1
|
Ruby RE, Janes JG. Infectious Causes of Equine Placentitis and Abortion. Vet Clin North Am Equine Pract 2023; 39:73-88. [PMID: 36737287 DOI: 10.1016/j.cveq.2022.11.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
A variety of infectious agents including viral, bacterial, and fungal organisms can cause equine abortion and placentitis. Knowledge of normal anatomy and the common pattern distribution of different infectious agents will assist the practitioner in evaluating the fetus and/or placenta, collecting appropriate samples for further testing, and in some cases, forming a presumptive diagnosis. In all cases, it is recommended to confirm the diagnosis with molecular, serologic, or microbiological testing. If a causative agent can be identified, then appropriate biosecurity and vaccination measures can be instituted on the farm.
Collapse
Affiliation(s)
- Rebecca E Ruby
- Department of Veterinary Science, University of Kentucky, Veterinary Diagnostic Laboratory, 1490 Bull Lea Road, Lexington, KY 40511, USA.
| | - Jennifer G Janes
- Department of Veterinary Science, University of Kentucky, Veterinary Diagnostic Laboratory, 1490 Bull Lea Road, Lexington, KY 40511, USA
| |
Collapse
|
2
|
Socha W, Sztromwasser P, Dunowska M, Jaklinska B, Rola J. Spread of equine arteritis virus among Hucul horses with different EqCXCL16 genotypes and analysis of viral quasispecies from semen of selected stallions. Sci Rep 2020; 10:2909. [PMID: 32076048 PMCID: PMC7031528 DOI: 10.1038/s41598-020-59870-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 02/05/2020] [Indexed: 02/06/2023] Open
Abstract
Equine arteritis virus (EAV) is maintained in the horse populations through persistently infected stallions. The aims of the study were to monitor the spread of EAV among Polish Hucul horses, to analyse the variability of circulating EAVs both between- and within-horses, and to identify allelic variants of the serving stallions EqCXCL16 gene that had been previously shown to strongly correlate with long-term EAV persistence in stallions. Serum samples (n = 221) from 62 horses including 46 mares and 16 stallions were collected on routine basis between December 2010 and May 2013 and tested for EAV antibodies. In addition, semen from 11 stallions was tested for EAV RNA. A full genomic sequence of EAV from selected breeding stallions was determined using next generation sequencing. The proportion of seropositive mares among the tested population increased from 7% to 92% during the study period, while the proportion of seropositive stallions remained similar (64 to 71%). The EAV genomes from different stallions were 94.7% to 99.6% identical to each other. A number (41 to 310) of single nucleotide variants were identified within EAV sequences from infected stallions. Four stallions possessed EqCXCL16S genotype correlated with development of long-term carrier status, three of which were persistent shedders and the shedder status of the remaining one was undetermined. None of the remaining 12 stallions with EqCXCL16R genotype was identified as a persistent shedder.
Collapse
Affiliation(s)
- Wojciech Socha
- National Veterinary Research Institute, Al. Partyzantow 57, 24-100, Pulawy, Poland
| | - Pawel Sztromwasser
- National Veterinary Research Institute, Al. Partyzantow 57, 24-100, Pulawy, Poland.,Medical University of Lodz, Al. Kosciuszki 4, 90-419, Lodz, Poland
| | - Magdalena Dunowska
- School of Veterinary Science, Massey University, Palmerston North, New Zealand
| | - Barbara Jaklinska
- Hucul Horse Stud Gladyszow, Regietow 28, 38-315, Uscie Gorlickie, Poland
| | - Jerzy Rola
- National Veterinary Research Institute, Al. Partyzantow 57, 24-100, Pulawy, Poland.
| |
Collapse
|
3
|
Chen J, Wang D, Sun Z, Gao L, Zhu X, Guo J, Xu S, Fang L, Li K, Xiao S. Arterivirus nsp4 Antagonizes Interferon Beta Production by Proteolytically Cleaving NEMO at Multiple Sites. J Virol 2019; 93:e00385-19. [PMID: 30944180 PMCID: PMC6613749 DOI: 10.1128/jvi.00385-19] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 03/30/2019] [Indexed: 12/24/2022] Open
Abstract
Equine arteritis virus (EAV) and porcine reproductive and respiratory syndrome virus (PRRSV) represent two members of the family Arteriviridae and pose major threats for the horse- and swine-breeding industries worldwide. A previous study suggested that PRRSV nsp4, a 3C-like protease, antagonizes interferon beta (IFN-β) production by cleaving the NF-κB essential modulator (NEMO) at a single site, glutamate 349 (E349). Here, we demonstrated that EAV nsp4 also inhibited virus-induced IFN-β production by targeting NEMO for proteolytic cleavage and that the scission occurred at four sites: E166, E171, glutamine 205 (Q205), and E349. Additionally, we found that, besides the previously reported cleavage site E349 in NEMO, scission by PRRSV nsp4 took place at two additional sites, E166 and E171. These results imply that while cleaving NEMO is a common strategy utilized by EAV and PRRSV nsp4 to antagonize IFN induction, EAV nsp4 adopts a more complex substrate recognition mechanism to target NEMO. By analyzing the abilities of the eight different NEMO fragments resulting from EAV or PRRSV nsp4 scission to induce IFN-β production, we serendipitously found that a NEMO fragment (residues 1 to 349) could activate IFN-β transcription more robustly than full-length NEMO, whereas all other NEMO cleavage products were abrogated for the IFN-β-inducing capacity. Thus, NEMO cleavage at E349 alone may not be sufficient to completely inactivate the IFN response via this signaling adaptor. Altogether, our findings suggest that EAV and PRRSV nsp4 cleave NEMO at multiple sites and that this strategy is critical for disarming the innate immune response for viral survival.IMPORTANCE The arterivirus nsp4-encoded 3C-like protease (3CLpro) plays an important role in virus replication and immune evasion, making it an attractive target for antiviral therapeutics. Previous work suggested that PRRSV nsp4 suppresses type I IFN production by cleaving NEMO at a single site. In contrast, the present study demonstrates that both EAV and PRRSV nsp4 cleave NEMO at multiple sites and that this strategy is essential for disruption of type I IFN production. Moreover, we reveal that EAV nsp4 also cleaves NEMO at glutamine 205 (Q205), which is not targeted by PRRSV nsp4. Notably, targeting a glutamine in NEMO for cleavage has been observed only with picornavirus 3C proteases (3Cpro) and coronavirus 3CLpro In aggregate, our work expands knowledge of the innate immune evasion mechanisms associated with NEMO cleavage by arterivirus nsp4 and describes a novel substrate recognition characteristic of EAV nsp4.
Collapse
Affiliation(s)
- Jiyao Chen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Dang Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Zheng Sun
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Li Gao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Xinyu Zhu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Jiahui Guo
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Shangen Xu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Liurong Fang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Kui Li
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Shaobo Xiao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| |
Collapse
|
4
|
Equine Arteritis Virus Elicits a Mucosal Antibody Response in the Reproductive Tract of Persistently Infected Stallions. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2017; 24:CVI.00215-17. [PMID: 28814389 DOI: 10.1128/cvi.00215-17] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 08/12/2017] [Indexed: 01/26/2023]
Abstract
Equine arteritis virus (EAV) has the ability to establish persistent infection in the reproductive tract of the stallion (carrier) and is continuously shed in its semen. We have recently demonstrated that EAV persists within stromal cells and a subset of lymphocytes in the stallion accessory sex glands in the presence of a significant local inflammatory response. In the present study, we demonstrated that EAV elicits a mucosal antibody response in the reproductive tract during persistent infection with homing of plasma cells into accessory sex glands. The EAV-specific immunoglobulin isotypes in seminal plasma included IgA, IgG1, IgG3/5, and IgG4/7. Interestingly, seminal plasma IgG1 and IgG4/7 possessed virus-neutralizing activity, while seminal plasma IgA and IgG3/5 did not. However, virus-neutralizing IgG1 and IgG4/7 in seminal plasma were not effective in preventing viral infectivity. In addition, the serological response was primarily mediated by virus-specific IgM and IgG1, while virus-specific serum IgA, IgG3/5, IgG4/7, and IgG6 isotype responses were not detected. This is the first report characterizing the immunoglobulin isotypes in equine serum and seminal plasma in response to EAV infection. The findings presented herein suggest that while a broader immunoglobulin isotype diversity is elicited in seminal plasma, EAV has the ability to persist in the reproductive tract, in spite of local mucosal antibody and inflammatory responses. This study provides further evidence that EAV employs complex immune evasion mechanisms during persistence in the reproductive tract that warrant further investigation.
Collapse
|
5
|
Equine Arteritis Virus Has Specific Tropism for Stromal Cells and CD8 + T and CD21 + B Lymphocytes but Not for Glandular Epithelium at the Primary Site of Persistent Infection in the Stallion Reproductive Tract. J Virol 2017; 91:JVI.00418-17. [PMID: 28424285 DOI: 10.1128/jvi.00418-17] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 04/11/2017] [Indexed: 11/20/2022] Open
Abstract
Equine arteritis virus (EAV) has a global impact on the equine industry as the causative agent of equine viral arteritis (EVA), a respiratory, systemic, and reproductive disease of equids. A distinctive feature of EAV infection is that it establishes long-term persistent infection in 10 to 70% of infected stallions (carriers). In these stallions, EAV is detectable only in the reproductive tract, and viral persistence occurs despite the presence of high serum neutralizing antibody titers. Carrier stallions constitute the natural reservoir of the virus as they continuously shed EAV in their semen. Although the accessory sex glands have been implicated as the primary sites of EAV persistence, the viral host cell tropism and whether viral replication in carrier stallions occurs in the presence or absence of host inflammatory responses remain unknown. In this study, dual immunohistochemical and immunofluorescence techniques were employed to unequivocally demonstrate that the ampulla is the main EAV tissue reservoir rather than immunologically privileged tissues (i.e., testes). Furthermore, we demonstrate that EAV has specific tropism for stromal cells (fibrocytes and possibly tissue macrophages) and CD8+ T and CD21+ B lymphocytes but not glandular epithelium. Persistent EAV infection is associated with moderate, multifocal lymphoplasmacytic ampullitis comprising clusters of B (CD21+) lymphocytes and significant infiltration of T (CD3+, CD4+, CD8+, and CD25+) lymphocytes, tissue macrophages, and dendritic cells (Iba-1+ and CD83+), with a small number of tissue macrophages expressing CD163 and CD204 scavenger receptors. This study suggests that EAV employs complex immune evasion mechanisms that warrant further investigation.IMPORTANCE The major challenge for the worldwide control of EAV is that this virus has the distinctive ability to establish persistent infection in the stallion's reproductive tract as a mechanism to ensure its maintenance in equid populations. Therefore, the precise identification of tissue and cellular tropism of EAV is critical for understanding the molecular basis of viral persistence and for development of improved prophylactic or treatment strategies. This study significantly enhances our understanding of the EAV carrier state in stallions by unequivocally identifying the ampullae as the primary sites of viral persistence, combined with the fact that persistence involves continuous viral replication in fibrocytes (possibly including tissue macrophages) and T and B lymphocytes in the presence of detectable inflammatory responses, suggesting the involvement of complex viral mechanisms of immune evasion. Therefore, EAV persistence provides a powerful new natural animal model to study RNA virus persistence in the male reproductive tract.
Collapse
|
6
|
Sarkar S, Bailey E, Go YY, Cook RF, Kalbfleisch T, Eberth J, Chelvarajan RL, Shuck KM, Artiushin S, Timoney PJ, Balasuriya UBR. Allelic Variation in CXCL16 Determines CD3+ T Lymphocyte Susceptibility to Equine Arteritis Virus Infection and Establishment of Long-Term Carrier State in the Stallion. PLoS Genet 2016; 12:e1006467. [PMID: 27930647 PMCID: PMC5145142 DOI: 10.1371/journal.pgen.1006467] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 11/05/2016] [Indexed: 12/25/2022] Open
Abstract
Equine arteritis virus (EAV) is the causative agent of equine viral arteritis (EVA), a respiratory, systemic, and reproductive disease of horses and other equid species. Following natural infection, 10-70% of the infected stallions can become persistently infected and continue to shed EAV in their semen for periods ranging from several months to life. Recently, we reported that some stallions possess a subpopulation(s) of CD3+ T lymphocytes that are susceptible to in vitro EAV infection and that this phenotypic trait is associated with long-term carrier status following exposure to the virus. In contrast, stallions not possessing the CD3+ T lymphocyte susceptible phenotype are at less risk of becoming long-term virus carriers. A genome wide association study (GWAS) using the Illumina Equine SNP50 chip revealed that the ability of EAV to infect CD3+ T lymphocytes and establish long-term carrier status in stallions correlated with a region within equine chromosome 11. Here we identified the gene and mutations responsible for these phenotypes. Specifically, the work implicated three allelic variants of the equine orthologue of CXCL16 (EqCXCL16) that differ by four non-synonymous nucleotide substitutions (XM_00154756; c.715 A → T, c.801 G → C, c.804 T → A/G, c.810 G → A) within exon 1. This resulted in four amino acid changes with EqCXCL16S (XP_001504806.1) having Phe, His, Ile and Lys as compared to EqCXL16R having Tyr, Asp, Phe, and Glu at 40, 49, 50, and 52, respectively. Two alleles (EqCXCL16Sa, EqCXCL16Sb) encoded identical protein products that correlated strongly with long-term EAV persistence in stallions (P<0.000001) and are required for in vitro CD3+ T lymphocyte susceptibility to EAV infection. The third (EqCXCL16R) was associated with in vitro CD3+ T lymphocyte resistance to EAV infection and a significantly lower probability for establishment of the long-term carrier state (viral persistence) in the male reproductive tract. EqCXCL16Sa and EqCXCL16Sb exert a dominant mode of inheritance. Most importantly, the protein isoform EqCXCL16S but not EqCXCL16R can function as an EAV cellular receptor. Although both molecules have equal chemoattractant potential, EqCXCL16S has significantly higher scavenger receptor and adhesion properties compared to EqCXCL16R.
Collapse
Affiliation(s)
- Sanjay Sarkar
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, Kentucky, United States of America
| | - Ernest Bailey
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, Kentucky, United States of America
- * E-mail: (UBRB); (EB)
| | - Yun Young Go
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, Kentucky, United States of America
| | - R. Frank Cook
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, Kentucky, United States of America
| | - Ted Kalbfleisch
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Louisville, Louisville, Kentucky, United States of America
| | - John Eberth
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, Kentucky, United States of America
| | - R. Lakshman Chelvarajan
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, Kentucky, United States of America
| | - Kathleen M. Shuck
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, Kentucky, United States of America
| | - Sergey Artiushin
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, Kentucky, United States of America
| | - Peter J. Timoney
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, Kentucky, United States of America
| | - Udeni B. R. Balasuriya
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, Kentucky, United States of America
- * E-mail: (UBRB); (EB)
| |
Collapse
|
7
|
Balasuriya UBR, Carossino M, Timoney PJ. Equine viral arteritis: A respiratory and reproductive disease of significant economic importance to the equine industry. EQUINE VET EDUC 2016. [DOI: 10.1111/eve.12672] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- U. B. R. Balasuriya
- Department of Veterinary Science; Maxwell H. Gluck Equine Research Center; College of Agriculture, Food and Environment; University of Kentucky; Lexington USA
| | - M. Carossino
- Department of Veterinary Science; Maxwell H. Gluck Equine Research Center; College of Agriculture, Food and Environment; University of Kentucky; Lexington USA
| | - P. J. Timoney
- Department of Veterinary Science; Maxwell H. Gluck Equine Research Center; College of Agriculture, Food and Environment; University of Kentucky; Lexington USA
| |
Collapse
|
8
|
Carossino M, Loynachan AT, James MacLachlan N, Drew C, Shuck KM, Timoney PJ, Del Piero F, Balasuriya UBR. Detection of equine arteritis virus by two chromogenic RNA in situ hybridization assays (conventional and RNAscope(®)) and assessment of their performance in tissues from aborted equine fetuses. Arch Virol 2016; 161:3125-36. [PMID: 27541817 DOI: 10.1007/s00705-016-3014-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 08/09/2016] [Indexed: 12/14/2022]
Abstract
Equine arteritis virus (EAV) is the causative agent of equine viral arteritis, a respiratory and reproductive disease of equids. EAV infection can induce abortion in pregnant mares, fulminant bronchointerstitial pneumonia in foals, and persistent infection in stallions. Here, we developed two RNA in situ hybridization (ISH) assays (conventional and RNAscope(®) ISH) for the detection of viral RNA in formalin-fixed paraffin-embedded (FFPE) tissues and evaluated and compared their performance with nucleocapsid-specific immunohistochemistry (IHC) and virus isolation (VI; gold standard) techniques. The distribution and cellular localization of EAV RNA and antigen were similar in tissues from aborted equine fetuses. Evaluation of 80 FFPE tissues collected from 16 aborted fetuses showed that the conventional RNA ISH assay had a significantly lower sensitivity than the RNAscope(®) and IHC assays, whereas there was no difference between the latter two assays. The use of oligonucleotide probes along with a signal amplification system (RNAscope(®)) can enhance detection of EAV RNA in FFPE tissues, with sensitivity comparable to that of IHC. Most importantly, these assays provide important tools with which to investigate the mechanisms of EAV pathogenesis.
Collapse
Affiliation(s)
- Mariano Carossino
- 108 Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY, USA
| | - Alan T Loynachan
- University of Kentucky Veterinary Diagnostic Laboratory, University of Kentucky, Lexington, KY, USA
| | - N James MacLachlan
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - Clifton Drew
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - Kathleen M Shuck
- 108 Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY, USA
| | - Peter J Timoney
- 108 Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY, USA
| | - Fabio Del Piero
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, USA
| | - Udeni B R Balasuriya
- 108 Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY, USA. ubalasuriya.@uky.edu
| |
Collapse
|
9
|
Carossino M, Lee PYA, Nam B, Skillman A, Shuck KM, Timoney PJ, Tsai YL, Ma LJ, Chang HFG, Wang HTT, Balasuriya UBR. Development and evaluation of a reverse transcription-insulated isothermal polymerase chain reaction (RT-iiPCR) assay for detection of equine arteritis virus in equine semen and tissue samples using the POCKIT™ system. J Virol Methods 2016; 234:7-15. [PMID: 27036504 DOI: 10.1016/j.jviromet.2016.02.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 02/11/2016] [Accepted: 02/12/2016] [Indexed: 12/27/2022]
Abstract
Equine arteritis virus (EAV) is the causative agent of equine viral arteritis (EVA), a respiratory and reproductive disease of horses. Most importantly, EAV induces abortion in pregnant mares and can establish persistent infection in up to 10-70% of the infected stallions, which will continue to shed the virus in their semen. The objective of this study was to develop and evaluate a reverse transcription insulated isothermal polymerase chain reaction (RT-iiPCR) for the detection of EAV in semen and tissue samples. The newly developed assay had a limit of detection of 10 RNA copies and a 10-fold higher sensitivity than a previously described real-time RT-PCR (RT-qPCR). Evaluation of 125 semen samples revealed a sensitivity and specificity of 98.46% and 100.00%, respectively for the RT-qPCR assay, and 100.00% and 98.33%, respectively for the RT-iiPCR assay. Both assays had the same accuracy (99.2%, k=0.98) compared to virus isolation. Corresponding values derived from testing various tissue samples (n=122) collected from aborted fetuses, foals, and EAV carrier stallions are as follows: relative sensitivity, specificity, and accuracy of 88.14%, 96.83%, and 92.62% (k=0.85), respectively for the RT-qPCR assay, and 98.31%, 92.06%, and 95.08% (k=0.90), respectively for the RT-iiPCR assay. These results indicate that RT-iiPCR is a sensitive, specific, and a robust test enabling detection of EAV in semen and tissue samples with very considerable accuracy. Even though the RT-qPCR assay showed a sensitivity and specificity equal to virus isolation for semen samples, its diagnostic performance was somewhat limited for tissue samples. Thus, this new RT-iiPCR could be considered as an alternative tool in the implementation of EAV control and prevention strategies.
Collapse
Affiliation(s)
- Mariano Carossino
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY, USA
| | | | - Bora Nam
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY, USA
| | - Ashley Skillman
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY, USA
| | - Kathleen M Shuck
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY, USA
| | - Peter J Timoney
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY, USA
| | | | | | | | | | - Udeni B R Balasuriya
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY, USA.
| |
Collapse
|
10
|
Balasuriya UBR, Zhang J, Go YY, MacLachlan NJ. Experiences with infectious cDNA clones of equine arteritis virus: lessons learned and insights gained. Virology 2014; 462-463:388-403. [PMID: 24913633 PMCID: PMC7172799 DOI: 10.1016/j.virol.2014.04.029] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Revised: 04/16/2014] [Accepted: 04/22/2014] [Indexed: 12/19/2022]
Abstract
The advent of recombinant DNA technology, development of infectious cDNA clones of RNA viruses, and reverse genetic technologies have revolutionized how viruses are studied. Genetic manipulation of full-length cDNA clones has become an especially important and widely used tool to study the biology, pathogenesis, and virulence determinants of both positive and negative stranded RNA viruses. The first full-length infectious cDNA clone of equine arteritis virus (EAV) was developed in 1996 and was also the first full-length infectious cDNA clone constructed from a member of the order Nidovirales. This clone was extensively used to characterize the molecular biology of EAV and other Nidoviruses. The objective of this review is to summarize the characterization of the virulence (or attenuation) phenotype of the recombinant viruses derived from several infectious cDNA clones of EAV in horses, as well as their application for characterization of the molecular basis of viral neutralization, persistence, and cellular tropism.
Collapse
Affiliation(s)
- Udeni B R Balasuriya
- 108 Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY 40546, USA.
| | - Jianqiang Zhang
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA
| | - Yun Young Go
- Virus Research and Testing Group, Division of Drug Discovery Research, Korea Research Institute of Chemical Technology, Daejeon 305-343, South Korea
| | - N James MacLachlan
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| |
Collapse
|
11
|
Balasuriya UBR, Go YY, MacLachlan NJ. Equine arteritis virus. Vet Microbiol 2013; 167:93-122. [PMID: 23891306 PMCID: PMC7126873 DOI: 10.1016/j.vetmic.2013.06.015] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Revised: 06/22/2013] [Accepted: 06/25/2013] [Indexed: 11/13/2022]
Abstract
Equine arteritis virus (EAV) is the causative agent of equine viral arteritis (EVA), a respiratory and reproductive disease of equids. There has been significant recent progress in understanding the molecular biology of EAV and the pathogenesis of its infection in horses. In particular, the use of contemporary genomic techniques, along with the development and reverse genetic manipulation of infectious cDNA clones of several strains of EAV, has generated significant novel information regarding the basic molecular biology of the virus. Therefore, the objective of this review is to summarize current understanding of EAV virion architecture, replication, evolution, molecular epidemiology and genetic variation, pathogenesis including the influence of host genetics on disease susceptibility, host immune response, and potential vaccination and treatment strategies.
Collapse
Affiliation(s)
- Udeni B R Balasuriya
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY 40546, USA.
| | | | | |
Collapse
|
12
|
Abstract
Arteriviruses are positive-stranded RNA viruses that infect mammals. They can cause persistent or asymptomatic infections, but also acute disease associated with a respiratory syndrome, abortion or lethal haemorrhagic fever. During the past two decades, porcine reproductive and respiratory syndrome virus (PRRSV) and, to a lesser extent, equine arteritis virus (EAV) have attracted attention as veterinary pathogens with significant economic impact. Particularly noteworthy were the 'porcine high fever disease' outbreaks in South-East Asia and the emergence of new virulent PRRSV strains in the USA. Recently, the family was expanded with several previously unknown arteriviruses isolated from different African monkey species. At the molecular level, arteriviruses share an intriguing but distant evolutionary relationship with coronaviruses and other members of the order Nidovirales. Nevertheless, several of their characteristics are unique, including virion composition and structure, and the conservation of only a subset of the replicase domains encountered in nidoviruses with larger genomes. During the past 15 years, the advent of reverse genetics systems for EAV and PRRSV has changed and accelerated the structure-function analysis of arterivirus RNA and protein sequences. These systems now also facilitate studies into host immune responses and arterivirus immune evasion and pathogenesis. In this review, we have summarized recent advances in the areas of arterivirus genome expression, RNA and protein functions, virion architecture, virus-host interactions, immunity, and pathogenesis. We have also briefly reviewed the impact of these advances on disease management, the engineering of novel candidate live vaccines and the diagnosis of arterivirus infection.
Collapse
Affiliation(s)
- Eric J Snijder
- Molecular Virology Department, Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Marjolein Kikkert
- Molecular Virology Department, Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Ying Fang
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, USA.,Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, South Dakota, USA
| |
Collapse
|
13
|
Rola J, Socha W, Zmudzinski JF. Sequence analysis of ORFs 5, 6 and 7 of equine arteritis virus during persistent infection of the stallion--a 7-year study. Vet Microbiol 2013; 164:378-82. [PMID: 23490558 DOI: 10.1016/j.vetmic.2013.02.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Revised: 02/08/2013] [Accepted: 02/15/2013] [Indexed: 11/18/2022]
Abstract
Nucleotide and amino acid sequences of ORFs 5, 6 and 7 of EAV during persistent infection in the stallion of the Malopolska breed were analysed in the study. A total of 11 blood and semen samples were collected between 2004 and 2011. The titre of specific EAV antibodies in this carrier stallion was maintained at a high level throughout the study and was equal approximately 1:128. The sequence analysis of ORF5 showed 16 variable sites including 12 with synonymous substitutions and 4 with non-synonymous substitutions. The degree of nucleotide sequence identity among the strains ranged from 98.92% to 100%, whereas amino acid homology ranged from 98.06% to 100%. Ten substitutions were identified including 7 with synonymous mutations and 3 with non-synonymous mutations in ORF6. The degree of similarities among the strains ranged from 94.55 to 100% and from 98.41% to 100% at the level of nucleotide and amino acid sequence, respectively. Only a single point mutation at position 255 of ORF7 (99.6% identity) was found in nucleotide sequences of these strains. Phylogenetic analysis showed that all strains present in the semen of this carrier stallion created a separate cluster of "quasi-species" within the second European subgroup of EAV.
Collapse
Affiliation(s)
- Jerzy Rola
- Department of Virology, National Veterinary Research Institute, Pulawy, Poland.
| | | | | |
Collapse
|
14
|
Emergence of novel equine arteritis virus (EAV) variants during persistent infection in the stallion: origin of the 2007 French EAV outbreak was linked to an EAV strain present in the semen of a persistently infected carrier stallion. Virology 2011; 423:165-74. [PMID: 22209234 DOI: 10.1016/j.virol.2011.11.028] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2011] [Revised: 10/04/2011] [Accepted: 11/30/2011] [Indexed: 11/21/2022]
Abstract
During the summer of 2007, an outbreak of equine viral arteritis (EVA) occurred in Normandy (France). After investigation, a link was suggested between an EAV carrier stallion (A) and the index premise of the outbreak. The full-length nucleotide sequence analysis of a study reference strain (F27) isolated from the lung of a foal revealed a 12,710 nucleotides EAV genome with unique molecular hallmarks in the 5'UTR leader sequence and the ORF1a sequence encoding the non-structural protein 2. The evolution of the viral population in the persistently infected Stallion A was then studied by cloning ORFs 3 and 5 of the EAV genome from four sequential semen samples which were collected between 2000 and 2007. Molecular analysis of the clones confirmed the likely implication of Stallion A in the origin of this outbreak through the yearly emergence of new variants genetically similar to the F27 strain.
Collapse
|
15
|
Characterization of equine humoral antibody response to the nonstructural proteins of equine arteritis virus. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2010; 18:268-79. [PMID: 21147938 DOI: 10.1128/cvi.00444-10] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Equine arteritis virus (EAV) replicase consists of two polyproteins (pp1a and pp1ab) that are encoded by open reading frames (ORFs) 1a and 1b of the viral genome. These two replicase polyproteins are posttranslationally processed by three ORF 1a-encoded proteinases to yield at least 13 nonstructural proteins (nsp1 to nsp12, including nsp7α and 7β). These nsps are expressed in EAV-infected cells, but the equine immune response they induce has not been studied. Therefore, the primary purpose of this study was to evaluate the humoral immune response of horses to each of the nsps following EAV infection. Individual nsp coding regions were cloned and expressed in both mammalian and bacterial expression systems. Each recombinant protein was used in an immunoprecipitation assay with equine serum samples from horses (n = 3) that were experimentally infected with three different EAV strains (VB, KY77, and KY84), from stallions (n = 4) that were persistently infected with EAV, and from horses (n = 4) that were vaccinated with the modified live-virus (MLV) vaccine strain. Subsequently, protein-antibody complexes were subjected to Western immunoblotting analysis with individual nsp-specific rabbit antisera, mouse anti-His antibody, or anti-FLAG tag antibody. Nsp2, nsp4, nsp5, and nsp12 were immunoprecipitated by most of the sera from experimentally or persistently infected horses, while sera from vaccinated horses did not react with nsp5 and reacted weakly with nsp4. However, serum samples from vaccinated horses were able to immunoprecipitate nsp2 and nsp12 proteins consistently. Information from this study will assist ongoing efforts to develop improved methods for the serologic diagnosis of EAV infection in horses.
Collapse
|
16
|
PRONOST S, PITEL PH, MISZCZAK F, LEGRAND L, MARCILLAUD-PITEL C, HAMON M, TAPPREST J, BALASURIYA UBR, FREYMUTH F, FORTIER G. Description of the first recorded major occurrence of equine viral arteritis in France. Equine Vet J 2010; 42:713-20. [DOI: 10.1111/j.2042-3306.2010.00109.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
17
|
Zhang J, Stein DA, Timoney PJ, Balasuriya UB. Curing of HeLa cells persistently infected with equine arteritis virus by a peptide-conjugated morpholino oligomer. Virus Res 2010; 150:138-42. [PMID: 20206215 PMCID: PMC7114391 DOI: 10.1016/j.virusres.2010.02.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2009] [Revised: 02/22/2010] [Accepted: 02/24/2010] [Indexed: 12/01/2022]
Abstract
A significant consequence of equine arteritis virus (EAV) infection of horses is persistence of the virus in a variable percentage of infected stallions. We recently established an in vitro model of EAV persistence in cell culture for the purpose of furthering our understanding of EAV biology in general and viral persistence in the stallion in particular. In this study we investigated whether persistently infected HeLa cells could be cured of EAV infection by treatment with an antisense peptide-conjugated phosphorodiamidate morpholino oligomer (PPMO) designed to target the 5'-terminal region of the EAV genome. We found that persistently infected HeLa cells passaged three times in the presence of 5-10 microM EAV-specific PPMO produced no detectable virus. The PPMO-cured HeLa cells were free of infectious virus, viral antigen and EAV RNA as measured by plaque assay, indirect immunofluorescence assay and RT-PCR, respectively. Furthermore, when re-challenged with EAV at several passages after discontinuation of PPMO treatments, PPMO-cured HeLa cells were found to be refractory to re-infection and to the re-establishment of viral persistence. While these findings demonstrate that PPMO can be used to eliminate persistent EAV infection in cell culture, the efficacy of PPMO against EAV in vivo remains to be addressed.
Collapse
Affiliation(s)
- Jianqiang Zhang
- Department of Veterinary Science, Maxwell H. Gluck Equine Research Center, University of Kentucky, Lexington, KY 40546, USA
| | - David A. Stein
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, OR 97006, USA
| | - Peter J. Timoney
- Department of Veterinary Science, Maxwell H. Gluck Equine Research Center, University of Kentucky, Lexington, KY 40546, USA
| | - Udeni B.R. Balasuriya
- Department of Veterinary Science, Maxwell H. Gluck Equine Research Center, University of Kentucky, Lexington, KY 40546, USA
| |
Collapse
|
18
|
Zhang J, Timoney PJ, Shuck KM, Seoul G, Go YY, Lu Z, Powell DG, Meade BJ, Balasuriya UBR. Molecular epidemiology and genetic characterization of equine arteritis virus isolates associated with the 2006-2007 multi-state disease occurrence in the USA. J Gen Virol 2010; 91:2286-301. [PMID: 20444993 DOI: 10.1099/vir.0.019737-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In 2006-2007, equine viral arteritis (EVA) was confirmed for the first time in Quarter Horses in multiple states in the USA. The entire genome of an equine arteritis virus (EAV) isolate from the index premises in New Mexico was 12 731 nt in length and possessed a previously unrecorded unique 15 nt insertion in the nsp2-coding region in ORF1a and a 12 nt insertion in ORF3. Sequence analysis of additional isolates made during this disease occurrence revealed that all isolates from New Mexico, Utah, Kansas, Oklahoma and Idaho had 98.6-100.0 % (nsp2) and 97.8-100 % (ORF3) nucleotide identity and contained the unique insertions in nsp2 and ORF3, indicating that the EVA outbreaks in these states probably originated from the same strain of EAV. Sequence and phylogenetic analysis of several EAV isolates made following an EVA outbreak on another Quarter Horse farm in New Mexico in 2005 provided evidence that this outbreak may well have been the source of virus for the 2006-2007 occurrence of the disease. A virus isolate from an aborted fetus in Utah was shown to have a distinct neutralization phenotype compared with other isolates associated with the 2006-2007 EVA occurrence. Full-length genomic sequence analysis of 18 sequential isolates of EAV made from eight carrier stallions established that the virus evolved genetically during persistent infection, and the rate of genetic change varied between individual animals and the period of virus shedding.
Collapse
Affiliation(s)
- Jianqiang Zhang
- Department of Veterinary Science, Maxwell H. Gluck Equine Research Center, University of Kentucky, Lexington, KY 40546, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Zhang J, Timoney PJ, Maclachlan NJ, Balasuriya UBR. Identification of an additional neutralization determinant of equine arteritis virus. Virus Res 2008; 138:150-3. [PMID: 18851997 DOI: 10.1016/j.virusres.2008.09.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2008] [Revised: 09/08/2008] [Accepted: 09/15/2008] [Indexed: 12/27/2022]
Abstract
We recently established an in vitro model of equine arteritis virus (EAV) persistence in HeLa cells. The objective of this study was to determine whether viral variants with novel neutralization phenotypes emerged during persistent EAV infection of HeLa cells, as occurs during viral persistence in carrier stallions. Viruses recovered from persistently infected HeLa cells had different neutralization phenotypes than the virus in the original inoculum, as determined by neutralization assays using EAV-specific monoclonal antibodies and polyclonal equine antisera raised against different strains of EAV. Comparative sequence analyses of the entire structural protein genes (ORFs 2a, 2b, and 3-7) of these viruses, coupled with construction of chimeric viruses utilizing an infectious cDNA clone of EAV, confirmed that the alterations in neutralization phenotype were caused by amino acid changes in the GP5 protein encoded by ORF5. Site-directed mutagenesis studies unequivocally confirmed that amino acid 98 in the GP5 protein was responsible for the altered neutralization phenotype of these viruses. Amino acid 98 in the GP5 protein, which has not previously been identified as a neutralization determinant of EAV, should be included in an expanded neutralization site D (amino acids 98-106).
Collapse
Affiliation(s)
- Jianqiang Zhang
- Department of Veterinary Science, Gluck Equine Research Center, University of Kentucky, Lexington, KY 40546, USA
| | | | | | | |
Collapse
|
20
|
Zhang J, Timoney PJ, MacLachlan NJ, McCollum WH, Balasuriya UBR. Persistent equine arteritis virus infection in HeLa cells. J Virol 2008; 82:8456-64. [PMID: 18579588 PMCID: PMC2519626 DOI: 10.1128/jvi.01249-08] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2008] [Accepted: 06/18/2008] [Indexed: 01/22/2023] Open
Abstract
The horse-adapted virulent Bucyrus (VB) strain of equine arteritis virus (EAV) established persistent infection in high-passage-number human cervix cells (HeLa-H cells; passages 170 to 221) but not in low-passage-number human cervix cells (HeLa-L cells; passages 95 to 115) or in several other cell lines that were evaluated. However, virus recovered from the 80th passage of the persistently infected HeLa-H cells (HeLa-H-EAVP80) readily established persistent infection in HeLa-L cells. Comparative sequence analysis of the entire genomes of the VB and HeLa-H-EAVP80 viruses identified 16 amino acid substitutions, including 4 in the replicase (nsp1, nsp2, nsp7, and nsp9) and 12 in the structural proteins (E, GP2, GP3, GP4, and GP5). Reverse genetic studies clearly showed that substitutions in the structural proteins but not the replicase were responsible for the establishment of persistent infection in HeLa-L cells by the HeLa-H-EAVP80 virus. It was further demonstrated that recombinant viruses with substitutions in the minor structural proteins E and GP2 or GP3 and GP4 were unable to establish persistent infection in HeLa-L cells but that recombinant viruses with combined substitutions in the E (Ser53-->Cys and Val55-->Ala), GP2 (Leu15-->Ser, Trp31-->Arg, Val87-->Leu, and Ala112-->Thr), GP3 (Ser115-->Gly and Leu135-->Pro), and GP4 (Tyr4-->His and Ile109-->Phe) proteins or with a single point mutation in the GP5 protein (Pro98-->Leu) were able to establish persistent infection in HeLa-L cells. In summary, an in vitro model of EAV persistence in cell culture was established for the first time. This system can provide a valuable model for studying virus-host cell interactions, especially virus-receptor interactions.
Collapse
Affiliation(s)
- Jianqiang Zhang
- Department of Veterinary Science, Maxwell H Gluck Equine Research Center, University of Kentucky, Lexington, Kentucky 40546-0099, USA
| | | | | | | | | |
Collapse
|
21
|
Lu Z, Branscum AJ, Shuck KM, Zhang J, Dubovi EJ, Timoney PJ, Balasuriya UBR. Comparison of two real-time reverse transcription polymerase chain reaction assays for the detection of Equine arteritis virus nucleic acid in equine semen and tissue culture fluid. J Vet Diagn Invest 2008; 20:147-55. [PMID: 18319426 DOI: 10.1177/104063870802000202] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Two previously developed TaqMan fluorogenic probe-based 1-tube real-time reverse transcription polymerase chain reaction (real-time RT-PCR) assays (T1 and T2) were compared and validated for the detection of Equine arteritis virus (EAV) nucleic acid in equine semen and tissue culture fluid (TCF). The specificity and sensitivity of these 2 molecular-based assays were compared to traditional virus isolation (VI) in cell culture. The T1 real-time RT-PCR had a higher sensitivity (93.4%) than the T2 real-time RT-PCR (42.6%) for detection of EAV RNA in semen. However, the T1 real-time RT-PCR was less sensitive (93.4%) than the World Organization for Animal Health (OIE)-prescribed VI test (gold standard). The sensitivity of both PCR assays was high (100.0% [T1] and 95.2% [T2]) for detecting EAV RNA in TCF. In light of the discrepancy in sensitivity between either real-time RT-PCR assay and VI, semen that is negative for EAV nucleic acid by real-time RT-PCR that is from an EAV-seropositive stallion should be confirmed free of virus by VI. Similarly, the presence of EAV in TCF samples that are VI-positive but real-time RT-PCR-negative should be confirmed in a 1-way neutralization test using anti-EAV equine serum or by fluorescent antibody test using monoclonal antibodies to EAV. If the viral isolate is not identified as EAV, such samples should be tested for other equine viral pathogens. The results of this study underscore the importance of comparative evaluation and validation of real-time RT-PCR assays prior to their recommended use in a diagnostic setting for the detection and identification of specific infectious agents.
Collapse
Affiliation(s)
- Zhengchun Lu
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY 40546, USA
| | | | | | | | | | | | | |
Collapse
|
22
|
Mankoc S, Hostnik P, Grom J, Toplak I, Klobucar I, Kosec M, Barlic-Maganja D. Comparison of different molecular methods for assessment of equine arteritis virus (EAV) infection: a novel one-step MGB real-time RT-PCR assay, PCR-ELISA and classical RT-PCR for detection of highly diverse sequences of Slovenian EAV variants. J Virol Methods 2007; 146:341-54. [PMID: 17854913 DOI: 10.1016/j.jviromet.2007.07.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2007] [Revised: 07/23/2007] [Accepted: 07/24/2007] [Indexed: 11/17/2022]
Abstract
In the present study, a new one-step real-time reverse transcription-polymerase chain reaction (RT-PCR) strategy with minor-groove-binder (MGB) technology for the detection of EAV from 40 semen samples of Slovenian carrier stallions was tested. A novel MGB probe (EAVMGBpr) and a reverse primer (EAV-R) based on the multiple sequence alignment of 49 different EAV strain sequences of the highly conserved ORF7 (nucleocapsid gene) were designed. The performance of the assay was compared with different molecular detection methods. Three different primer pairs targeting the ORF1b and ORF7 were used, respectively. The real-time RT-PCR assay was at least 2 log(10) more sensitive than the classical RT-PCR and at least 1 log(10) more sensitive than the primer set used in the semi-nested PCR. The specificities of the amplification reactions were confirmed with biotinylated probes in the PCR-enzyme-linked immunosorbent assay (PCR-ELISA). Under the conditions described in our study, the sensitivity of the real-time RT-PCR was found to be superior to the PCR-ELISA assay. Thus, while the PCR-ELISA method was found to be both relatively demanding and time consuming, better sensitivity coupled with high specificity and speed of the assay makes the real-time RT-PCR a valuable tool for diagnosis of EAV infection.
Collapse
Affiliation(s)
- S Mankoc
- Virology Unit, Institute for Microbiology and Parasitology, Veterinary Faculty, University of Ljubljana, Gerbiceva 60, SI-1115 Ljubljana, Slovenia.
| | | | | | | | | | | | | |
Collapse
|
23
|
Zhang J, Guy JS, Snijder EJ, Denniston DA, Timoney PJ, Balasuriya UBR. Genomic characterization of equine coronavirus. Virology 2007; 369:92-104. [PMID: 17706262 PMCID: PMC7103287 DOI: 10.1016/j.virol.2007.06.035] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2007] [Revised: 05/08/2007] [Accepted: 06/30/2007] [Indexed: 11/03/2022]
Abstract
The complete genome sequence of the first equine coronavirus (ECoV) isolate, NC99 strain was accomplished by directly sequencing 11 overlapping fragments which were RT–PCR amplified from viral RNA. The ECoV genome is 30,992 nucleotides in length, excluding the polyA tail. Analysis of the sequence identified 11 open reading frames which encode two replicase polyproteins, five structural proteins (hemagglutinin esterase, spike, envelope, membrane, and nucleocapsid) and four accessory proteins (NS2, p4.7, p12.7, and I). The two replicase polyproteins are predicted to be proteolytically processed by three virus-encoded proteases into 16 non-structural proteins (nsp1–16). The ECoV nsp3 protein had considerable amino acid deletions and insertions compared to the nsp3 proteins of bovine coronavirus, human coronavirus OC43, and porcine hemagglutinating encephalomyelitis virus, three group 2 coronaviruses phylogenetically most closely related to ECoV. The structure of subgenomic mRNAs was analyzed by Northern blot analysis and sequencing of the leader–body junction in each sg mRNA.
Collapse
Affiliation(s)
- Jianqiang Zhang
- Department of Veterinary Science, 108 Maxwell H. Gluck Equine Research Center, University of Kentucky, Lexington, KY 40546, USA
| | | | | | | | | | | |
Collapse
|
24
|
Zhang J, Miszczak F, Pronost S, Fortier C, Balasuriya UBR, Zientara S, Fortier G, Timoney PJ. Genetic variation and phylogenetic analysis of 22 French isolates of equine arteritis virus. Arch Virol 2007; 152:1977-94. [PMID: 17680321 DOI: 10.1007/s00705-007-1040-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2007] [Accepted: 06/27/2007] [Indexed: 10/23/2022]
Abstract
Genetic variation and phylogenetic relationships among 22 French isolates of equine arteritis virus (EAV) obtained over four breeding seasons (2001-2004) were determined by sequencing open reading frames (ORFs) 2a-7. The ORFs 2a-7 of 22 isolates differed from the prototype virulent Bucyrus strain of EAV by between 14 (99.5% identity) and 328 (88.7% identity) nucleotides, and differed from each other by between 0 (100% identity) and 346 (88.1% identity) nucleotides, confirming genetic diversity among EAV strains circulating in France. Phylogenetic analysis based on the partial ORF5 sequences (nucleotides 11296-11813) of 22 French isolates and 216 additional EAV strains available in GenBank clustered the global isolates of EAV into two distinct groups: North American and European. The latter could be further divided into two large subgroups: European subgroup 1 (EU-1) and European subgroup 2 (EU-2). Phylogenetic analysis based on 100 EAV ORF3 sequences yielded similar results. Of the 22 French EAV isolates, the 11 isolates obtained before January 28, 2003 clustered with either the EU-1 (9 isolates) or EU-2 (2 isolates) subgroup. In contrast, by the criteria used in this study, the 11 isolates obtained after January 30, 2003 belong to the North American group, strongly suggesting that these strains were recently introduced into France.
Collapse
Affiliation(s)
- J Zhang
- Maxwell H Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY, USA
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Echeverría MG, Díaz S, Metz GE, Serena MS, Panei CJ, Nosetto E. Genetic typing of equine arteritis virus isolates from Argentina. Virus Genes 2007; 35:313-20. [PMID: 17294142 DOI: 10.1007/s11262-007-0081-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2006] [Accepted: 01/17/2007] [Indexed: 10/23/2022]
Abstract
We report the nucleotide sequence and genetic diversity of four Equine Arteritis Virus (EAV) ORF 5 and 6 from Argentina isolates, obtained from asymptomatic virus-shedding stallions. Nucleic acid recovered from the isolates were amplified by RT-PCR and sequenced. Nucleotide and deduced amino acid sequences from the Argentine isolates were compared with 17 sequences available from the GenBank. Phylogenetic analysis revealed that the Argentine isolates grouped together in a definite cluster near European strains. Despite the greater genetic variability among ORF 5 from different isolates and strains of EAV, phylogenetic trees based on ORF 5 and 6 are similar. Both trees showed that virus sequences from America and Europe segregate into distinct clades based on sequence analysis of either ORF 5 or 6. This study constitutes the first characterization of Argentine EAV isolates.
Collapse
Affiliation(s)
- María Gabriela Echeverría
- Virology, Faculty of Veterinary Sciences, National University of La Plata, 60 and 118, CC 296, 1900 La Plata, Argentina.
| | | | | | | | | | | |
Collapse
|
26
|
van Aken D, Snijder EJ, Gorbalenya AE. Mutagenesis analysis of the nsp4 main proteinase reveals determinants of arterivirus replicase polyprotein autoprocessing. J Virol 2006; 80:3428-37. [PMID: 16537610 PMCID: PMC1440411 DOI: 10.1128/jvi.80.7.3428-3437.2006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2005] [Accepted: 01/16/2006] [Indexed: 11/20/2022] Open
Abstract
Nonstructural protein 4 (nsp4; 204 amino acids) is the chymotrypsin-like serine main proteinase of the arterivirus Equine arteritis virus (order Nidovirales), which controls the maturation of the replicase complex. nsp4 includes a unique C-terminal domain (CTD) connected to the catalytic two-beta-barrel structure by the poorly conserved residues 155 and 156. This dipeptide might be part of a hinge region (HR) that facilitates interdomain movements and thereby regulates (in time and space) autoprocessing of replicase polyproteins pp1a and pp1ab at eight sites that are conserved in arteriviruses. To test this hypothesis, we characterized nsp4 proteinase mutants carrying either point mutations in the putative HR domain or a large deletion in the CTD. When tested in a reverse genetics system, three groups of mutants were recognized (wild-type-like, debilitated, and dead), which was in line with the expected impact of mutations on HR flexibility. When tested in a transient expression system, the effects of the mutations on the production and turnover of replicase proteins varied widely. They were cleavage product specific and revealed a pronounced modulating effect of moieties derived from the nsp1-3 region of pp1a. Mutations that were lethal affected the efficiency of polyprotein autoprocessing most strongly. These mutants may be impaired in the accumulation of nsp5-7 and/or suffer from delayed or otherwise perturbed processing at the nsp5/6 and nsp6/7 junctions. On average, the production of nsp7-8 seems to be the most resistant to debilitating nsp4 mutations. Our results further prove that the CTD is essential for a vital nsp4 property other than catalysis.
Collapse
Affiliation(s)
- Danny van Aken
- Molecular Virology Laboratory, Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands
| | | | | |
Collapse
|
27
|
Mittelholzer C, Stadejek T, Johansson I, Baule C, Ciabatti I, Hannant D, Paton D, Autorino GL, Nowotny N, Belák S. Extended Phylogeny of Equine Arteritis Virus: Division into New Subgroups. ACTA ACUST UNITED AC 2006; 53:55-8. [PMID: 16626399 DOI: 10.1111/j.1439-0450.2006.00916.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
To determine a conclusive phylogeny, equine arteritis viruses from Italy, Austria, Hungary, Sweden, South Africa and other parts of the world were analysed by reverse-transcription polymerase chain reaction amplification and direct sequencing. The nucleotide sequences corresponding to the variable part of the large glycoprotein GP5, specified by open reading frame 5, were compared and added to a previously published phylogenetic tree in which a clear division between 'European' and 'American' type viruses had been established. Adding the sequences determined in this study and new sequences retrieved from GenBank revealed additional diversity and new subgroups.
Collapse
Affiliation(s)
- C Mittelholzer
- Department of Virology, National Veterinary Institute, Uppsala, Sweden
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Abstract
EVA is an important if uncommon disease of horses. Potential economic losses attributable to EVA include direct losses from abortion, pneumonia in neonates, and febrile disease in performance horses. Indirect losses are those associated with national and international trade/animal movement regulations, particularly those pertaining to persistently infected carrier stallions and their semen. However, EAV infection and EVA are readily prevented through serological and virological screening of horses, coupled with sound management practices that include appropriate quarantine and strategic vaccination.
Collapse
Affiliation(s)
- Stanley Perlman
- Department of Pediatrics, University of Iowa, 52242 Iowa City, IA USA
| | - Kathryn V. Holmes
- Department of Microbiology, University of Colorado Health Sciences Center at Fitzsimons, 80045-8333 Aurora, CO USA
| |
Collapse
|
29
|
Balasuriya UBR, MacLachlan NJ. The immune response to equine arteritis virus: potential lessons for other arteriviruses. Vet Immunol Immunopathol 2004; 102:107-29. [PMID: 15507299 DOI: 10.1016/j.vetimm.2004.09.003] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The members of the family Arteriviridae, genus Arterivirus, include equine arteritis virus (EAV), porcine reproductive and respiratory syndrome virus (PRRSV), lactate dehydrogenase-elevating virus (LDV) of mice, and simian hemorrhagic fever virus (SHFV). PRRSV is the newest member of the family (first isolated in North America and Europe in the early 1990s), whereas the other three viruses were recognized earlier (EAV in 1953, LDV in 1960, and SHFV in 1964). Although arterivirus infections are strictly species-specific, the causative agents share many biological and molecular properties, including their virion morphology, replication strategy, unique properties of their structural proteins, and their ability to establish distinctive persistent infections in their natural hosts. The arteriviruses are each antigenically distinct and cause different disease syndromes in their natural hosts. Similarly, the mechanism(s) responsible for the prolonged and/or persistent infections that characterize infections with each arterivirus in their natural hosts are remarkably different. The objective of this review is to compare and contrast the immune response to EAV with that to the other three arteriviruses, and emphasize the potential relevance of apparent similarities and differences in the neutralization characteristics of each virus.
Collapse
Affiliation(s)
- Udeni B R Balasuriya
- Equine Viral Disease Laboratory, Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, CA 95616, USA.
| | | |
Collapse
|
30
|
Balasuriya UBR, Dobbe JC, Heidner HW, Smalley VL, Navarrette A, Snijder EJ, MacLachlan NJ. Characterization of the neutralization determinants of equine arteritis virus using recombinant chimeric viruses and site-specific mutagenesis of an infectious cDNA clone. Virology 2004; 321:235-46. [PMID: 15051384 DOI: 10.1016/j.virol.2003.12.015] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2003] [Revised: 11/11/2003] [Accepted: 12/04/2003] [Indexed: 10/26/2022]
Abstract
We have used an infectious cDNA clone of equine arteritis virus (EAV) and reverse genetics technology to further characterize the neutralization determinants in the GP5 envelope glycoprotein of the virus. We generated a panel of 20 recombinant viruses, including 10 chimeric viruses that each contained the ORF5 (which encodes GP5) of different laboratory, field, and vaccine strains of EAV, a chimeric virus containing the N-terminal ectodomain of GP5 of a European strain of porcine reproductive and respiratory syndrome virus, and 9 mutant viruses with site-specific substitutions in their GP5 proteins. The neutralization phenotype of each recombinant chimeric/mutant strain of EAV was determined with EAV-specific monoclonal antibodies and EAV strain-specific polyclonal equine antisera and compared to that of their parental viruses from which the substituted ORF5 was derived. The data unequivocally confirm that the GP5 ectodomain contains critical determinants of EAV neutralization. Furthermore, individual neutralization sites are conformationally interactive, and the interaction of GP5 with the unglycosylated membrane protein M is likely critical to expression of individual epitopes in neutralizing conformation. Substitution of individual amino acids within the GP5 ectodomain usually resulted in differences in neutralization phenotype of the recombinant viruses, analogous to differences in the neutralization phenotype of field strains of EAV and variants generated during persistent infection of EAV carrier stallions.
Collapse
Affiliation(s)
- Udeni B R Balasuriya
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, CA 95616, USA.
| | | | | | | | | | | | | |
Collapse
|