1
|
Omara D, Natwijuka F, Kapaata A, Kato F, Kato L, Ndekezi C, Nakyanzi A, Ayebale ML, Yue L, Hunter E, Sande OJ, Ochsenbauer C, Kaleebu P, Balinda SN. Subtype AD Recombinant HIV-1 Transmitted/Founder Viruses Are Less Sensitive to Type I Interferons than Subtype D. Viruses 2025; 17:486. [PMID: 40284929 PMCID: PMC12031311 DOI: 10.3390/v17040486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 03/14/2025] [Accepted: 03/17/2025] [Indexed: 04/29/2025] Open
Abstract
Initial interactions between HIV-1 and the immune system at mucosal exposure sites play a critical role in determining whether the virus is eliminated or progresses to establish systemic infection. The virus that successfully crosses the mucosal barrier to establish infection in the new host is referred to as the transmitted/founder (TF) virus. Following mucosal HIV-1 transmission, type 1 interferons (IFN-I) are rapidly induced at sites of initial virus replication. The resistance of TF variants to these antiviral effects of the IFN-I has been studied among HIV-1 subtypes B and C. However, their role in restricting HIV-1 replication among subtypes D and AD recombinant remains unexplored. This study assessed the sensitivity of HIV-1 subtype D and AD recombinant TF viruses to IFN-I by infecting peripheral blood mononuclear cells in vitro with infectious molecular clones of these viruses. Cells were exposed to varying concentrations of interferon-α and interferon-β, and viral replicative capacity was measured using HIV-1 p24 antigen ELISA from culture supernatants. Sensitivity to IFN-I was quantified based on viral replication levels. The results showed that interferon-α was more effective in inhibiting viral replication than interferon-β, regardless of the varying amounts of IFN-I used. However, recombinant AD viruses were found to be more resistant to the antiviral effects of IFN-I compared to subtype D viruses. These findings highlight the differential sensitivity of HIV-1 subtypes AD recombinant and D TF viruses to IFN-I and underscore the potential of IFN-I as a therapeutic strategy to target TF viruses and reduce HIV-1 transmission, particularly in populations where subtype D is prevalent.
Collapse
Affiliation(s)
- Denis Omara
- Department of Immunology and Molecular Biology, School of Biomedical Sciences, College of Health Sciences, Makerere University, Kampala P.O. Box 7062, Uganda; (D.O.); (F.N.); (F.K.); (C.N.); (O.J.S.)
- Medical Research Council, Uganda Virus Research Institute & London School of Hygiene and Tropical Medicine (MRC/UVRI & LSHTM), Uganda Research Unit, Entebbe P.O. Box 49, Uganda; (A.K.); (L.K.); (M.L.A.); (P.K.)
| | - Fortunate Natwijuka
- Department of Immunology and Molecular Biology, School of Biomedical Sciences, College of Health Sciences, Makerere University, Kampala P.O. Box 7062, Uganda; (D.O.); (F.N.); (F.K.); (C.N.); (O.J.S.)
- Medical Research Council, Uganda Virus Research Institute & London School of Hygiene and Tropical Medicine (MRC/UVRI & LSHTM), Uganda Research Unit, Entebbe P.O. Box 49, Uganda; (A.K.); (L.K.); (M.L.A.); (P.K.)
| | - Anne Kapaata
- Medical Research Council, Uganda Virus Research Institute & London School of Hygiene and Tropical Medicine (MRC/UVRI & LSHTM), Uganda Research Unit, Entebbe P.O. Box 49, Uganda; (A.K.); (L.K.); (M.L.A.); (P.K.)
| | - Frank Kato
- Department of Immunology and Molecular Biology, School of Biomedical Sciences, College of Health Sciences, Makerere University, Kampala P.O. Box 7062, Uganda; (D.O.); (F.N.); (F.K.); (C.N.); (O.J.S.)
- Medical Research Council, Uganda Virus Research Institute & London School of Hygiene and Tropical Medicine (MRC/UVRI & LSHTM), Uganda Research Unit, Entebbe P.O. Box 49, Uganda; (A.K.); (L.K.); (M.L.A.); (P.K.)
| | - Laban Kato
- Medical Research Council, Uganda Virus Research Institute & London School of Hygiene and Tropical Medicine (MRC/UVRI & LSHTM), Uganda Research Unit, Entebbe P.O. Box 49, Uganda; (A.K.); (L.K.); (M.L.A.); (P.K.)
| | - Christian Ndekezi
- Department of Immunology and Molecular Biology, School of Biomedical Sciences, College of Health Sciences, Makerere University, Kampala P.O. Box 7062, Uganda; (D.O.); (F.N.); (F.K.); (C.N.); (O.J.S.)
- Medical Research Council, Uganda Virus Research Institute & London School of Hygiene and Tropical Medicine (MRC/UVRI & LSHTM), Uganda Research Unit, Entebbe P.O. Box 49, Uganda; (A.K.); (L.K.); (M.L.A.); (P.K.)
| | - Angella Nakyanzi
- Uganda Virus Research Institute (UVRI), Entebbe P.O. Box 49, Uganda
| | - Mercy L. Ayebale
- Medical Research Council, Uganda Virus Research Institute & London School of Hygiene and Tropical Medicine (MRC/UVRI & LSHTM), Uganda Research Unit, Entebbe P.O. Box 49, Uganda; (A.K.); (L.K.); (M.L.A.); (P.K.)
| | - Ling Yue
- Emory Vaccine Center, Emory National Primate Research Center, Atlanta, GA 30329, USA; (L.Y.); (E.H.)
| | - Eric Hunter
- Emory Vaccine Center, Emory National Primate Research Center, Atlanta, GA 30329, USA; (L.Y.); (E.H.)
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA 30322, USA
| | - Obondo J. Sande
- Department of Immunology and Molecular Biology, School of Biomedical Sciences, College of Health Sciences, Makerere University, Kampala P.O. Box 7062, Uganda; (D.O.); (F.N.); (F.K.); (C.N.); (O.J.S.)
| | - Christina Ochsenbauer
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - Pontiano Kaleebu
- Medical Research Council, Uganda Virus Research Institute & London School of Hygiene and Tropical Medicine (MRC/UVRI & LSHTM), Uganda Research Unit, Entebbe P.O. Box 49, Uganda; (A.K.); (L.K.); (M.L.A.); (P.K.)
- Uganda Virus Research Institute (UVRI), Entebbe P.O. Box 49, Uganda
| | - Sheila N. Balinda
- Medical Research Council, Uganda Virus Research Institute & London School of Hygiene and Tropical Medicine (MRC/UVRI & LSHTM), Uganda Research Unit, Entebbe P.O. Box 49, Uganda; (A.K.); (L.K.); (M.L.A.); (P.K.)
- Uganda Virus Research Institute (UVRI), Entebbe P.O. Box 49, Uganda
| |
Collapse
|
2
|
He S, Song W, Guo G, Li Q, An M, Zhao B, Gao Y, Tian W, Wang L, Shang H, Han X. Multiple CRF01_AE/CRF07_BC Recombinants Enhanced the HIV-1 Epidemic Complexity Among MSM in Shenyang City, Northeast China. Front Microbiol 2022; 13:855049. [PMID: 35633698 PMCID: PMC9133626 DOI: 10.3389/fmicb.2022.855049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 04/11/2022] [Indexed: 11/13/2022] Open
Abstract
The transmission of Unique Recombinant Forms (URFs) has complicated the molecular epidemic of HIV-1. This increasing genetic diversity has implications for prevention surveillance, diagnosis, and vaccine design. In this study, we characterized the HIV-1 URFs from 135 newly diagnosed HIV-1 infected cases between 2016 and 2020 in Shenyang, northeast China and analyzed the evolutionary relationship of them by phylogenetic and recombination approaches. Among 135 URFs, we found that the CRF01_AE/CRF07_BC recombinants were the most common (81.5%, 110/135), followed by CRF01_AE/B (11.9%, 16/135), B/C (3.7%, 5/135), and others (3.0%, 4/135). 94.8% (128/135) of patients infected by URFs were through homosexual contact. Among 110 URFs_0107, 60 (54.5%) formed 11 subclusters (branch support value = 1) and shared the consistent recombination structure, respectively. Four subclusters have caused small-scale spread among different high-risk populations. Although the recombination structures of URFs_0107 are various, the hotspots of recombinants gathered between position 2,508 and 2,627 (relative to the HXB2 position). Moreover, the CRF07_BC and CRF01AE fragments of URFs_0107 were mainly derived from the MSM population. In brief, our results reveal the complex recombinant modes and the high transmission risk of URFs_0107, which calls for more attention on the new URFs_0107 monitoring and strict control in the areas led by homosexual transmission route.
Collapse
Affiliation(s)
- Shan He
- NHC Key Laboratory of AIDS Immunology (China Medical University), National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China
- Chinese Academy of Medical Sciences Research Unit (No. 2019RU017), China Medical University, Shenyang, China
- Key Laboratory of AIDS Immunology of Liaoning Province, Shenyang, China
| | - Wei Song
- Department of Food Safety and Nutrition, Shenyang Center for Health Service and Administrative Law Enforcement (Shenyang Center for Disease Control and Prevention), Shenyang, China
| | - Gang Guo
- Department of Clinical Laboratory, The Sixth People’s Hospital of Shenyang, Shenyang, China
| | - Qiang Li
- Department of Clinical Laboratory, The Sixth People’s Hospital of Shenyang, Shenyang, China
| | - Minghui An
- NHC Key Laboratory of AIDS Immunology (China Medical University), National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China
- Chinese Academy of Medical Sciences Research Unit (No. 2019RU017), China Medical University, Shenyang, China
- Key Laboratory of AIDS Immunology of Liaoning Province, Shenyang, China
| | - Bin Zhao
- NHC Key Laboratory of AIDS Immunology (China Medical University), National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China
- Chinese Academy of Medical Sciences Research Unit (No. 2019RU017), China Medical University, Shenyang, China
- Key Laboratory of AIDS Immunology of Liaoning Province, Shenyang, China
| | - Yang Gao
- NHC Key Laboratory of AIDS Immunology (China Medical University), National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China
- Chinese Academy of Medical Sciences Research Unit (No. 2019RU017), China Medical University, Shenyang, China
- Key Laboratory of AIDS Immunology of Liaoning Province, Shenyang, China
| | - Wen Tian
- NHC Key Laboratory of AIDS Immunology (China Medical University), National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China
- Chinese Academy of Medical Sciences Research Unit (No. 2019RU017), China Medical University, Shenyang, China
- Key Laboratory of AIDS Immunology of Liaoning Province, Shenyang, China
| | - Lin Wang
- NHC Key Laboratory of AIDS Immunology (China Medical University), National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China
- Chinese Academy of Medical Sciences Research Unit (No. 2019RU017), China Medical University, Shenyang, China
- Key Laboratory of AIDS Immunology of Liaoning Province, Shenyang, China
| | - Hong Shang
- NHC Key Laboratory of AIDS Immunology (China Medical University), National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China
- Chinese Academy of Medical Sciences Research Unit (No. 2019RU017), China Medical University, Shenyang, China
- Key Laboratory of AIDS Immunology of Liaoning Province, Shenyang, China
- *Correspondence: Hong Shang,
| | - Xiaoxu Han
- NHC Key Laboratory of AIDS Immunology (China Medical University), National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China
- Chinese Academy of Medical Sciences Research Unit (No. 2019RU017), China Medical University, Shenyang, China
- Key Laboratory of AIDS Immunology of Liaoning Province, Shenyang, China
- Xiaoxu Han,
| |
Collapse
|
3
|
Nazziwa J, Faria NR, Chaplin B, Rawizza H, Kanki P, Dakum P, Abimiku A, Charurat M, Ndembi N, Esbjörnsson J. Characterisation of HIV-1 Molecular Epidemiology in Nigeria: Origin, Diversity, Demography and Geographic Spread. Sci Rep 2020; 10:3468. [PMID: 32103028 PMCID: PMC7044301 DOI: 10.1038/s41598-020-59944-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 02/05/2020] [Indexed: 11/23/2022] Open
Abstract
Nigeria has the highest number of AIDS-related deaths in the world. In this study, we characterised the HIV-1 molecular epidemiology by analysing 1442 HIV-1 pol sequences collected 1999-2014 from four geopolitical zones in Nigeria using state-of-the-art maximum-likelihood and Bayesian phylogenetic analyses. The main circulating forms were the circulating recombinant form (CRF) 02_AG (44% of the analysed sequences), CRF43_02G (16%), and subtype G (8%). Twenty-three percent of the sequences represented unique recombinant forms (URFs), whereof 37 (11%) could be grouped into seven potentially novel CRFs. Bayesian phylodynamic analysis suggested that five major Nigerian HIV-1 sub-epidemics were introduced in the 1960s and 1970s, close to the Nigerian Civil War. The analysis also indicated that the number of effective infections decreased in Nigeria after the introduction of free antiretroviral treatment in 2006. Finally, Bayesian phylogeographic analysis suggested gravity-like dynamics in which virus lineages first emerge and expand within large urban centers such as Abuja and Lagos, before migrating towards smaller rural areas. This study provides novel insight into the Nigerian HIV-1 epidemic and may have implications for future HIV-1 prevention strategies in Nigeria and other severely affected countries.
Collapse
Affiliation(s)
- Jamirah Nazziwa
- Department of Translational Medicine, Lund University, Lund, Sweden
| | | | - Beth Chaplin
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, USA
| | - Holly Rawizza
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, USA
| | - Phyllis Kanki
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, USA
| | - Patrick Dakum
- Institute of Human Virology Nigeria, Abuja, Nigeria
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, USA
| | - Alash'le Abimiku
- Institute of Human Virology Nigeria, Abuja, Nigeria
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, USA
| | - Man Charurat
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, USA
| | - Nicaise Ndembi
- Institute of Human Virology Nigeria, Abuja, Nigeria
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, USA
| | - Joakim Esbjörnsson
- Department of Translational Medicine, Lund University, Lund, Sweden.
- Nuffield Department Medicine, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|
4
|
Cross- and Co-Packaging of Retroviral RNAs and Their Consequences. Viruses 2016; 8:v8100276. [PMID: 27727192 PMCID: PMC5086612 DOI: 10.3390/v8100276] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 10/03/2016] [Accepted: 10/03/2016] [Indexed: 12/23/2022] Open
Abstract
Retroviruses belong to the family Retroviridae and are ribonucleoprotein (RNP) particles that contain a dimeric RNA genome. Retroviral particle assembly is a complex process, and how the virus is able to recognize and specifically capture the genomic RNA (gRNA) among millions of other cellular and spliced retroviral RNAs has been the subject of extensive investigation over the last two decades. The specificity towards RNA packaging requires higher order interactions of the retroviral gRNA with the structural Gag proteins. Moreover, several retroviruses have been shown to have the ability to cross-/co-package gRNA from other retroviruses, despite little sequence homology. This review will compare the determinants of gRNA encapsidation among different retroviruses, followed by an examination of our current understanding of the interaction between diverse viral genomes and heterologous proteins, leading to their cross-/co-packaging. Retroviruses are well-known serious animal and human pathogens, and such a cross-/co-packaging phenomenon could result in the generation of novel viral variants with unknown pathogenic potential. At the same time, however, an enhanced understanding of the molecular mechanisms involved in these specific interactions makes retroviruses an attractive target for anti-viral drugs, vaccines, and vectors for human gene therapy.
Collapse
|
5
|
Delatorre E, de Azevedo SSD, Rodrigues-Pedro A, Velasco-de-Castro CA, Couto-Fernandez JC, Pilotto JH, Morgado MG. Tracing the origin of a singular HIV-1 CRF45_cpx clade identified in Brazil. INFECTION GENETICS AND EVOLUTION 2016; 46:223-232. [PMID: 27259365 DOI: 10.1016/j.meegid.2016.05.040] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2016] [Revised: 05/26/2016] [Accepted: 05/30/2016] [Indexed: 01/10/2023]
Abstract
The HIV-1 epidemiology has changed over the past decade toward a marked increase in the circulation of strains previously restricted to local epidemics. Recent molecular epidemiological surveys identified some HIV-1 strains of probable African origin circulating in Brazil, including the Circulating Recombinant Form (CRF) 45_cpx, a complex A1/K/U recombinant that circulates in Central Africa. Here, we characterize partial genomic sequences and reconstruct the evolutionary history of HIV-1 CRF45_cpx-related recombinant samples identified in independent studies carried out with HIV+ individuals in Brazil. The sequences were obtained by overlapping PCR amplifications followed by direct sequencing. Recombination profiles were determined by phylogenetic and bootscaning analyses. The evolutionary history was estimated by a Bayesian coalescent-based method using datasets representing the gag, pol and env gene fragments. Six of the 10 samples isolated in Rio de Janeiro showed a CRF45_cpx-like pattern throughout the sequenced genome. The remaining were classified as second-generation recombinants, showing the mosaic patterns: CRF45_cpx/B/D/F1/U, CRF45_cpx/B/F1/U, CRF45_cpx/B/U and CRF45_cpx/F1. All Brazilian CRF45_cpx sequences, except one, formed a monophyletic clade (CRF45-BR), which seems to be the result of a single introduction event that has spread to the Rio de Janeiro, São Paulo and Minas Gerais states and is related to sequences from Argentina, Italy and Belgium. The Bayesian analyses pointed out quite consistent onset dates for CRF45-BR clade (~1984: 1976-1996) in the three gene datasets. These results indicate that the CRF45-BR clade has been circulating in the Southeastern Brazilian region for about 30years, although its presence was not detected until recently due to its very low prevalence. This reinforces the relevance of large-scale molecular surveillance data to identify the emergence of new HIV variants and their impact on local epidemics.
Collapse
Affiliation(s)
- Edson Delatorre
- Laboratório de AIDS & Imunologia Molecular, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil.
| | - Suwellen S D de Azevedo
- Laboratório de AIDS & Imunologia Molecular, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil
| | - Adriana Rodrigues-Pedro
- Laboratório de AIDS & Imunologia Molecular, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil
| | - Carlos Augusto Velasco-de-Castro
- Laboratório de Virologia, Departamento de Patologia Clínica, Instituto Nacional de Saúde da Mulher, da Criança e do Adolescente Fernandes Figueira, FIOCRUZ, Rio de Janeiro, Brazil
| | | | - Jose H Pilotto
- Laboratório de AIDS & Imunologia Molecular, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil; Hospital Geral de Nova Iguaçu, Rio de Janeiro, Brazil
| | - Mariza G Morgado
- Laboratório de AIDS & Imunologia Molecular, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil
| |
Collapse
|
6
|
Balasubramanian V, Selvarajan R. Genetic diversity and recombination analysis in the coat protein gene of Banana bract mosaic virus. Virus Genes 2014; 48:509-17. [DOI: 10.1007/s11262-014-1056-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2014] [Accepted: 03/06/2014] [Indexed: 11/29/2022]
|
7
|
Pollom E, Dang KK, Potter EL, Gorelick RJ, Burch CL, Weeks KM, Swanstrom R. Comparison of SIV and HIV-1 genomic RNA structures reveals impact of sequence evolution on conserved and non-conserved structural motifs. PLoS Pathog 2013; 9:e1003294. [PMID: 23593004 PMCID: PMC3616985 DOI: 10.1371/journal.ppat.1003294] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Accepted: 02/22/2013] [Indexed: 11/25/2022] Open
Abstract
RNA secondary structure plays a central role in the replication and metabolism of all RNA viruses, including retroviruses like HIV-1. However, structures with known function represent only a fraction of the secondary structure reported for HIV-1(NL4-3). One tool to assess the importance of RNA structures is to examine their conservation over evolutionary time. To this end, we used SHAPE to model the secondary structure of a second primate lentiviral genome, SIVmac239, which shares only 50% sequence identity at the nucleotide level with HIV-1NL4-3. Only about half of the paired nucleotides are paired in both genomic RNAs and, across the genome, just 71 base pairs form with the same pairing partner in both genomes. On average the RNA secondary structure is thus evolving at a much faster rate than the sequence. Structure at the Gag-Pro-Pol frameshift site is maintained but in a significantly altered form, while the impact of selection for maintaining a protein binding interaction can be seen in the conservation of pairing partners in the small RRE stems where Rev binds. Structures that are conserved between SIVmac239 and HIV-1(NL4-3) also occur at the 5' polyadenylation sequence, in the plus strand primer sites, PPT and cPPT, and in the stem-loop structure that includes the first splice acceptor site. The two genomes are adenosine-rich and cytidine-poor. The structured regions are enriched in guanosines, while unpaired regions are enriched in adenosines, and functionaly important structures have stronger base pairing than nonconserved structures. We conclude that much of the secondary structure is the result of fortuitous pairing in a metastable state that reforms during sequence evolution. However, secondary structure elements with important function are stabilized by higher guanosine content that allows regions of structure to persist as sequence evolution proceeds, and, within the confines of selective pressure, allows structures to evolve.
Collapse
Affiliation(s)
- Elizabeth Pollom
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Kristen K. Dang
- Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - E. Lake Potter
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Robert J. Gorelick
- AIDS and Cancer Virus Program, SAIC-Frederick, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Christina L. Burch
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Kevin M. Weeks
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Ronald Swanstrom
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| |
Collapse
|
8
|
Systematic phylogenetic analysis of influenza A virus reveals many novel mosaic genome segments. INFECTION GENETICS AND EVOLUTION 2013; 18:367-78. [PMID: 23548803 DOI: 10.1016/j.meegid.2013.03.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Revised: 03/04/2013] [Accepted: 03/09/2013] [Indexed: 11/24/2022]
Abstract
Recombination plays an important role in shaping the genetic diversity of a number of DNA and RNA viruses. Although some recent studies have reported bioinformatic evidence of mosaic sequences in a variety of influenza A viruses, it remains controversial as to whether these represent bona fide natural recombination events or laboratory artifacts. Importantly, mosaic genome structures can create significant topological incongruence during phylogenetic analyses, which can mislead additional phylogeny-based molecular evolutionary analyses such as molecular clock dating, the detection of selection pressures and phylogeographic inference. As a result, there is a strong need for systematic screenings for mosaic structures within the influenza virus genome database. We used a combination of sequence-based and phylogeny-based methods to identify 388 mosaic influenza genomic segments, of which 332 are previously unreported and are significantly supported by phylogenetic methods. It is impossible, however, to ascertain whether these represent natural recombinants. To facilitate the future identification of recombinants, reference sets of non-recombinant sequences were selected for use in an automatic screening protocol for detecting mosaic sequences. Tests using real and simulated mosaic sequences indicate that our screening protocol is both sensitive (average >90%) and accurate (average >77%) enough to identify a range of different mosaic patterns. The relatively high prevalence of mosaic influenza virus sequences implies that efficient systematic screens, such as that proposed here, should be performed routinely to detect natural recombinant strains, potential laboratory artifacts, and sequencing contaminants either prior to sequences being deposited in GenBank or before they are used for phylogenetic analyses.
Collapse
|
9
|
Delviks-Frankenberry K, Galli A, Nikolaitchik O, Mens H, Pathak VK, Hu WS. Mechanisms and factors that influence high frequency retroviral recombination. Viruses 2011; 3:1650-1680. [PMID: 21994801 PMCID: PMC3187697 DOI: 10.3390/v3091650] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Revised: 08/18/2011] [Accepted: 08/25/2011] [Indexed: 01/25/2023] Open
Abstract
With constantly changing environmental selection pressures, retroviruses rely upon recombination to reassort polymorphisms in their genomes and increase genetic diversity, which improves the chances for the survival of their population. Recombination occurs during DNA synthesis, whereby reverse transcriptase undergoes template switching events between the two copackaged RNAs, resulting in a viral recombinant with portions of the genetic information from each parental RNA. This review summarizes our current understanding of the factors and mechanisms influencing retroviral recombination, fidelity of the recombination process, and evaluates the subsequent viral diversity and fitness of the progeny recombinant. Specifically, the high mutation rates and high recombination frequencies of HIV-1 will be analyzed for their roles in influencing HIV-1 global diversity, as well as HIV-1 diagnosis, drug treatment, and vaccine development.
Collapse
Affiliation(s)
- Krista Delviks-Frankenberry
- Viral Mutation Section, HIV Drug Resistance Program, National Cancer Institute at Frederick, Frederick, MD 21702, USA; E-Mails: (K.D.-F.); (V.K.P.)
| | - Andrea Galli
- Viral Recombination Section, HIV Drug Resistance Program, National Cancer Institute at Frederick, Frederick, MD 21702, USA; E-Mails: (A.G.); (O.N.)
- Copenhagen Hepatitis C Program, Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre 2650, Denmark
| | - Olga Nikolaitchik
- Viral Recombination Section, HIV Drug Resistance Program, National Cancer Institute at Frederick, Frederick, MD 21702, USA; E-Mails: (A.G.); (O.N.)
| | - Helene Mens
- Department of Epidemic Diseases, Rigshospitalet, København 2100, Denmark; E-Mail:
| | - Vinay K. Pathak
- Viral Mutation Section, HIV Drug Resistance Program, National Cancer Institute at Frederick, Frederick, MD 21702, USA; E-Mails: (K.D.-F.); (V.K.P.)
| | - Wei-Shau Hu
- Viral Recombination Section, HIV Drug Resistance Program, National Cancer Institute at Frederick, Frederick, MD 21702, USA; E-Mails: (A.G.); (O.N.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-301-846-1250; Fax: +1-301-846-6013
| |
Collapse
|
10
|
Circulation of multiple patterns of unique recombinant forms B/CRF02_AG in France: precursor signs of the emergence of an upcoming CRF B/02. AIDS 2011; 25:1371-7. [PMID: 21522007 DOI: 10.1097/qad.0b013e328347c060] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND HIV-1 group M is characterized by substantial genetic diversity, and includes nine subtypes, more than 45 circulating recombinant forms (CRFs), and numerous unique recombinant forms (URFs). In France, the epidemic is characterized by predominance of subtype B strains, increasing prevalence of non-B subtypes (CRF02_AG being the most prevalent) and increasing at-risk behaviour in the MSM population. The high prevalence and co-circulation of B and CRF02_AG strains in this population raise the possibility that recombinant forms might emerge and spread. METHODS Samples from seven patients (five being MSM) were selected on the basis of subtyping discordances in different regions. The pattern of each near full-length genome of the viruses was characterized. The relationships between the newly and previously described B/CRF02_AG URFs were analysed using phylogenetic networks. Single genome amplification was used to search for the parental strains and confirmation of the breakpoints. RESULTS Seven unique recombination patterns were identified, breakpoints being found throughout the genomes, with hotspots in pol and accessory genes. No link was observed with the previous forms, but the CRF02 regions of two new viruses indicated that they are phylogenetically associated, suggesting a common ancestral strain. No evidence of circulating parental strains was found. CONCLUSION This description of seven URFs involving subtype B and CRF02_AG highlights the growing complexity of HIV molecular epidemiology in France. These multiple patterns, found mostly in MSM, and the hypothesis of a better fitness of some recombinant strains, argue for a context that could lead to the genesis of CRFB/02_AG strains in France.
Collapse
|
11
|
Recombination of 5' subgenomic RNA3a with genomic RNA3 of Brome mosaic bromovirus in vitro and in vivo. Virology 2010; 410:129-41. [PMID: 21111438 PMCID: PMC7111948 DOI: 10.1016/j.virol.2010.10.037] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2010] [Revised: 08/28/2010] [Accepted: 10/29/2010] [Indexed: 01/03/2023]
Abstract
RNA-RNA recombination salvages viral RNAs and contributes to their genomic variability. A recombinationally-active subgenomic promoter (sgp) has been mapped in Brome mosaic bromovirus (BMV) RNA3 (Wierzchoslawski et al., 2004. J. Virol.78, 8552-8864) and mRNA-like 5' sgRNA3a was characterized (Wierzchoslawski et al., 2006. J. Virol. 80, 12357-12366). In this paper we describe sgRNA3a-mediated recombination in both in vitro and in vivo experiments. BMV replicase-directed co-copying of (-) RNA3 with wt sgRNA3a generated RNA3 recombinants in vitro, but it failed to when 3'-truncated sgRNA3a was substituted, demonstrating a role for the 3' polyA tail. Barley protoplast co-transfections revealed that (i) wt sgRNA3a recombines at the 3' and the internal sites; (ii) 3'-truncated sgRNA3as recombine more upstream; and (iii) 5'-truncated sgRNA3 recombine at a low rate. In planta co-inoculations confirmed the RNA3-sgRNA3a crossovers. In summary, the non-replicating sgRNA3a recombines with replicating RNA3, most likely via primer extension and/or internal template switching.
Collapse
|
12
|
Galli A, Kearney M, Nikolaitchik OA, Yu S, Chin MPS, Maldarelli F, Coffin JM, Pathak VK, Hu WS. Patterns of Human Immunodeficiency Virus type 1 recombination ex vivo provide evidence for coadaptation of distant sites, resulting in purifying selection for intersubtype recombinants during replication. J Virol 2010; 84:7651-61. [PMID: 20504919 PMCID: PMC2897624 DOI: 10.1128/jvi.00276-10] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2010] [Accepted: 05/20/2010] [Indexed: 11/20/2022] Open
Abstract
High-frequency recombination is a hallmark of HIV-1 replication. Recombination can occur between two members of the same subtype or between viruses from two different subtypes, generating intra- or intersubtype recombinants, respectively. Many intersubtype recombinants have been shown to circulate in human populations. We hypothesize that sequence diversity affects the emergence of viable recombinants by decreasing recombination events and reducing the ability of the recombinants to replicate. To test our hypothesis, we compared recombination between two viruses containing subtype B pol genes (B/B) and between viruses with pol genes from subtype B or F (B/F). Recombination events generated during a single cycle of infection without selection pressure on pol gene function were analyzed by single-genome sequencing. We found that recombination occurred slightly ( approximately 30%) less frequently in B/F than in B/B viruses, and the overall distribution of crossover junctions in pol was similar for the two classes of recombinants. We then examined the emergence of recombinants in a multiple cycle assay, so that functional pol gene products were selected. We found that the emerging B/B recombinants had complex patterns, and the crossover junctions were distributed throughout the pol gene. In contrast, selected B/F recombinants had limited recombination patterns and restricted crossover junction distribution. These results provide evidence for the evolved coadapted sites in variants from different subtypes; these sites may be segregated by recombination events, causing the newly generated intersubtype recombinants to undergo purifying selection. Therefore, the ability of the recombinants to replicate is the major barrier for many of these viruses.
Collapse
Affiliation(s)
- Andrea Galli
- HIV Drug Resistance Program, National Cancer Institute—Frederick, Frederick, Maryland 21702, Department of Molecular Biology and Microbiology, Tufts University, Boston, Massachusetts 02111
| | - Mary Kearney
- HIV Drug Resistance Program, National Cancer Institute—Frederick, Frederick, Maryland 21702, Department of Molecular Biology and Microbiology, Tufts University, Boston, Massachusetts 02111
| | - Olga A. Nikolaitchik
- HIV Drug Resistance Program, National Cancer Institute—Frederick, Frederick, Maryland 21702, Department of Molecular Biology and Microbiology, Tufts University, Boston, Massachusetts 02111
| | - Sloane Yu
- HIV Drug Resistance Program, National Cancer Institute—Frederick, Frederick, Maryland 21702, Department of Molecular Biology and Microbiology, Tufts University, Boston, Massachusetts 02111
| | - Mario P. S. Chin
- HIV Drug Resistance Program, National Cancer Institute—Frederick, Frederick, Maryland 21702, Department of Molecular Biology and Microbiology, Tufts University, Boston, Massachusetts 02111
| | - Frank Maldarelli
- HIV Drug Resistance Program, National Cancer Institute—Frederick, Frederick, Maryland 21702, Department of Molecular Biology and Microbiology, Tufts University, Boston, Massachusetts 02111
| | - John M. Coffin
- HIV Drug Resistance Program, National Cancer Institute—Frederick, Frederick, Maryland 21702, Department of Molecular Biology and Microbiology, Tufts University, Boston, Massachusetts 02111
| | - Vinay K. Pathak
- HIV Drug Resistance Program, National Cancer Institute—Frederick, Frederick, Maryland 21702, Department of Molecular Biology and Microbiology, Tufts University, Boston, Massachusetts 02111
| | - Wei-Shau Hu
- HIV Drug Resistance Program, National Cancer Institute—Frederick, Frederick, Maryland 21702, Department of Molecular Biology and Microbiology, Tufts University, Boston, Massachusetts 02111
| |
Collapse
|
13
|
Sanabani SS, Pastena ERDS, Neto WK, Martinez VP, Sabino EC. Characterization and frequency of a newly identified HIV-1 BF1 intersubtype circulating recombinant form in São Paulo, Brazil. Virol J 2010; 7:74. [PMID: 20398371 PMCID: PMC2859377 DOI: 10.1186/1743-422x-7-74] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2010] [Accepted: 04/16/2010] [Indexed: 01/26/2023] Open
Abstract
Background HIV circulating recombinant forms (CRFs) play an important role in the global and regional HIV epidemics, particularly in regions where multiple subtypes are circulating. To date, several (>40) CRFs are recognized worldwide with five currently circulating in Brazil. Here, we report the characterization of near full-length genome sequences (NFLG) of six phylogenetically related HIV-1 BF1 intersubtype recombinants (five from this study and one from other published sequences) representing CRF46_BF1. Methods Initially, we selected 36 samples from 888 adult patients residing in São Paulo who had previously been diagnosed as being infected with subclade F1 based on pol subgenomic fragment sequencing. Proviral DNA integrated in peripheral blood mononuclear cells (PBMC) was amplified from the purified genomic DNA of all 36-blood samples by five overlapping PCR fragments followed by direct sequencing. Sequence data were obtained from the five fragments that showed identical genomic structure and phylogenetic trees were constructed and compared with previously published sequences. Genuine subclade F1 sequences and any other sequences that exhibited unique mosaic structures were omitted from further analysis Results Of the 36 samples analyzed, only six sequences, inferred from the pol region as subclade F1, displayed BF1 identical mosaic genomes with a single intersubtype breakpoint identified at the nef-U3 overlap (HXB2 position 9347-9365; LTR region). Five of these isolates formed a rigid cluster in phylogentic trees from different subclade F1 fragment regions, which we can now designate as CRF46_BF1. According to our estimate, the new CRF accounts for 0.56% of the HIV-1 circulating strains in São Paulo. Comparison with previously published sequences revealed an additional five isolates that share an identical mosaic structure with those reported in our study. Despite sharing a similar recombinant structure, only one sequence appeared to originate from the same CRF46_BF1 ancestor. Conclusion We identified a new circulating recombinant form with a single intersubtype breakpoint identified at the nef-LTR U3 overlap and designated CRF46_BF1. Given the biological importance of the LTR U3 region, intersubtype recombination in this region could play an important role in HIV evolution with critical consequences for the development of efficient genetic vaccines.
Collapse
|
14
|
Niama FR, Vidal N, Bazepeo SE, Mpoudi E, Toure-Kane C, Parra HJ, Delaporte E, Peeters M. CRF45_AKU, a circulating recombinant from Central Africa, is probably the common ancestor of HIV type 1 MAL and HIV type 1 NOGIL. AIDS Res Hum Retroviruses 2009; 25:1345-53. [PMID: 20001521 DOI: 10.1089/aid.2009.0169] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Abstract In this study, we characterized four HIV-1 strains from Cameroon, Gabon, and the Democratic Republic of Congo (DRC), collected during independent serosurveys, and previously found to cluster in the pol gene with HIV-1 MAL and HIV-1 NOGIL3, two complex recombinant viruses reported in the early HIV epidemic, and with the recombinant strain 04FR.AUK recently described in France. The four newly sequenced viruses shared the same structure as 04FR.AUK, involving alternating fragments of subtype A, K, and unclassified (U) fragments, representing a new CRF called CRF45_AKU. Some of the unclassified fragments were related to unclassified regions described in either CRF04 or CRF09 strains. Careful reanalysis of HIV-1 MAL and HIV-1 NOGIL3 demonstrated that these strains were related exclusively to CRF45_AKU and either two subtype D fragments for HIV-1 MAL or one subtype H segment for HIV-1 NOGIL3. Following extensive blast searches, related gag, pol, and env sequences were observed in Central and West Africa (Senegal, Mali), as well as in Europe (France, Spain, Italy, Cyprus), Argentina, and China.
Collapse
Affiliation(s)
- Fabien R. Niama
- UMR145, Institut de Recherche pour le Developpement (IRD) and University of Montpellier I (UMI), Montpellier, France
| | - Nicole Vidal
- UMR145, Institut de Recherche pour le Developpement (IRD) and University of Montpellier I (UMI), Montpellier, France
| | | | - Eitel Mpoudi
- Projet PRESICA, Hôpital Militaire, Yaoundé, Cameroun
| | | | - Henri J. Parra
- Laboratoire National de Santé Publique, Brazzaville, Congo
| | - Eric Delaporte
- UMR145, Institut de Recherche pour le Developpement (IRD) and University of Montpellier I (UMI), Montpellier, France
- Infectious Diseases Department, CHU, Montpellier, France
| | - Martine Peeters
- UMR145, Institut de Recherche pour le Developpement (IRD) and University of Montpellier I (UMI), Montpellier, France
| |
Collapse
|
15
|
Genetic and functional characterization of human immunodeficiency virus type 1 VprC variants from north India: presence of unique recombinants with mosaic genomes from B, C and D subtypes within the open reading frame of Vpr. J Gen Virol 2009; 90:2768-2776. [DOI: 10.1099/vir.0.011080-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The human immunodeficiency virus type 1 (HIV-1) epidemic in India is predominantly caused by genetic subtype C, though other minor subtypes have also been reported. One of the major accessory proteins of HIV-1, namely Vpr, is known to influence key steps in viral replication, cell cycle progression, promoter activation, apoptosis and pathogenesis. Therefore, we carried out a genetic and functional analysis of the Vpr variants from eight HIV-1-infected individuals from north India. The sequence analyses revealed that six of eight samples clustered with ancestral subtype C. Remarkably, five of these showed a conserved and region-specific L64P mutation, located in the predicted third α-helix. This change adversely affected their ability to activate the HIV-1 long terminal repeat promoter without compromising their ability to cause apoptosis. Bootscan, phylogenetic and SimPlot analysis of the remaining two samples (VprS2 and A6) revealed very interesting mosaic genomes derived from B, C and D subtypes. The N-terminal half of the VprS2 gene consisted of genomic segments derived from subtypes B/D, C and D but the C-terminal half was derived predominantly from subtype C. Interestingly the N-terminal half of sample A6 also showed similar B/D, C and D inter-subtype recombinant structure but the C-terminal half was entirely derived from the consensus B subtype. Multiple breakpoints in a short stretch of 291 nt encoding the Vpr gene strongly suggest that this region is a potential hot-spot for the formation of inter-subtype recombinants and also highlight the importance of the rapidly evolving HIV-1 epidemic in the north Indian region due to multiple genetic subtypes.
Collapse
|