic virus (CMV), a plant RNA virus with high evolutionary capacity, has caused endemic disease in various crops worldwide, including pepper (Capsicum annuum L.), because of frequent emergence of resistance-breaking variants. In this study, we examined the molecular and evolutionary characteristics of recently emerged, resistance-breaking CMV variants infecting pepper. Our population genetics analysis revealed that the high divergence capacity of CMV RNA1 might have played an essential role in the host-interactive evolution of CMV and in shaping the CMV population structure in pepper. We also demonstrated that nonsynonymous mutations in RNA1 encoding the 1a protein enabled CMV to overcome the deployed resistance in pepper. Our findings suggest that resistance-driven selective pressures on RNA1 might have contributed in shaping the unique evolutionary pattern of CMV in pepper. Therefore, deployment of a single resistance gene may reduce resistance durability against CMV and more integrated approaches are warranted for successful control of CMV in pepper.
Collapse
Affiliation(s)
| | - Sun-Jung Kwon
- Institutes of Green Bio Science and Technology, Seoul National University, 1447 Pyeongchang-ro, Pyeongchang 25354, Republic of Korea
| | - Mi-Kyeong Kim
- Department of Plant Medicine, Chungbuk National University, 1 Chungdae-ro, Cheongju 28644, Republic of Korea
| | - Hae-Ryun Kwak
- Crop Protection Division, National Institute of Agricultural Sciences, Rural Development Administration, 300 Nongsaengmyeong-ro, Wanju 55365, Republic of Korea
| | - Soo-Jung Han
- Department of International Agricultural Technology
| | - Min-Jun Kwon
- Department of International Agricultural Technology
| | - A L N Rao
- Department of Microbiology and Plant Pathology, University of California, Boyce Hall 1463, 900 University Ave, Riverside, CA 92521, USA
| | | |
Collapse
|
5
|
Rubio L, Galipienso L, Ferriol I. Detection of Plant Viruses and Disease Management: Relevance of Genetic Diversity and Evolution. FRONTIERS IN PLANT SCIENCE 2020; 11:1092. [PMID: 32765569 PMCID: PMC7380168 DOI: 10.3389/fpls.2020.01092] [Citation(s) in RCA: 140] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 07/02/2020] [Indexed: 05/04/2023]
Abstract
Plant viruses cause considerable economic losses and are a threat for sustainable agriculture. The frequent emergence of new viral diseases is mainly due to international trade, climate change, and the ability of viruses for rapid evolution. Disease control is based on two strategies: i) immunization (genetic resistance obtained by plant breeding, plant transformation, cross-protection, or others), and ii) prophylaxis to restrain virus dispersion (using quarantine, certification, removal of infected plants, control of natural vectors, or other procedures). Disease management relies strongly on a fast and accurate identification of the causal agent. For known viruses, diagnosis consists in assigning a virus infecting a plant sample to a group of viruses sharing common characteristics, which is usually referred to as species. However, the specificity of diagnosis can also reach higher taxonomic levels, as genus or family, or lower levels, as strain or variant. Diagnostic procedures must be optimized for accuracy by detecting the maximum number of members within the group (sensitivity as the true positive rate) and distinguishing them from outgroup viruses (specificity as the true negative rate). This requires information on the genetic relationships within-group and with members of other groups. The influence of the genetic diversity of virus populations in diagnosis and disease management is well documented, but information on how to integrate the genetic diversity in the detection methods is still scarce. Here we review the techniques used for plant virus diagnosis and disease control, including characteristics such as accuracy, detection level, multiplexing, quantification, portability, and designability. The effect of genetic diversity and evolution of plant viruses in the design and performance of some detection and disease control techniques are also discussed. High-throughput or next-generation sequencing provides broad-spectrum and accurate identification of viruses enabling multiplex detection, quantification, and the discovery of new viruses. Likely, this technique will be the future standard in diagnostics as its cost will be dropping and becoming more affordable.
Collapse
Affiliation(s)
- Luis Rubio
- Centro de Protección Vegetal y Biotecnology, Instituto Valenciano de Investigaciones Agrarias, Moncada, Spain
- *Correspondence: Luis Rubio,
| | - Luis Galipienso
- Centro de Protección Vegetal y Biotecnology, Instituto Valenciano de Investigaciones Agrarias, Moncada, Spain
| | - Inmaculada Ferriol
- Plant Responses to Stress Programme, Centre for Research in Agricultural Genomics (CRAG-CSIC_UAB-UB) Cerdanyola del Vallès, Barcelona, Spain
| |
Collapse
|
6
|
Pavithra BS, Govin K, Renuka HM, Krishnareddy M, Jalali S, Samuel DK, Himabindu K. Characterization of cucumber mosaic virus infecting coleus ( Plectranthus barbatus) in Karnataka. Virusdisease 2019; 30:403-412. [PMID: 31803808 DOI: 10.1007/s13337-019-00536-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 06/15/2019] [Indexed: 11/29/2022] Open
Abstract
Plectranthus barbatus also known by the synonym Coleus forskohlii it is called as forskohlii and Indian coleus. It is a tropical perennial herb belongs to the family Lamiaceae widely cultivated in India used as traditional medicinal crop. Its tuberous roots produce forskolin, an extract useful for pharmaceutical preparations and research in cell biology. The incidence of mosaic with dark and light green patches, mottling, leaf distortion and reduction growth was noticed in commercial cultivation of coleus. For identification of the virus, the infected leaf sample extract was mechanically inoculated to different hosts such as chilli, tobacco, tomato, cucumber, cowpea and Chenopodium amaranticolor. Host range studies revealed that the virus showed severe mosaic symptoms on Nicotiana spp. and Cucumis spp. The virus produced systemic and local lesion symptoms in a different host. The Leaf dip preparation of virus infected leaf extract was observed under an electron microscope showed the presence of isometric particles of 28 nm in size. The healthy and infected samples were tested using DAC-ELISA against antibodies of CMV, GBNV and TSV the infected samples showed strong positive reaction with 1.85 optical density to CMV antibodies indicated the presence of CMV. For molecular identification, total RNA was isolated and used for RT-PCR amplification using CMV specific primers. RT-PCR resulted in the positive amplification in virus infected samples but not from a healthy control. The complete genome of CMV RNA-1 consists of 3360 nucleotides (nt) encoding replicase gene of 807 amino acids (aa). The CMV RNA-2 was 2983 nt in length containing 2a (859 aa) encoding RNA dependent RNA polymerase protein and 2b encoding viral silencing suppressor (112 aa), while RNA-3 encoding 3a movement protein (280 aa) and coat protein (219 aa) was 2223 nt in length. Phylogenetic analyses of nucleotide sequences of coleus CMV isolate is closely related to subgroup IB than to subgroup IA or II with other CMV isolates. In recombination analysis, the recombination event occurs between the subgroups of I, II as well as IA and IB in RNA 1, RNA2 and RNA3 of coleus isolate with other CMV isolates. To best of our knowledge, this is the first report of CMV infection in coleus.
Collapse
Affiliation(s)
- B S Pavithra
- 1Division of Plant Pathology, ICAR-Indian Institute of Horticultural Research, Bengaluru, India
| | - Kedarnath Govin
- 2Department of Plant Pathology, GKVK, University of Agricultural Sciences, Bengaluru, India
| | - H M Renuka
- 1Division of Plant Pathology, ICAR-Indian Institute of Horticultural Research, Bengaluru, India
| | - M Krishnareddy
- 1Division of Plant Pathology, ICAR-Indian Institute of Horticultural Research, Bengaluru, India
| | - S Jalali
- 1Division of Plant Pathology, ICAR-Indian Institute of Horticultural Research, Bengaluru, India
| | - D K Samuel
- 1Division of Plant Pathology, ICAR-Indian Institute of Horticultural Research, Bengaluru, India
| | - K Himabindu
- 3Division of Floriculture and Medicinal Crops, ICAR-Indian Institute of Horticultural Research, Bengaluru, India
| |
Collapse
|
7
|
Giakountis A, Tsarmpopoulos I, Chatzivassiliou EK. Cucumber mosaic virus Isolates from Greek Legumes are Associated with Satellite RNAs that are Necrogenic for Tomato. PLANT DISEASE 2018; 102:2268-2276. [PMID: 30189158 DOI: 10.1094/pdis-08-17-1259-re] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Worldwide, Cucumber mosaic virus (CMV) is the causal agent of many economically important diseases. Based on immunological or molecular analysis, three distinct subgroups of CMV isolates can be identified (IA, IB, and II). In addition, some CMV isolates are associated with satellite RNAs (satRNAs), a type of noncoding transcript that may alter the symptoms of CMV infections. This study presents an analysis of CMV isolates occurring in legumes in Greece in respect to their genetic diversity, and the presence and diversity of their satRNA. Phylogenetic analysis of the CMV coat protein sequence of 18 legume and 5 tomato CMV isolates collected throughout Greece classified them within subgroups IA and IB, with a limited genetic diversity. The CMV satRNAs found in nine field legumes exhibiting mild symptoms and in one tomato with a necrotic syndrome contained a functional necrogenic motif; therefore, they were grouped within the necrogenic group of CMV-satRNAs. The necrotic phenotype was expressed in all legume CMV isolates containing necrogenic satRNAs when mechanically inoculated onto tomato plants. To our knowledge, this is the first observation that legumes host necrogenic CMV-satRNAs. The possible role of legumes in the epidemiology of CMV and necrogenic satRNA complex is discussed.
Collapse
Affiliation(s)
- Antonis Giakountis
- Agricultural University of Athens, School of Agricultural Production, Infrastructure and Environment, Department of Crop Science, Plant Pathology Laboratory, Iera Odos 75, Votanikos, 11855 Athens, Greece
| | - Iason Tsarmpopoulos
- Agricultural University of Athens, School of Agricultural Production, Infrastructure and Environment, Department of Crop Science, Plant Pathology Laboratory, Iera Odos 75, Votanikos, 11855 Athens, Greece
| | - Elisavet K Chatzivassiliou
- Agricultural University of Athens, School of Agricultural Production, Infrastructure and Environment, Department of Crop Science, Plant Pathology Laboratory, Iera Odos 75, Votanikos, 11855 Athens, Greece
| |
Collapse
|
8
|
Rosa C, Kuo YW, Wuriyanghan H, Falk BW. RNA Interference Mechanisms and Applications in Plant Pathology. ANNUAL REVIEW OF PHYTOPATHOLOGY 2018; 56:581-610. [PMID: 29979927 DOI: 10.1146/annurev-phyto-080417-050044] [Citation(s) in RCA: 123] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The origin of RNA interference (RNAi), the cell sentinel system widely shared among eukaryotes that recognizes RNAs and specifically degrades or prevents their translation in cells, is suggested to predate the last eukaryote common ancestor ( 138 ). Of particular relevance to plant pathology is that in plants, but also in some fungi, insects, and lower eukaryotes, RNAi is a primary and effective antiviral defense, and recent studies have revealed that small RNAs (sRNAs) involved in RNAi play important roles in other plant diseases, including those caused by cellular plant pathogens. Because of this, and because RNAi can be manipulated to interfere with the expression of endogenous genes in an intra- or interspecific manner, RNAi has been used as a tool in studies of gene function but also for plant protection. Here, we review the discovery of RNAi, canonical mechanisms, experimental and translational applications, and new RNA-based technologies of importance to plant pathology.
Collapse
Affiliation(s)
- Cristina Rosa
- Department of Plant Pathology and Environmental Microbiology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Yen-Wen Kuo
- Department of Plant Pathology, University of California, Davis, California 95616, USA;
| | - Hada Wuriyanghan
- School of Life Sciences, University of Inner Mongolia, Hohhot, Inner Mongolia 010021, China
| | - Bryce W Falk
- Department of Plant Pathology, University of California, Davis, California 95616, USA;
| |
Collapse
|
9
|
Zhang Y, Wang Y, Xie Z, Yang G, Guo Z, Wang L. Simultaneous detection of three lily viruses using Triplex IC-RT-PCR. J Virol Methods 2017; 249:69-75. [PMID: 28847563 DOI: 10.1016/j.jviromet.2017.08.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 08/20/2017] [Accepted: 08/21/2017] [Indexed: 11/19/2022]
Abstract
Viruses commonly infecting lily (Lilium spp.) include: Lily symptomless virus (LSV), Cucumber mosaic virus (CMV) and Lily mottle virus (LMoV). These viruses usually co-infect lilies causing severe economic losses in terms of quantity and quality of flower and bulb production around the world. Reliable and precise detection systems need to be developed for virus identification. We describe the development of a triplex immunocapture (IC) reverse transcription (RT) polymerase chain reaction (PCR) assay for the simultaneous detection of LSV, CMV and LMoV. The triplex IC-RT-PCR was compared with a quadruplex RT-PCR assay. Relative to the quadruplex RT-PCR, the specificity of the triplex IC-RT-PCR system for LSV, CMV and LMoV was 100% for field samples. The sensitivity of the triplex IC-RT-PCR system was 99.4%, 81.4% and 98.7% for LSV, CMV and LMoV, respectively. Agreement (κ) between the results obtained from the two tests was 0.968, 0.844 and 0.984 for LSV, CMV and LMoV, respectively. This is the first report of the simultaneous detection of LSV, CMV and LMoV in a triplex IC-RT-PCR assay. In particular we believe this convenient and reliable triplex IC-RT-PCR method could be used routinely for large-scale field surveys or crop health monitoring of lily.
Collapse
Affiliation(s)
- Yubao Zhang
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China, China.
| | - Yajun Wang
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China, China.
| | - Zhongkui Xie
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China, China.
| | - Guo Yang
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China, China.
| | - Zhihong Guo
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China, China.
| | - Le Wang
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China, China.
| |
Collapse
|
10
|
Genetic diversity, distant phylogenetic relationships and the occurrence of recombination events among cucumber mosaic virus isolates from zucchini in Poland. Arch Virol 2017; 162:1751-1756. [PMID: 28238107 DOI: 10.1007/s00705-017-3285-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 01/27/2017] [Indexed: 10/20/2022]
Abstract
In recent years, the occurrence of cucumber mosaic virus (CMV) has been noted in zucchini crops in Poland. Beside characteristic isolates, which displayed mosaics and chlorosis on infected plants, new necrotic isolates have also been identified. Here, we analysed the molecular variability of 27 isolates of CMV collected from zucchini in various regions of the country. Sequence and phylogenetic analysis based on the genes encoding the coat (CP) and movement (MP) proteins revealed that the Polish isolates belong to two subgroups: IA and II, with the prevalence of subgroup II. New recombinant variants with an IA-MP/II-CP pattern for RNA3 were also detected.
Collapse
|
11
|
Bald-Blume N, Bergervoet JHW, Maiss E. Development of a molecular assay for the detection of Cucumber mosaic virus and the discrimination of its subgroups I and II. J Virol Methods 2017; 243:35-43. [PMID: 28109843 DOI: 10.1016/j.jviromet.2017.01.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 12/22/2016] [Accepted: 01/15/2017] [Indexed: 11/29/2022]
Abstract
A nucleic acid based test for the detection of the economically important plant virus Cucumber mosaic virus (CMV) based on the Luminex xTAG technology was developed. This technology has the advantage of allowing the simultaneous detection of various targets. Applying this method, we prove the presence of CMV in general and differentiate between its two subgroups I and II for which significant differences concerning severity of symptoms and virulence have been reported. For the development of the test procedure the coat protein gene sequences of 29 CMV isolates were cloned, sequenced and classified into subgroups. Sequences from GenBank were used to design primers. Additionally, a subgroup specific ELISA was conducted for comparison. This work is part of a project which aims to develop a test for the simultaneous detection of various plant pathogens (viral, bacterial and fungal) in plant material.
Collapse
Affiliation(s)
- N Bald-Blume
- Section of Phytomedicine, Institute of Horticultural Production Systems, Leibniz Universität Hannover, Herrenhäuser Str. 2, 30419 Hannover, Germany
| | - J H W Bergervoet
- Plant Sciences Group, Wageningen University and Research Centre, P. O. Box 16, 6700AA Wageningen, The Netherlands
| | - E Maiss
- Section of Phytomedicine, Institute of Horticultural Production Systems, Leibniz Universität Hannover, Herrenhäuser Str. 2, 30419 Hannover, Germany.
| |
Collapse
|
12
|
Thekke-Veetil T, Polashock JJ, Marn MV, Plesko IM, Schilder AC, Keller KE, Martin RR, Tzanetakis IE. Population structure of blueberry mosaic associated virus: Evidence of reassortment in geographically distinct isolates. Virus Res 2015; 201:79-84. [PMID: 25733053 DOI: 10.1016/j.virusres.2015.02.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 02/19/2015] [Accepted: 02/22/2015] [Indexed: 10/23/2022]
Abstract
The population structure of blueberry mosaic associated virus (BlMaV), a putative member of the family Ophioviridae, was examined using 61 isolates collected from North America and Slovenia. The studied isolates displayed low diversity in the movement and nucleocapsid proteins and low ratios of non-synonymous to synonymous nucleotide substitutions, indicative of strong purifying selection. Phylogenetic analyses revealed grouping primarily based on geography with some isolates deviating from this rule. Phylogenetic incongruence in the two regions, coupled with detection of reassortment events, indicated the possible role of genetic exchange in the evolution of BlMaV.
Collapse
Affiliation(s)
- Thanuja Thekke-Veetil
- Department of Plant Pathology, Division of Agriculture, University of Arkansas System, Fayetteville, AR 72701, United States
| | | | - Mojca V Marn
- Agricultural Institute of Slovenia, Hacquetova 17, Ljubljana, Slovenia
| | - Irena M Plesko
- Agricultural Institute of Slovenia, Hacquetova 17, Ljubljana, Slovenia
| | - Annemiek C Schilder
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824, United States
| | | | | | - Ioannis E Tzanetakis
- Department of Plant Pathology, Division of Agriculture, University of Arkansas System, Fayetteville, AR 72701, United States.
| |
Collapse
|
13
|
Varanda CMR, Machado M, Martel P, Nolasco G, Clara MIE, Félix MR. Genetic diversity of the coat protein of Olive mild mosaic virus (OMMV) and Tobacco necrosis virus D (TNV-D) isolates and its structural implications. PLoS One 2014; 9:e110941. [PMID: 25350108 PMCID: PMC4211703 DOI: 10.1371/journal.pone.0110941] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2014] [Accepted: 09/25/2014] [Indexed: 01/08/2023] Open
Abstract
The genetic variability among 13 isolates of Olive mild mosaic virus (OMMV) and of 11 isolates of Tobacco necrosis virus D (TNV-D) recovered from Olea europaea L. samples from various sites in Portugal, was assessed through the analysis of the coat protein (CP) gene sequences. This gene was amplified through reverse transcriptase polymerase chain reaction (RT-PCR), cloned, and 5 clone sequences of each virus isolate, were analysed and compared, including sequences from OMMV and TNV-D isolates originally recovered from different hosts and countries and available in the GenBank, totalling 131 sequences. The encoded CP sequences consisted of 269 amino acids (aa) in OMMV and 268 in TNV-D. Comparison of the CP genomic and amino acid sequences of the isolates showed a very low variability among OMMV isolates, 0.005 and 0.007, respectively, as well as among TNV-D isolates, 0.006 and 0.008. The maximum nucleotide distances of OMMV and TNV-D sequences within isolates were also low, 0.013 and 0.031, respectively, and close to that found between isolates, 0.018 and 0.034, respectively. In some cases, less variability was found in clone sequences between isolates than in clone sequences within isolates, as also shown through phylogenetic analysis. CP aa sequence identities among OMMV and TNV-D isolates ranged from 84.3% to 85.8%. Comparison between the CP genomic sequences of the two viruses, showed a relatively low variability, 0.199, and a maximum nucleotide distance between isolates of 0.411. Analysis of comparative models of OMMV and TNV-D CPs, showed that naturally occurring substitutions in their respective sequences do not seem to cause significant alterations in the virion structure. This is consistent with a high selective pressure to preserve the structure of viral capsid proteins.
Collapse
Affiliation(s)
- Carla M. R. Varanda
- Laboratório de Virologia Vegetal, Instituto de Ciências Agrárias e Ambientais Mediterrânicas Universidade de Évora, Évora, Portugal
| | - Marco Machado
- Laboratório de Virologia Vegetal, Instituto de Ciências Agrárias e Ambientais Mediterrânicas Universidade de Évora, Évora, Portugal
| | - Paulo Martel
- Departamento de Ciências Biológicas e Bioengenharia, Faculdade de Ciências e Tecnologia da Universidade do Algarve, Faro, Portugal
| | - Gustavo Nolasco
- Laboratório de Virologia Vegetal, Universidade do Algarve, Faro, Portugal
| | - Maria I. E. Clara
- Laboratório de Virologia Vegetal, Instituto de Ciências Agrárias e Ambientais Mediterrânicas Universidade de Évora, Évora, Portugal
| | - Maria R. Félix
- Laboratório de Virologia Vegetal, Instituto de Ciências Agrárias e Ambientais Mediterrânicas Universidade de Évora, Évora, Portugal
| |
Collapse
|
14
|
Kim MK, Seo JK, Kwak HR, Kim JS, Kim KH, Cha BJ, Choi HS. Molecular genetic analysis of cucumber mosaic virus populations infecting pepper suggests unique patterns of evolution in Korea. PHYTOPATHOLOGY 2014; 104:993-1000. [PMID: 25116642 DOI: 10.1094/phyto-10-13-0275-r] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Studying genetic structure and diversity of viruses is important to understand the evolutionary mechanisms that generate and maintain variations in viral populations. Cucumber mosaic virus (CMV) is endemic in most pepper fields in Korea. Currently, no effective methods for control of CMV are available due to many environmental and biological factors such as the extensive evolutionary capacity of CMV. Thus, analyzing the genetic structure of CMV populations may facilitate the development of strategies for the control of CMV. In this study, 252 pepper (Capsicum annuum) samples showing virus symptoms were collected by field surveys performed throughout Korea in 2007. Reverse-transcription polymerase chain reaction analyses revealed that, in total, 165 collected samples were infected with CMV. Forty-five CMV isolates were randomly selected within each regional subpopulation and analyzed by full-genome sequencing. Analyses of genetic diversity showed that the 2b gene of CMV is under weaker purifying selection than the other genes. Based on the phylogenetic analysis of RNA1, the CMV isolates from pepper were divided into three clusters in subgroup I. Our full-genome sequence-based molecular analyses of the CMV Korean population suggest that the subpopulations of CMV have been geographically localized in pepper fields in Korea.
Collapse
|
15
|
Nouri S, Arevalo R, Falk BW, Groves RL. Genetic structure and molecular variability of Cucumber mosaic virus isolates in the United States. PLoS One 2014; 9:e96582. [PMID: 24801880 PMCID: PMC4012352 DOI: 10.1371/journal.pone.0096582] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Accepted: 04/08/2014] [Indexed: 12/17/2022] Open
Abstract
Cucumber mosaic virus (CMV) has a worldwide distribution and the widest host range of any known plant virus. From 2000 to 2012, epidemics of CMV severely affected the production of snap bean (Phaseulos vulgaris L.) in the Midwest and Northeastern United States. Virus diversity leading to emergence of new strains is often considered a significant factor in virus epidemics. In addition to epidemics, new disease phenotypes arising from genetic exchanges or mutation can compromise effectiveness of plant disease management strategies. Here, we captured a snapshot of genetic variation of 32 CMV isolates collected from different regions of the U.S including new field as well as historic isolates. Nucleotide diversity (π) was low for U.S. CMV isolates. Sequence and phylogenetic analyses revealed that CMV subgroup I is predominant in the US and further showed that the CMV population is a mixture of subgroups IA and IB. Furthermore, phylogenetic analysis suggests likely reassortment between subgroups IA and IB within five CMV isolates. Based on phylogenetic and computational analysis, recombination between subgroups I and II as well as IA and IB in RNA 3 was detected. This is the first report of recombination between CMV subgroups I and II. Neutrality tests illustrated that negative selection was the major force operating upon the CMV genome, although some positively selected sites were detected for all encoded proteins. Together, these data suggest that different regions of the CMV genome are under different evolutionary constraints. These results also delineate composition of the CMV population in the US, and further suggest that recombination and reassortment among strain subgroups does occur but at a low frequency, and point towards CMV genomic regions that differ in types of selection pressure.
Collapse
Affiliation(s)
- Shahideh Nouri
- Department of Plant Pathology, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Rafael Arevalo
- Department of Botany, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Bryce W. Falk
- Department of Plant Pathology, University of California Davis, Davis, California, United States of America
| | - Russell L. Groves
- Department of Entomology, University of Wisconsin, Madison, Wisconsin, United States of America
| |
Collapse
|
16
|
Varanda CMR, Nolasco G, Clara MI, Félix MR. Genetic diversity of the coat protein of olive latent virus 1 isolates. Arch Virol 2013; 159:1351-7. [DOI: 10.1007/s00705-013-1953-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Accepted: 11/16/2013] [Indexed: 11/28/2022]
|
17
|
Hwang MS, Lindenmuth BE, McDonald KA, Falk BW. Bipartite and tripartite Cucumber mosaic virus-based vectors for producing the Acidothermus cellulolyticus endo-1,4-β-glucanase and other proteins in non-transgenic plants. BMC Biotechnol 2012; 12:66. [PMID: 22999234 PMCID: PMC3582468 DOI: 10.1186/1472-6750-12-66] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Accepted: 09/11/2012] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Using plant viruses to produce desirable proteins in plants allows for using non-transgenic plant hosts and if necessary, the ability to make rapid changes in the virus construct for increased or modified protein product yields. The objective of this work was the development of advanced CMV-based protein production systems to produce Acidothermus cellulolyticus endo-1, 4-β-glucanase (E1) in non-transgenic plants. RESULTS We used two new Cucumber mosaic virus (CMV)-based vector systems for producing the green fluorescent protein (GFP) and more importantly, the Acidothermus cellulolyticus endo-1, 4-β-glucanase (E1) in non-transgenic Nicotiana benthamiana plants. These are the inducible CMVin (CMV-based inducible) and the autonomously replicating CMVar (CMV-based advanced replicating) systems. We modified a binary plasmid containing the complete CMV RNA 3 cDNA to facilitate insertion of desired sequences, and to give modifications of the subgenomic mRNA 4 leader sequence yielding several variants. Quantitative RT-PCR and immunoblot analysis showed good levels of CMV RNA and coat protein accumulation for some variants of both CMVin and CMVar. When genes for E1 or GFP were inserted in place of the CMV coat protein, both were produced in plants as shown by fluorescence (GFP) and immunoblot analysis. Enzymatic activity assays showed that active E1 was produced in plants with yields up to ~ 11 μg/g fresh weight (FW) for specific variant constructs. We also compared in vitro CMV genomic RNA reassortants, and CMV RNA 3 mutants which lacked the C' terminal 33 amino acids of the 3A movement protein in attempts to further increase E1 yield. Taken together specific variant constructs yielded up to ~21 μg/g FW of E1 in non-transgenic plants. CONCLUSIONS Intact, active E1 was rapidly produced in non-transgenic plants by using agroinfiltration with the CMV-based systems. This reduces the time and cost compared to that required to generate transgenic plants and still gives the comparable yields of active E1. Our modifications described here, including manipulating cloning sites for foreign gene introduction, enhance the ease of use. Also, N. benthamiana, which is particularly suitable for agroinfiltration, is a very good plant for transient protein production.
Collapse
Affiliation(s)
- Min Sook Hwang
- Department of Plant Pathology, University of California, One Shields Avenue, Davis, CA, 95616, USA
| | - Benjamin E Lindenmuth
- Department of Chemical Engineering and Materials Science, University of California, One Shields Avenue, Davis, CA, 95616, USA
- Present address: Bayer HealthCare Pharmaceuticals, 800 Dwight Way, Berkeley, CA, 94710, USA
| | - Karen A McDonald
- Department of Chemical Engineering and Materials Science, University of California, One Shields Avenue, Davis, CA, 95616, USA
| | - Bryce W Falk
- Department of Plant Pathology, University of California, One Shields Avenue, Davis, CA, 95616, USA
| |
Collapse
|
18
|
Davino S, Panno S, Rangel EA, Davino M, Bellardi MG, Rubio L. Population genetics of cucumber mosaic virus infecting medicinal, aromatic and ornamental plants from northern Italy. Arch Virol 2012; 157:739-45. [PMID: 22218965 DOI: 10.1007/s00705-011-1216-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Accepted: 11/30/2011] [Indexed: 11/25/2022]
Abstract
The genetic variation and evolution of cucumber mosaic virus (CMV) from aromatic, medicinal and ornamental plants in northern Italy was studied by sequence analysis of the movement protein gene and comparison with equivalent sequences of isolates from other countries. Comparison of nonsynonymous and synonymous substitutions suggested that 30% of amino acid sites were under negative selection and only one was under positive selection. Phylogenetic, nucleotide diversity and genetic differentiation analyses suggested that long-distance migration plays a role in the evolution and determination of the genetic structure and diversity of CMV in northern Italy and other areas.
Collapse
Affiliation(s)
- Salvatore Davino
- Dipartimento DEMETRA, Università degli Studi di Palermo, Viale delle Scienze, Edificio 4, 90128, Palermo, Italy
| | | | | | | | | | | |
Collapse
|
19
|
Abstract
Cucumber mosaic virus (CMV) is an important virus because of its agricultural impact in the Mediterranean Basin and worldwide, and also as a model for understanding plant-virus interactions. This review focuses on those areas where most progress has been made over the past decade in our understanding of CMV. Clearly, a deep understanding of the role of the recently described CMV 2b gene in suppression of host RNA silencing and viral virulence is the most important discovery. These findings have had an impact well beyond the virus itself, as the 2b gene is an important tool in the studies of eukaryotic gene regulation. Protein 2b was shown to be involved in most of the steps of the virus cycle and to interfere with several basal host defenses. Progress has also been made concerning the mechanisms of virus replication and movement. However, only a few host proteins that interact with viral proteins have been identified, making this an area of research where major efforts are still needed. Another area where major advances have been made is CMV population genetics, where contrasting results were obtained. On the one hand, CMV was shown to be prone to recombination and to show high genetic diversity based on sequence data of different isolates. On the other hand, populations did not exhibit high genetic variability either within plants, or even in a field and the nearby wild plants. The situation was partially clarified with the finding that severe bottlenecks occur during both virus movement within a plant and transmission between plants. Finally, novel studies were undertaken to elucidate mechanisms leading to selection in virus population, according to the host or its environment, opening a new research area in plant-virus coevolution.
Collapse
|
20
|
Abstract
Compared to other vegetable crops, the major viral constraints affecting pepper crops in the Mediterranean basin have been remarkably stable for the past 20 years. Among these viruses, the most prevalent ones are the seed-transmitted tobamoviruses; the aphid-transmitted Potato virus Y and Tobacco etch virus of the genus Potyvirus, and Cucumber mosaic virus member of the genus Cucumovirus; and thrips-transmitted tospoviruses. The last major viral emergence concerns the tospovirus Tomato spotted wilt virus (TSWV), which has undergone major outbreaks since the end of the 1980s and the worldwide dispersal of the thrips vector Frankliniella occidentalis from the western part of the USA. TSWV outbreaks in the Mediterranean area might have been the result of both viral introductions from Northern America and local reemergence of indigenous TSWV isolates. In addition to introductions of new viruses, resistance breakdowns constitute the second case of viral emergences. Notably, the pepper resistance gene Tsw toward TSWV has broken down a few years after its deployment in several Mediterranean countries while there has been an expansion of L³-resistance breaking pepper mild mottle tobamovirus isolates. Beyond the agronomical and economical concerns induced by the breakdowns of virus resistance genes in pepper, they also constitute original models to understand plant-virus interactions and (co)evolution.
Collapse
Affiliation(s)
- Benoît Moury
- INRA, UR407 Pathologie Végétale, Domaine Saint Maurice, Montfavet, France
| | | |
Collapse
|
21
|
Prendeville HR, Pilson D. Transgenic virus resistance in cultivated squash affects pollinator behaviour. J Appl Ecol 2009. [DOI: 10.1111/j.1365-2664.2009.01698.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
22
|
Delaunay A, Rolland M, Jacquot E. Analysis of population structures of viral isolates using single-strand conformation polymorphism method. Methods Mol Biol 2009; 508:235-247. [PMID: 19301759 DOI: 10.1007/978-1-59745-062-1_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The analysis of viral populations requires the use of techniques that describe characteristics of individuals. The single-strand conformation polymorphism (SSCP) makes possible the identification of genetic differences between viral sequences and constitutes an alternative to the expensive and time-consuming cloning and sequencing strategies. Applied to small genomic regions (from 100 to 500 bases in length), SSCP patterns could describe, under appropriate experimental conditions, single nucleotide variations in the studied sequence. The different steps of a complete SSCP procedure, from sampling to pattern analysis (including nucleic acid extraction, RT-PCR amplification, double-stranded DNA quantification, polyacrylamide gel preparation, electrophoresis conditions, and staining procedures), are described using a region (500 bases) of the barley yellow dwarfvirus-PAV (BYDV-PAV, Luteovirus) genome as molecular target.
Collapse
|
23
|
Segwagwe AT, Putnam ML, Druffel KL, Pappu HR, Eastwell KC. Molecular characterization of a new tymovirus from Diascia ornamental plants. Arch Virol 2008; 153:1495-503. [PMID: 18600295 DOI: 10.1007/s00705-008-0149-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2008] [Accepted: 05/21/2008] [Indexed: 10/21/2022]
Abstract
Two tymoviruses were identified in plants of Diascia x hybrida 'Sun Chimes Coral' that exhibited chlorotic mottling and reduced growth. A strain of Nemesia ring necrosis virus (NeRNV) designated NeRNV-WA was detected in symptomatic plants; the deduced amino acid sequence is virtually identical to that of the previously reported NeRNV-Nf from Nemesia fruticosa. Sequence analysis also revealed the presence of a new tymovirus, and the entire genomic sequence of this virus was determined. The genome of 6,290 nucleotides was organized into three potential open reading frames (ORFs) typical of viruses in the genus Tymovirus. Based on sequence identity to tymovirus sequences, ORFs I to III encoded the replicase, movement protein and coat protein, respectively. Amino acid sequence identities to those of NeRNV-Nf were 84.8, 50.3 and 94.8%, respectively. The 5'-untranslated region could potentially form four hairpin structures. Secondary structure analysis of the 3'-terminus showed that the RNA can form a transfer-RNA-like structure that has an anticodon specific for histidine. Only 77.9% nucleotide identity was found when complete genomic sequences of this tymovirus from diascia and NeRNV-Nf were compared. The name Diascia yellow mottle virus (DiaYMV) is proposed for this new tymovirus.
Collapse
Affiliation(s)
- A T Segwagwe
- Department of Crop Science and Production, Botswana College of Agriculture, Gaborone, Botswana
| | | | | | | | | |
Collapse
|
24
|
Iglesias NG, Gago-Zachert SP, Robledo G, Costa N, Plata MI, Vera O, Grau O, Semorile LC. Population structure of Citrus tristeza virus from field Argentinean isolates. Virus Genes 2007; 36:199-207. [DOI: 10.1007/s11262-007-0169-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2007] [Accepted: 09/28/2007] [Indexed: 11/30/2022]
|
25
|
Chen Y, Chen J, Zhang H, Tang X, Du Z. Molecular evidence and sequence analysis of a natural reassortant between Cucumber mosaic virus subgroup IA and II strains. Virus Genes 2007; 35:405-13. [PMID: 17417698 DOI: 10.1007/s11262-007-0094-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2007] [Accepted: 03/07/2007] [Indexed: 10/23/2022]
Abstract
Cucumber mosaic virus (CMV) is a tripartite RNA virus and has been divided into three subgroups, named IA, IB, and II. Some studies have found a few natural reassortants between CMV subgroups, although reassortment between CMV subgroups is infrequent. In our present work, a CMV reassortant, named CMV-Tsh, was obtained from a tomato plant. The complete sequence of CMV-Tsh genomic RNAs has been determined and analyzed. The results of sequence comparisons and phylogenetic analyses revealed that CMV-Tsh RNAs 1 and 3 are derived from one or two CMV subgroup II strain(s), while RNA2 is derived from a CMV subgroup IA strain. A PCR and restriction enzyme analysis-based method was developed to analyze the possibility of mixed infection by CMV strains of different subgroup in the CMV-Tsh-infected tomato plant. The results of the restriction enzyme analysis proved that CMV-Tsh is the unique strain in the tomato plant. Taken together, CMV-Tsh is a natural reassortant having CMV subgroup IA RNA2 and subgroup II RNAs 1 and 3.
Collapse
Affiliation(s)
- Yanfei Chen
- Institute of Bioengineering, Zhejiang Sci-Tech University, No.2 Road Xiasha, Hangzhou, Zhejiang 310018, P R China.
| | | | | | | | | |
Collapse
|
26
|
Xi D, Lan L, Wang J, Xu W, Xiang B, Lin H. Variation analysis of two cucumber mosaic viruses and their associated satellite RNAs from sugar beet in China. Virus Genes 2007; 33:293-8. [PMID: 16991000 DOI: 10.1007/s11262-006-0068-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2005] [Accepted: 01/15/2006] [Indexed: 11/26/2022]
Abstract
Two cucumber mosaic virus (CMV) isolates XJ1 and XJ2 were obtained from sugar beet showing yellow mosaic symptom in Shihezi, Xinjiang Uigur municipality of China. The coat protein gene of the two CMV isolates and their associated satellite RNAs were amplified by reverse transcriptase polymerase chain reaction (RT-PCR) and were cloned and sequenced. Comparison of CP gene sequences showed that XJ1 and XJ2 have the highest sequence identity with that of CMV-Danshen (97.8%) and CMV-SD (98.7%), respectively. Two types of satellite RNAs (XJs1 and XJs2) were found to be associated with the two CMV isolates consisting of 384 nucleotides and 336 nucleotides, respectively. Sequence comparisons revealed that XJs1 and XJs2 were most closely related to CS2-sat and CS1-sat, respectively, with 98.9% and 98.5% nucleotide sequence identity. Phylogenetic analysis of nucleotide sequence and deduced amino acid sequence of coat protein gene revealed that XJ1 and XJ2 belong to subgroup IB but there exist some variation between them. Parallel analyses of nucleotide sequence of XJsl and XJs2 suggested that these two satellite RNAs probably originated from China.
Collapse
Affiliation(s)
- Dehui Xi
- Key laboratory of Bio-resources and Eco-envirorment, Ministry of Education, College of life science, Sichuan University, Chengdu , 610064, China
| | | | | | | | | | | |
Collapse
|
27
|
Fuchs M, Gonsalves D. Safety of virus-resistant transgenic plants two decades after their introduction: lessons from realistic field risk assessment studies. ANNUAL REVIEW OF PHYTOPATHOLOGY 2007; 45:173-202. [PMID: 17408355 DOI: 10.1146/annurev.phyto.45.062806.094434] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Potential safety issues have been raised with the development and release of virus-resistant transgenic plants. This review focuses on safety assessment with a special emphasis on crops that have been commercialized or extensively tested in the field such as squash, papaya, plum, grape, and sugar beet. We discuss topics commonly perceived to be of concern to the environment and to human health--heteroencapsidation, recombination, synergism, gene flow, impact on nontarget organisms, and food safety in terms of allergenicity. The wealth of field observations and experimental data is critically evaluated to draw inferences on the most relevant issues. We also express inside views on the safety and benefits of virus-resistant transgenic plants, and recommend realistic risk assessment approaches to assist their timely deregulation and release.
Collapse
Affiliation(s)
- Marc Fuchs
- Department of Plant Pathology, Cornell University, New York State Agricultural Experiment Station, Geneva, NY 14456, USA.
| | | |
Collapse
|
28
|
Chare ER, Holmes EC. A phylogenetic survey of recombination frequency in plant RNA viruses. Arch Virol 2005; 151:933-46. [PMID: 16292597 DOI: 10.1007/s00705-005-0675-x] [Citation(s) in RCA: 145] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2005] [Accepted: 10/04/2005] [Indexed: 11/27/2022]
Abstract
The severe economic consequences of emerging plant viruses highlights the importance of studies of plant virus evolution. One question of particular relevance is the extent to which the genomes of plant viruses are shaped by recombination. To this end we conducted a phylogenetic survey of recombination frequency in a wide range of positive-sense RNA plant viruses, utilizing 975 capsid gene sequences and 157 complete genome sequences. In total, 12 of the 36 RNA virus species analyzed showed evidence for recombination, comprising 17% of the capsid gene sequence alignments and 44% of the genome sequence alignments. Given the conservative nature of our analysis, we propose that recombination is a relatively common process in some plant RNA viruses, most notably the potyviruses.
Collapse
Affiliation(s)
- E R Chare
- Department of Zoology, University of Oxford, Oxford, UK
| | | |
Collapse
|
29
|
Vialatte A, Dedryver CA, Simon JC, Galman M, Plantegenest M. Limited genetic exchanges between populations of an insect pest living on uncultivated and related cultivated host plants. Proc Biol Sci 2005; 272:1075-82. [PMID: 16024367 PMCID: PMC1599878 DOI: 10.1098/rspb.2004.3033] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Habitats in agroecosystems are ephemeral, and are characterized by frequent disturbances forcing pest species to successively colonize various hosts belonging either to the cultivated or to the uncultivated part of the agricultural landscape. The role of wild habitats as reservoirs or refuges for the aphid Sitobion avenae that colonize cultivated fields was assessed by investigating the genetic structure of populations collected on both cereal crops (wheat, barley and oat) and uncultivated hosts (Yorkshire fog, cocksfoot, bulbous oatgrass and tall oatgrass) in western France. Classical genetic analyses and Bayesian clustering algorithms indicate that genetic differentiation is high between populations collected on uncultivated hosts and on crops, revealing a relatively limited gene flow between the uncultivated margins and the cultivated part of the agroecosystem. A closer genetic relatedness was observed between populations living on plants belonging to the same tribe (Triticeae, Poeae and Aveneae tribes) where aphid genotypes appeared not to be specialized on a single host, but rather using a group of related plant species. Causes of this ecological differentiation and its implications for integrated pest management of S. avenae as cereals pest are discussed.
Collapse
Affiliation(s)
- Aude Vialatte
- INRA/Agrocampus Rennes, Unité Mixte de Recherche Biologie des Organismes et des Populations appliquées à la Protection des Plantes (UMR BiO3P), Equipe Biologie et Génétique des Population d'InsectesDomaine de la Motte, 35653 Le Rheu, France
- Makhteshim Agan France12 Bd des Iles, 92441 Issy Les Moulineaux Cedex, France
| | - Charles-Antoine Dedryver
- INRA/Agrocampus Rennes, Unité Mixte de Recherche Biologie des Organismes et des Populations appliquées à la Protection des Plantes (UMR BiO3P), Equipe Biologie et Génétique des Population d'InsectesDomaine de la Motte, 35653 Le Rheu, France
| | - Jean-Christophe Simon
- INRA/Agrocampus Rennes, Unité Mixte de Recherche Biologie des Organismes et des Populations appliquées à la Protection des Plantes (UMR BiO3P), Equipe Biologie et Génétique des Population d'InsectesDomaine de la Motte, 35653 Le Rheu, France
| | - Marina Galman
- INRA/Agrocampus Rennes, Unité Mixte de Recherche Biologie des Organismes et des Populations appliquées à la Protection des Plantes (UMR BiO3P), Equipe Biologie et Génétique des Population d'InsectesDomaine de la Motte, 35653 Le Rheu, France
| | - Manuel Plantegenest
- INRA/Agrocampus Rennes, Unité Mixte de Recherche Biologie des Organismes et des Populations appliquées à la Protection des Plantes (UMR BiO3P), Equipe Biologie et Génétique des Population d'InsectesDomaine de la Motte, 35653 Le Rheu, France
- Author for correspondence ()
| |
Collapse
|
30
|
Bonnet J, Fraile A, Sacristán S, Malpica JM, García-Arenal F. Role of recombination in the evolution of natural populations of Cucumber mosaic virus, a tripartite RNA plant virus. Virology 2005; 332:359-68. [PMID: 15661167 DOI: 10.1016/j.virol.2004.11.017] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2004] [Revised: 10/06/2004] [Accepted: 11/16/2004] [Indexed: 11/27/2022]
Abstract
The role of recombination in the evolution of Cucumber mosaic virus (CMV) was analyzed in a collection of Spanish isolates from 1989 to 2002. Isolates were characterized by ribonuclease protection assay using six RNA probes, two for each of the three genomic RNAs, which allowed the identification of the analyzed regions as belonging to CMV isolates in subgroups IA, IB, and II. Most isolates belonged to subgroups IA (64%) and IB (12%), 5% were reassortants among subgroups IA, IB, or II, and 17% were recombinants between these groups. Recombinants at RNA3 were significantly more frequent than recombinants at RNAs 1 and 2. One IB-IA recombinant RNA3 was as frequent in central Spain as the IA RNA3. The genetic structure of the virus population suggested that reassortants and most recombinant genotypes were selected against and was consistent with a higher biological cost of reassortment than recombination. Data also suggest that recombinants that encode hybrid proteins are at a higher disadvantage than recombinants that exchange whole ORFs.
Collapse
Affiliation(s)
- Julien Bonnet
- Departamento de Biotecnología, E.T.S.I. Agrónomos, Universidad Politécnica de Madrid, 28040 Madrid, Spain
| | | | | | | | | |
Collapse
|
31
|
Vigne E, Komar V, Fuchs M. Field safety assessment of recombination in transgenic grapevines expressing the coat protein gene of Grapevine fanleaf virus. Transgenic Res 2005; 13:165-79. [PMID: 15198204 DOI: 10.1023/b:trag.0000026075.79097.c9] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
One of the major environmental safety issues over transgenic crops containing virus-derived genes relates to the outcome of recombination events between viral transgene transcripts and RNAs from indigenous virus populations. We addressed this issue by assessing the emergence of viable Grapevine fanleaf virus (GFLV) recombinants in transgenic grapevines expressing the GFLV coat protein (CP) gene. Test plants consisted of nontransgenic scions grafted onto transgenic and nontransgenic rootstocks that were exposed over 3 years to nematode-mediated GFLV infection in two distinct vineyard sites. The CP gene of challenging GFLV isolates was amplified from scions by IC-RT-PCR, and characterized by RFLP and nucleotide sequencing using strain F13 as reference since it provided the CP transgene. Analysis of EcoRI and StyI RFLP banding patterns from 347 challenging GFLV isolates and sequence data from 85 variants revealed no characteristics similar to strain F13 and no difference in the molecular variability among isolates from 190 transgenic and 157 nontransgenic plants, or from plants within (253 individuals) or outside (94 individuals) of the two sites. Interestingly, five GFLV recombinants were identified in three nontransgenic plants located outside of the two field settings. This survey indicates that transgenic grapevines did not assist the emergence of viable GFLV recombinants to detectable levels nor did they affect the molecular diversity of indigenous GFLV populations during the trial period. This is the first report on safety assessment of recombination with a transgenic crop expressing a CP gene under field conditions of heavy disease pressure but low, if any, selection pressure against recombinant viruses.
Collapse
Affiliation(s)
- Emmanuelle Vigne
- Laboratoire de Virologie, Institut National de la Recherche Agronomique, Unité Mixte de Recherche Vigne et Vins d'Alsace, 28 rue de Herrlisheim, 68021 Colmar, France
| | | | | |
Collapse
|
32
|
Turturo C, Saldarelli P, Yafeng D, Digiaro M, Minafra A, Savino V, Martelli GP. Genetic variability and population structure of Grapevine leafroll-associated virus 3 isolates. J Gen Virol 2005; 86:217-224. [PMID: 15604449 DOI: 10.1099/vir.0.80395-0] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The genetic variability and population structure of a collection of 45 Grapevine leafroll-associated virus 3 (GLRaV-3) isolates were studied by single-stranded conformation polymorphism (SSCP) and sequence analysis of the RNA-dependent RNA polymerase (RdRp), heat-shock protein 70 homologue (HSP-70) and coat protein (CP) genes. The distribution of SSCP profiles was not correlated with the geographical origin of the isolates, indicating that GLRaV-3 is a single, undifferentiated population. The majority of the isolates showed an SSCP profile and a population structure that were composed of a single predominant variant. However, 10 % of the isolates for the RdRp and HSP-70 genes and 15 % for the CP gene were composed of a combination of two or more variants. Estimation of genetic diversity and phylogenetic analysis disclosed the possible existence of vines with mixed infections by diverging sequence variants, showing, in some cases, possible recombination events. Furthermore, differences in the genetic diversity and constraints existing in the three regions analysed indicated a higher variability in the CP gene. The epidemiological and biological implications of this finding are discussed.
Collapse
Affiliation(s)
- Camilla Turturo
- Dipartimento di Protezione delle Piante e Microbiologia Applicata, Università degli Studi and Istituto di Virologia Vegetale del CNR, Sezione di Bari, via Amendola 165/A, 70126 Bari, Italy
| | - Pasquale Saldarelli
- Dipartimento di Protezione delle Piante e Microbiologia Applicata, Università degli Studi and Istituto di Virologia Vegetale del CNR, Sezione di Bari, via Amendola 165/A, 70126 Bari, Italy
| | - Dong Yafeng
- Istituto Agronomico Mediterraneo, Valenzano, Bari, Italy
| | | | - Angelantonio Minafra
- Dipartimento di Protezione delle Piante e Microbiologia Applicata, Università degli Studi and Istituto di Virologia Vegetale del CNR, Sezione di Bari, via Amendola 165/A, 70126 Bari, Italy
| | - Vito Savino
- Dipartimento di Protezione delle Piante e Microbiologia Applicata, Università degli Studi and Istituto di Virologia Vegetale del CNR, Sezione di Bari, via Amendola 165/A, 70126 Bari, Italy
| | - G P Martelli
- Dipartimento di Protezione delle Piante e Microbiologia Applicata, Università degli Studi and Istituto di Virologia Vegetale del CNR, Sezione di Bari, via Amendola 165/A, 70126 Bari, Italy
| |
Collapse
|
33
|
Lin HX, Rubio L, Smythe AB, Falk BW. Molecular population genetics of Cucumber mosaic virus in California: evidence for founder effects and reassortment. J Virol 2004; 78:6666-75. [PMID: 15163757 PMCID: PMC416521 DOI: 10.1128/jvi.78.12.6666-6675.2004] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2003] [Accepted: 02/18/2004] [Indexed: 11/20/2022] Open
Abstract
The structure and genetic diversity of a California Cucumber mosaic virus (CMV) population was assessed by single-strand conformation polymorphism and nucleotide sequence analyses of genomic regions 2b, CP, MP, and the 3' nontranslated region of RNA3. The California CMV population exhibited low genetic diversity and was composed of one to three predominant haplotypes and a large number of minor haplotypes for specific genomic regions. Extremely low diversity and close evolutionary relationships among isolates in a subpopulation suggested that founder effects might play a role in shaping the genetic structure. Phylogenetic analysis indicated a naturally occurring reassortant between subgroup IA and IB isolates and potential reassortants between subgroup IA isolates, suggesting that genetic exchange by reassortment contributed to the evolution of the California CMV population. Analysis of various population genetics parameters and distribution of synonymous and nonsynonymous mutations revealed that different coding regions and even different parts of coding regions were under different evolutionary constraints, including a short region of the 2b gene for which evidence suggests possible positive selection.
Collapse
Affiliation(s)
- Han-Xin Lin
- Department of Plant Pathology, University of California-Davis, 1 Shields Avenue, Davis, CA 95616, USA
| | | | | | | |
Collapse
|
34
|
Abstract
Research on the molecular biology of cucumoviruses and their plant-virus interactions has been very extensive in the last decade. Cucumovirus genome structures have been analyzed, giving new insights into their genetic variability, evolution, and taxonomy. A new viral gene has been discovered, and its role in promoting virus infection has been delineated. The localization and various functions of each viral-encoded gene product have been established. The particle structures of Cucumber mosaic virus (CMV) and Tomato aspermy virus have been determined. Pathogenicity domains have been mapped, and barriers to virus infection have been localized. The movement pathways of the viruses in some hosts have been discerned, and viral mutants affecting the movement processes have been identified. Host responses to viral infection have been characterized, both temporally and spatially. Progress has been made in determining the mechanisms of replication, gene expression, and transmission of CMV. The pathogenicity determinants of various satellite RNAs have been characterized, and the importance of secondary structure in satellite RNA-mediated interactions has been recognized. Novel plant genes specifying resistance to infection by CMV have been identified. In some cases, these genes have been mapped, and one resistance gene to CMV has been isolated and characterized. Pathogen-derived resistance has been demonstrated against CMV using various segments of the CMV genome, and the mechanisms of some of these forms of resistances have been analyzed. Finally, the nature of synergistic interactions between CMV and other viruses has been characterized. This review highlights these various achievements in the context of the previous work on the biology of cucumoviruses and their interactions with plants.
Collapse
Affiliation(s)
- Peter Palukaitis
- Gene Expression Programme, Scottish Crop Research Institute, Invergowrie, Dundee, DD2 5DA, United Kingdom
| | | |
Collapse
|
35
|
Abstract
RNA viruses are the most common viruses of plants, and the evolution of these viruses has been studied both experimentally and phylogenetically. The basic molecular mechanisms for plant virus evolution are similar to those of other viruses, with some notable exceptions. Recent advances include new insights into the origins of plant viruses, analyses of quasispecies and mutation frequencies, population studies on field isolates and practical studies on the importance of virus evolution to agriculture.
Collapse
Affiliation(s)
- Marilyn J Roossinck
- Plant Biology Division, The Samuel Roberts Noble Foundation, Ardmore, OK 73402, USA.
| |
Collapse
|