1
|
Zhang K, Cagatay T, Xie D, Angelos AE, Cornelius S, Aksenova V, Aslam S, He Z, Esparza M, Vazhavilla A, Dasso M, García-Sastre A, Ren Y, Fontoura BMA. Cellular NS1-BP protein interacts with the mRNA export receptor NXF1 to mediate nuclear export of influenza virus M mRNAs. J Biol Chem 2024; 300:107871. [PMID: 39384042 PMCID: PMC11570952 DOI: 10.1016/j.jbc.2024.107871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 09/24/2024] [Accepted: 10/03/2024] [Indexed: 10/11/2024] Open
Abstract
Influenza A viruses have eight genomic RNAs that are transcribed in the host cell nucleus. Two of the viral mRNAs undergo alternative splicing. The M1 mRNA encodes the matrix protein 1 (M1) and is also spliced into M2 mRNA, which encodes the proton channel matrix protein 2 (M2). Our previous studies have shown that the cellular Non-Structural protein 1 (NS1)-binding protein (NS1-BP) interacts with the viral NS1 and M1 mRNA to promote M1 to M2 splicing. Another pool of NS1 protein binds the mRNA export receptor nuclear RNA export factor-1 (NXF1), leading to nuclear retention of cellular mRNAs. Here, we show a series of biochemical and cell biological findings that suggest a model for nuclear export of M1 and M2 mRNAs despite the mRNA nuclear export inhibition imposed by the viral NS1 protein. NS1-BP competes with NS1 for NXF1 binding, allowing the recruitment of NXF1 to the M mRNAs after splicing. NXF1 then binds germinal center-associated nuclear protein, a member of the transcription and export complex-2. Although both NS1 and NS1-BP remain in complex with germinal center-associated nuclear protein-NXF1, they dissociate once this complex docks at the nuclear pore complex, and the M mRNAs are translocated to the cytoplasm. Since this mRNA nuclear export pathway is key for expression of M1 and M2 proteins that function in viral intracellular trafficking and budding, these viral-host interactions are critical for influenza virus replication.
Collapse
Affiliation(s)
- Ke Zhang
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas, USA; Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, China
| | - Tolga Cagatay
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Dongqi Xie
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Alexia E Angelos
- Department of Biochemistry, Center for Structural Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Serena Cornelius
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Vasilisa Aksenova
- Division of Molecular and Cellular Biology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | - Sadaf Aslam
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Zhiyu He
- Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, China
| | - Matthew Esparza
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Ashley Vazhavilla
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Mary Dasso
- Division of Molecular and Cellular Biology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA; Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA; Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA; The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA; The Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Yi Ren
- Department of Biochemistry, Center for Structural Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Beatriz M A Fontoura
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas, USA.
| |
Collapse
|
2
|
Li R, Gao S, Chen H, Zhang X, Yang X, Zhao J, Wang Z. Virus usurps alternative splicing to clear the decks for infection. Virol J 2023; 20:131. [PMID: 37340420 DOI: 10.1186/s12985-023-02098-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 06/12/2023] [Indexed: 06/22/2023] Open
Abstract
Since invasion, there will be a tug-of-war between host and virus to scramble cellular resources, for either restraining or facilitating infection. Alternative splicing (AS) is a conserved and critical mechanism of processing pre-mRNA into mRNAs to increase protein diversity in eukaryotes. Notably, this kind of post-transcriptional regulatory mechanism has gained appreciation since it is widely involved in virus infection. Here, we highlight the important roles of AS in regulating viral protein expression and how virus in turn hijacks AS to antagonize host immune response. This review will widen the understandings of host-virus interactions, be meaningful to innovatively elucidate viral pathogenesis, and provide novel targets for developing antiviral drugs in the future.
Collapse
Affiliation(s)
- Ruixue Li
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, People's Republic of China
| | - Shenyan Gao
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, People's Republic of China
| | - Huayuan Chen
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, People's Republic of China
| | - Xiaozhan Zhang
- College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou, People's Republic of China
| | - Xia Yang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, People's Republic of China
| | - Jun Zhao
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, People's Republic of China
| | - Zeng Wang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, People's Republic of China.
| |
Collapse
|
3
|
Han YJ, Lee KM, Wu GH, Gong YN, Dutta A, Shih SR. Targeting influenza A virus by splicing inhibitor herboxidiene reveals the importance of subtype-specific signatures around splice sites. J Biomed Sci 2023; 30:10. [PMID: 36737756 PMCID: PMC9895974 DOI: 10.1186/s12929-023-00897-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 01/05/2023] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND The association between M segment splicing and pathogenicity remains ambiguous in human influenza A viruses. In this study, we aimed to investigate M splicing in various human influenza A viruses and characterize its physiological roles by applying the splicing inhibitor, herboxidiene. METHODS We examined the M splicing of human H1N1 and H3N2 viruses by comparing three H1N1 and H3N2 strains, respectively, through reverse transcriptase-polymerase chain reaction (RT-PCR) analyses. We randomly selected M sequences of human H1N1, H2N2, and H3N2 viruses isolated from 1933 to 2020 and examined their phylogenetic relationships. Next, we determined the effects of single nucleotide variations on M splicing by generating mutant viruses harboring the 55C/T variant through reverse genetics. To confirm the importance of M2 splicing in the replication of H1N1 and H3N2, we treated infected cells with splicing inhibitor herboxidiene and analyzed the viral growth using plaque assay. To explore the physiological role of the various levels of M2 protein in pathogenicity, we challenged C57BL/6 mice with the H1N1 WSN wild-type strain, mutant H1N1 (55T), and chimeric viruses including H1N1 + H3wt and H1N1 + H3mut. One-tailed paired t-test was used for virus titer calculation and multiple comparisons between groups were performed using two-way analysis of variance. RESULTS M sequence splice site analysis revealed an evolutionarily conserved single nucleotide variant C55T in H3N2, which impaired M2 expression and was accompanied by collinear M1 and mRNA3 production. Aberrant M2 splicing resulted from splice-site selection rather than a general defect in the splicing process. The C55T substitution significantly reduced both M2 mRNA and protein levels regardless of the virus subtype. Consequently, herboxidiene treatment dramatically decreased both the H1N1 and H3N2 virus titers. However, a lower M2 expression only attenuated H1N1 virus replication and in vivo pathogenicity. This attenuated phenotype was restored by M replacement of H3N2 M in a chimeric H1N1 virus, despite low M2 levels. CONCLUSIONS The discrepancy in M2-dependence emphasizes the importance of M2 in human influenza A virus pathogenicity, which leads to subtype-specific evolution. Our findings provide insights into virus adaptation processes in humans and highlights splicing regulation as a potential antiviral target.
Collapse
Affiliation(s)
- Yi-Ju Han
- grid.145695.a0000 0004 1798 0922Graduate Institute of Biomedical Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan ,grid.145695.a0000 0004 1798 0922Research Center of Emerging Virus Infection, Division of Biotechnology, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Kuo-Ming Lee
- grid.145695.a0000 0004 1798 0922Research Center of Emerging Virus Infection, Division of Biotechnology, College of Medicine, Chang Gung University, Taoyuan, Taiwan ,grid.145695.a0000 0004 1798 0922International Master Degree Program for Molecular Medicine in Emerging Viral Infections, College of Medicine, Chang Gung University, Taoyuan, Taiwan ,grid.454211.70000 0004 1756 999XDivision of Infectious Diseases, Department of Pediatrics, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Guan-Hong Wu
- grid.145695.a0000 0004 1798 0922Graduate Institute of Biomedical Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan ,grid.145695.a0000 0004 1798 0922Research Center of Emerging Virus Infection, Division of Biotechnology, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yu-Nong Gong
- grid.145695.a0000 0004 1798 0922Research Center of Emerging Virus Infection, Division of Biotechnology, College of Medicine, Chang Gung University, Taoyuan, Taiwan ,grid.454211.70000 0004 1756 999XDivision of Infectious Diseases, Department of Pediatrics, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan ,grid.454211.70000 0004 1756 999XDepartment of Laboratory Science, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Avijit Dutta
- grid.454211.70000 0004 1756 999XDivision of Infectious Diseases, Department of Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Shin-Ru Shih
- Research Center of Emerging Virus Infection, Division of Biotechnology, College of Medicine, Chang Gung University, Taoyuan, Taiwan. .,Department of Laboratory Science, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan. .,Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan. .,Research Center for Chinese Herbal Medicine, Chang Gung University of Science and Technology, Taoyuan, Taiwan. .,Research Center for Food and Cosmetic Safety, Chang Gung University of Science and Technology, Taoyuan, Taiwan. .,Graduate Institute of Health Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan.
| |
Collapse
|
4
|
A Glu-Glu-Tyr Sequence in the Cytoplasmic Tail of the M2 Protein Renders Influenza A Virus Susceptible to Restriction of the Hemagglutinin-M2 Association in Primary Human Macrophages. J Virol 2022; 96:e0071622. [PMID: 36098511 PMCID: PMC9517718 DOI: 10.1128/jvi.00716-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Influenza A virus (IAV) assembly at the plasma membrane is orchestrated by at least five viral components, including hemagglutinin (HA), neuraminidase (NA), matrix (M1), the ion channel M2, and viral ribonucleoprotein (vRNP) complexes, although particle formation is observed with expression of only HA and/or NA. While these five viral components are expressed efficiently in primary human monocyte-derived macrophages (MDMs) upon IAV infection, this cell type does not support efficient HA-M2 association and IAV particle assembly at the plasma membrane. Both defects are specific to MDMs and can be reversed upon disruption of F-actin. However, the relationship between the two defects is unclear. Here, we examined whether M2 contributes to particle assembly in MDMs and if so, which region of M2 determines the susceptibility to the MDM-specific and actin-dependent suppression. An analysis using correlative fluorescence and scanning electron microscopy showed that an M2-deficient virus failed to form budding structures at the cell surface even after F-actin was disrupted, indicating that M2 is essential for virus particle formation at the MDM surface. Notably, proximity ligation analysis revealed that a single amino acid substitution in a Glu-Glu-Tyr sequence (residues 74 to 76) in the M2 cytoplasmic tail allowed the HA-M2 association to occur efficiently even in MDMs with intact actin cytoskeleton. This phenotype did not correlate with known phenotypes of the M2 substitution mutants regarding M1 interaction or vRNP packaging in epithelial cells. Overall, our study identified M2 as a target of MDM-specific restriction of IAV assembly, which requires the Glu-Glu-Tyr sequence in the cytoplasmic tail. IMPORTANCE Human MDMs represent a cell type that is nonpermissive to particle formation of influenza A virus (IAV). We previously showed that close proximity association between viral HA and M2 proteins is blocked in MDMs. However, whether MDMs express a restriction factor against IAV assembly or whether they lack a dependency factor promoting assembly remained unknown. In the current study, we determined that the M2 protein is necessary for particle formation in MDMs but is also a molecular target of the MDM-specific suppression of assembly. Substitutions in the M2 cytoplasmic tail alleviated the block in both the HA-M2 association and particle production in MDMs. These findings suggest that MDMs express dependency factors necessary for assembly but also express a factor(s) that inhibits HA-M2 association and particle formation. High conservation of the M2 sequence rendering the susceptibility to the assembly block highlights the potential for M2 as a target of antiviral strategies.
Collapse
|
5
|
Abstract
Influenza A virus has long been known to encode 10 major polypeptides, produced, almost without exception, by every natural isolate of the virus. These polypeptides are expressed in readily detectable amounts during infection and are either fully essential or their loss severely attenuates virus replication. More recent work has shown that this core proteome is elaborated by expression of a suite of accessory gene products that tend to be expressed at lower levels through noncanonical transcriptional and/or translational events. Expression and activity of these accessory proteins varies between virus strains and is nonessential (sometimes inconsequential) for virus replication in cell culture, but in many cases has been shown to affect virulence and/or transmission in vivo. This review describes, when known, the expression mechanisms and functions of this influenza A virus accessory proteome and discusses its significance and evolution.
Collapse
Affiliation(s)
- Rute M Pinto
- The Roslin Institute, University of Edinburgh, Midlothian EH25 9RG, United Kingdom
| | - Samantha Lycett
- The Roslin Institute, University of Edinburgh, Midlothian EH25 9RG, United Kingdom
| | - Eleanor Gaunt
- The Roslin Institute, University of Edinburgh, Midlothian EH25 9RG, United Kingdom
| | - Paul Digard
- The Roslin Institute, University of Edinburgh, Midlothian EH25 9RG, United Kingdom
| |
Collapse
|
6
|
Froggatt HM, Burke KN, Chaparian RR, Miranda HA, Zhu X, Chambers BS, Heaton NS. Influenza A virus segments five and six can harbor artificial introns allowing expanded coding capacity. PLoS Pathog 2021; 17:e1009951. [PMID: 34570829 PMCID: PMC8496794 DOI: 10.1371/journal.ppat.1009951] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 10/07/2021] [Accepted: 09/08/2021] [Indexed: 12/30/2022] Open
Abstract
Influenza A viruses encode their genomes across eight, negative sense RNA segments. The six largest segments produce mRNA transcripts that do not generally splice; however, the two smallest segments are actively spliced to produce the essential viral proteins NEP and M2. Thus, viral utilization of RNA splicing effectively expands the viral coding capacity without increasing the number of genomic segments. As a first step towards understanding why splicing is not more broadly utilized across genomic segments, we designed and inserted an artificial intron into the normally nonsplicing NA segment. This insertion was tolerated and, although viral mRNAs were incompletely spliced, we observed only minor effects on viral fitness. To take advantage of the unspliced viral RNAs, we encoded a reporter luciferase gene in frame with the viral ORF such that when the intron was not removed the reporter protein would be produced. This approach, which we also show can be applied to the NP encoding segment and in different viral genetic backgrounds, led to high levels of reporter protein expression with minimal effects on the kinetics of viral replication or the ability to cause disease in experimentally infected animals. These data together show that the influenza viral genome is more tolerant of splicing than previously appreciated and this knowledge can be leveraged to develop viral genetic platforms with utility for biotechnology applications. Unlike most host mRNAs, some viral mRNAs encode multiple discrete, functional proteins. One method influenza A viruses use to increase the protein products from two of their eight RNA genome segments is splicing. Splicing requires host machinery to remove part of the viral mRNA, the intron, to generate a different mRNA product. Although only certain influenza viral segments naturally splice, we were interested in whether additional segments could splice to produce multiple proteins. We inserted artificial introns harboring reporter genes into otherwise nonsplicing genomic segments of an H1N1 influenza A virus and found that this modification was well tolerated by the virus. We further demonstrated that an unrelated H3N2 influenza A virus could similarly support splicing and express a reporter protein from an artificial intron. These findings have implications for our understanding of how viruses expand their coding capacity with a limited genome. Additionally, encoding reporter proteins in spliced intronic sequences also represents a new method of generating reporter viruses requiring limited manipulation of the viral RNA.
Collapse
Affiliation(s)
- Heather M. Froggatt
- Department of Molecular Genetics and Microbiology Duke University School of Medicine Durham, North Carolina, United States of America
| | - Kaitlyn N. Burke
- Department of Molecular Genetics and Microbiology Duke University School of Medicine Durham, North Carolina, United States of America
| | - Ryan R. Chaparian
- Department of Molecular Genetics and Microbiology Duke University School of Medicine Durham, North Carolina, United States of America
| | - Hector A. Miranda
- Department of Molecular Genetics and Microbiology Duke University School of Medicine Durham, North Carolina, United States of America
| | - Xinyu Zhu
- Department of Molecular Genetics and Microbiology Duke University School of Medicine Durham, North Carolina, United States of America
| | - Benjamin S. Chambers
- Department of Molecular Genetics and Microbiology Duke University School of Medicine Durham, North Carolina, United States of America
| | - Nicholas S. Heaton
- Department of Molecular Genetics and Microbiology Duke University School of Medicine Durham, North Carolina, United States of America
- Duke Human Vaccine Institute Duke University School of Medicine Durham, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
7
|
Lamb RA. The Structure, Function, and Pathobiology of the Influenza A and B Virus Ion Channels. Cold Spring Harb Perspect Med 2020; 10:cshperspect.a038505. [PMID: 31988204 DOI: 10.1101/cshperspect.a038505] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Influenza A virus AM2 protein is an integral membrane protein that is an ion channel (also known as a viroporin). The channel has 24 extracellular residues, 19 residues that span the membrane once and acts as both the channel pore and also the membrane anchoring domain, and a 54-residue cytoplasmic tail. The M2 protein has four identical chains linked via two disulfide bonds that form a four-helix bundle that is 107-108 more permeable to protons than Na+ ions. The M2 channel is activated by low pH, His residue 37 is the pH sensor, and Trp residue 41 is the channel gate. The channel is blocked by the antiviral drug amantadine hydrochloride. The influenza B virus BM2 protein does not have homology with the AM2 channel, but BM2 does have the His proton sensor, Trp gate, and is activated by low pH. It is thought that the AM2 and BM2 proteins have common functions in the influenza A and B virus life cycles. Both BM2 and AM2 also facilitate virus budding. The amphipathic helix in the AM2 cytoplasmic tail has an important role in the assembly of the virus, and functional AM2 protein makes the virus independent of the "endosomal sorting complex required for transport" (ESCRT) complex scission.
Collapse
Affiliation(s)
- Robert A Lamb
- Department of Molecular Biosciences, Howard Hughes Medical Institute, Northwestern University, Evanston, Illinois 60208-3500, USA
| |
Collapse
|
8
|
Artarini A, Meyer M, Shin YJ, Huber K, Hilz N, Bracher F, Eros D, Orfi L, Keri G, Goedert S, Neuenschwander M, von Kries J, Domovich-Eisenberg Y, Dekel N, Szabadkai I, Lebendiker M, Horváth Z, Danieli T, Livnah O, Moncorgé O, Frise R, Barclay W, Meyer TF, Karlas A. Regulation of influenza A virus mRNA splicing by CLK1. Antiviral Res 2019; 168:187-196. [PMID: 31176694 DOI: 10.1016/j.antiviral.2019.06.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 06/04/2019] [Accepted: 06/06/2019] [Indexed: 10/26/2022]
Abstract
Influenza A virus carries eight negative single-stranded RNAs and uses spliced mRNAs to increase the number of proteins produced from them. Several genome-wide screens for essential host factors for influenza A virus replication revealed a necessity for splicing and splicing-related factors, including Cdc-like kinase 1 (CLK1). This CLK family kinase plays a role in alternative splicing regulation through phosphorylation of serine-arginine rich (SR) proteins. To examine the influence that modulation of splicing regulation has on influenza infection, we analyzed the effect of CLK1 knockdown and inhibition. CLK1 knockdown in A549 cells reduced influenza A/WSN/33 virus replication and increased the level of splicing of segment 7, which encodes the viral M1 and M2 proteins. CLK1-/- mice infected with influenza A/England/195/2009 (H1N1pdm09) virus supported lower levels of virus replication than wild-type mice. Screening of newly developed CLK inhibitors revealed several compounds that have an effect on the level of splicing of influenza A gene segment M in different models and decrease influenza A/WSN/33 virus replication in A549 cells. The promising inhibitor KH-CB19, an indole-based enaminonitrile with unique binding mode for CLK1, and its even more selective analogue NIH39 showed high specificity towards CLK1 and had a similar effect on influenza mRNA splicing regulation. Taken together, our findings indicate that targeting host factors that regulate splicing of influenza mRNAs may represent a novel therapeutic approach.
Collapse
Affiliation(s)
- Anita Artarini
- Max Planck Institute for Infection Biology, Department of Molecular Biology, Charitéplatz 1, 10117, Berlin, Germany
| | - Michael Meyer
- Steinbeis Innovation, Center for Systems Biomedicine, 14612, Falkensee, Germany
| | - Yu Jin Shin
- Max Planck Institute for Infection Biology, Department of Molecular Biology, Charitéplatz 1, 10117, Berlin, Germany
| | - Kilian Huber
- Department of Pharmacy, Center for Drug Research, Ludwig-Maximilians-University, Butenandtstrasse 5-13, 81377, Munich, Germany
| | - Nikolaus Hilz
- Department of Pharmacy, Center for Drug Research, Ludwig-Maximilians-University, Butenandtstrasse 5-13, 81377, Munich, Germany
| | - Franz Bracher
- Department of Pharmacy, Center for Drug Research, Ludwig-Maximilians-University, Butenandtstrasse 5-13, 81377, Munich, Germany
| | - Daniel Eros
- Vichem Chemie Research Ltd., Herman Ottó 15, H-1022, Budapest, Hungary
| | - Laszlo Orfi
- Vichem Chemie Research Ltd., Herman Ottó 15, H-1022, Budapest, Hungary; Department of Pharmaceutical Chemistry, Semmelweis University, Budapest, 1092, Hungary
| | - Gyorgy Keri
- Vichem Chemie Research Ltd., Herman Ottó 15, H-1022, Budapest, Hungary
| | - Sigrid Goedert
- Max Planck Institute for Infection Biology, Department of Molecular Biology, Charitéplatz 1, 10117, Berlin, Germany
| | - Martin Neuenschwander
- Leibniz Institute for Molecular Pharmacology, Robert-Roessle Str. 10, D-13125, Berlin, Germany
| | - Jens von Kries
- Leibniz Institute for Molecular Pharmacology, Robert-Roessle Str. 10, D-13125, Berlin, Germany
| | - Yael Domovich-Eisenberg
- The Wolfson Centre for Applied Structural Biology, The Hebrew University of Jerusalem, Edmond J. Safra Campus at Givat Ram, 91904, Jerusalem, Israel
| | - Noa Dekel
- The Wolfson Centre for Applied Structural Biology, The Hebrew University of Jerusalem, Edmond J. Safra Campus at Givat Ram, 91904, Jerusalem, Israel
| | - István Szabadkai
- Vichem Chemie Research Ltd., Herman Ottó 15, H-1022, Budapest, Hungary
| | - Mario Lebendiker
- The Wolfson Centre for Applied Structural Biology, The Hebrew University of Jerusalem, Edmond J. Safra Campus at Givat Ram, 91904, Jerusalem, Israel
| | - Zoltán Horváth
- Vichem Chemie Research Ltd., Herman Ottó 15, H-1022, Budapest, Hungary
| | - Tsafi Danieli
- The Wolfson Centre for Applied Structural Biology, The Hebrew University of Jerusalem, Edmond J. Safra Campus at Givat Ram, 91904, Jerusalem, Israel
| | - Oded Livnah
- The Wolfson Centre for Applied Structural Biology, The Hebrew University of Jerusalem, Edmond J. Safra Campus at Givat Ram, 91904, Jerusalem, Israel
| | - Olivier Moncorgé
- Imperial College London, Section of Virology, Faculty of Medicine, St. Mary's Campus, Norfolk Place, London, W2 1PG, UK
| | - Rebecca Frise
- Imperial College London, Section of Virology, Faculty of Medicine, St. Mary's Campus, Norfolk Place, London, W2 1PG, UK
| | - Wendy Barclay
- Imperial College London, Section of Virology, Faculty of Medicine, St. Mary's Campus, Norfolk Place, London, W2 1PG, UK
| | - Thomas F Meyer
- Max Planck Institute for Infection Biology, Department of Molecular Biology, Charitéplatz 1, 10117, Berlin, Germany.
| | - Alexander Karlas
- Max Planck Institute for Infection Biology, Department of Molecular Biology, Charitéplatz 1, 10117, Berlin, Germany.
| |
Collapse
|
9
|
Thompson MG, Lynch KW. Functional and Mechanistic Interplay of Host and Viral Alternative Splicing Regulation during Influenza Infection. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2019; 84:123-131. [PMID: 32703803 DOI: 10.1101/sqb.2019.84.039040] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Alternative splicing is a pervasive gene regulatory mechanism utilized by both mammalian cells and viruses to expand their genomic coding capacity. The process of splicing and the RNA sequences that guide this process are the same in mammalian and viral transcripts; however, viruses lack the splicing machinery and therefore must usurp both the host spliceosome and many of the associated regulatory proteins in order to correctly process their genes. Here, we use the example of the influenza A virus to both describe how viruses utilize host splicing factors to regulate their own splicing and provide examples of how viral infection can, in turn, alter host splicing. Importantly, we show that at least some of the viral-induced changes in host splicing occur in genes that alter the efficiency of influenza replication. We emphasize the importance of increased understanding of the mechanistic interplay between host and viral splicing, and its functional consequences, in uncovering potential antiviral vulnerabilities.
Collapse
Affiliation(s)
- Matthew G Thompson
- Department of Biochemistry and Biophysics Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Kristen W Lynch
- Department of Biochemistry and Biophysics Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
10
|
Influenza A Virus M2 Protein: Roles from Ingress to Egress. Int J Mol Sci 2017; 18:ijms18122649. [PMID: 29215568 PMCID: PMC5751251 DOI: 10.3390/ijms18122649] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 12/04/2017] [Accepted: 12/05/2017] [Indexed: 11/17/2022] Open
Abstract
Influenza A virus (IAV) matrix protein 2 (M2) is among the smallest bona fide, hence extensively studied, ion channel proteins. The M2 ion channel activity is not only essential for virus replication, but also involved in modulation of cellular homeostasis in a variety of ways. It is also the target for ion channel inhibitors, i.e., anti-influenza drugs. Thus far, several studies have been conducted to elucidate its biophysical characteristics, structure-function relationships of the ion channel, and the M2-host interactome. In this review, we discuss M2 protein synthesis and assembly into an ion channel, its roles in IAV replication, and the pathophysiological impact on the host cell.
Collapse
|
11
|
Spronken MI, van de Sandt CE, de Jongh EP, Vuong O, van der Vliet S, Bestebroer TM, Olsthoorn RCL, Rimmelzwaan GF, Fouchier RAM, Gultyaev AP. A compensatory mutagenesis study of a conserved hairpin in the M gene segment of influenza A virus shows its role in virus replication. RNA Biol 2017; 14:1606-1616. [PMID: 28662365 PMCID: PMC5785231 DOI: 10.1080/15476286.2017.1338243] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
RNA structures are increasingly recognized to be of importance during influenza A virus replication. Here, we investigated a predicted conserved hairpin in the M gene segment (nt 967-994) within the region of the vRNA 5′ packaging signal. The existence of this RNA structure and its possible role in virus replication was investigated using a compensatory mutagenesis approach. Mutations were introduced in the hairpin stem, based on natural variation. Virus replication properties were studied for the mutant viruses with disrupted and restored RNA structures. Viruses with structure-disrupting mutations had lower virus titers and a significantly reduced median plaque size when compared with the wild-type (WT) virus, while viruses with structure restoring-mutations replicated comparable to WT. Moreover, virus replication was also reduced when mutations were introduced in the hairpin loop, suggesting its involvement in RNA interactions. Northern blot and FACS experiments were performed to study differences in RNA levels as well as production of M1 and M2 proteins, expressed via alternative splicing. Stem-disruptive mutants caused lower vRNA and M2 mRNA levels and reduced M2 protein production at early time-points. When the RNA structure was restored, vRNA, M2 mRNA and M2 protein levels were increased, demonstrating a compensatory effect. Thus, this study provides evidence for functional importance of the predicted M RNA structure and suggests its role in splicing regulation.
Collapse
Affiliation(s)
- M I Spronken
- a Department of Viroscience , Erasmus Medical Centre , Rotterdam , the Netherlands
| | - C E van de Sandt
- a Department of Viroscience , Erasmus Medical Centre , Rotterdam , the Netherlands
| | - E P de Jongh
- a Department of Viroscience , Erasmus Medical Centre , Rotterdam , the Netherlands
| | - O Vuong
- a Department of Viroscience , Erasmus Medical Centre , Rotterdam , the Netherlands
| | - S van der Vliet
- a Department of Viroscience , Erasmus Medical Centre , Rotterdam , the Netherlands
| | - T M Bestebroer
- a Department of Viroscience , Erasmus Medical Centre , Rotterdam , the Netherlands
| | - R C L Olsthoorn
- c Group Supramolecular and Biomaterials Chemistry, Leiden Institute of Chemistry, Leiden University , Leiden , the Netherlands
| | - G F Rimmelzwaan
- a Department of Viroscience , Erasmus Medical Centre , Rotterdam , the Netherlands
| | - R A M Fouchier
- a Department of Viroscience , Erasmus Medical Centre , Rotterdam , the Netherlands
| | - A P Gultyaev
- a Department of Viroscience , Erasmus Medical Centre , Rotterdam , the Netherlands.,b Group Imaging and Bioinformatics, Leiden Institute of Advanced Computer Science, Leiden University , Leiden , the Netherlands
| |
Collapse
|
12
|
Kobayashi Y, Dadonaite B, van Doremalen N, Suzuki Y, Barclay WS, Pybus OG. Computational and molecular analysis of conserved influenza A virus RNA secondary structures involved in infectious virion production. RNA Biol 2016; 13:883-94. [PMID: 27399914 DOI: 10.1080/15476286.2016.1208331] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
As well as encoding viral proteins, genomes of RNA viruses harbor secondary and tertiary RNA structures that have been associated with functions essential for successful replication and propagation. Here, we identified stem-loop structures that are extremely conserved among 1,884 M segment sequences of influenza A virus (IAV) strains from various subtypes and host species using computational and evolutionary methods. These structures were predicted within the 3' and 5' ends of the coding regions of M1 and M2, respectively, where packaging signals have been previously proposed to exist. These signals are thought to be required for the incorporation of a single copy of 8 different negative-strand RNA segments (vRNAs) into an IAV particle. To directly test the functionality of conserved stem-loop structures, we undertook reverse genetic experiments to introduce synonymous mutations designed to disrupt secondary structures predicted at 3 locations and found them to attenuate infectivity of recombinant virus. In one mutant, predicted to disrupt stem loop structure at nucleotide positions 219-240, attenuation was more evident at increased temperature and was accompanied by an increase in the production of defective virus particles. Our results suggest that the conserved secondary structures predicted in the M segment are involved in the production of infectious viral particles during IAV replication.
Collapse
Affiliation(s)
- Yuki Kobayashi
- a Nihon University Veterinary Research Center , Fujisawa , Kanagawa , Japan.,b Department of Zoology , University of Oxford , Oxford , UK
| | - Bernadeta Dadonaite
- c Section of Virology, Department of Medicine, Imperial College London , London , UK
| | - Neeltje van Doremalen
- c Section of Virology, Department of Medicine, Imperial College London , London , UK.,d Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health , Hamilton , MT , USA
| | - Yoshiyuki Suzuki
- e Graduate School of Natural Sciences, Nagoya City University , Nagoya , Japan
| | - Wendy S Barclay
- c Section of Virology, Department of Medicine, Imperial College London , London , UK
| | - Oliver G Pybus
- b Department of Zoology , University of Oxford , Oxford , UK
| |
Collapse
|
13
|
Mor A, White A, Zhang K, Thompson M, Esparza M, Muñoz-Moreno R, Koide K, Lynch KW, García-Sastre A, Fontoura BM. Influenza virus mRNA trafficking through host nuclear speckles. Nat Microbiol 2016; 1:16069. [PMID: 27572970 PMCID: PMC4917225 DOI: 10.1038/nmicrobiol.2016.69] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2015] [Accepted: 04/20/2016] [Indexed: 12/26/2022]
Abstract
Influenza A virus is a human pathogen with a genome composed of eight viral RNA segments that replicate in the nucleus. Two viral mRNAs are alternatively spliced. The unspliced M1 mRNA is translated into the matrix M1 protein, while the ion channel M2 protein is generated after alternative splicing. These proteins are critical mediators of viral trafficking and budding. We show that the influenza virus uses nuclear speckles to promote post-transcriptional splicing of its M1 mRNA. We assign previously unknown roles for the viral NS1 protein and cellular factors to an intranuclear trafficking pathway that targets the viral M1 mRNA to nuclear speckles, mediates splicing at these nuclear bodies and exports the spliced M2 mRNA from the nucleus. Given that nuclear speckles are storage sites for splicing factors, which leave these sites to splice cellular pre-mRNAs at transcribing genes, we reveal a functional subversion of nuclear speckles to promote viral gene expression.
Collapse
Affiliation(s)
- Amir Mor
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9039, USA
| | - Alexander White
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9039, USA
| | - Ke Zhang
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9039, USA
| | - Matthew Thompson
- Department of Biochemistry and Biophysics, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6059, USA
| | - Matthew Esparza
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9039, USA
| | - Raquel Muñoz-Moreno
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Kazunori Koide
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Kristen W. Lynch
- Department of Biochemistry and Biophysics, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6059, USA
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Beatriz M.A. Fontoura
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9039, USA
| |
Collapse
|
14
|
Structural Analysis of the Roles of Influenza A Virus Membrane-Associated Proteins in Assembly and Morphology. J Virol 2015; 89:8957-66. [PMID: 26085153 DOI: 10.1128/jvi.00592-15] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 06/09/2015] [Indexed: 01/30/2023] Open
Abstract
UNLABELLED The assembly of influenza A virus at the plasma membrane of infected cells leads to release of enveloped virions that are typically round in tissue culture-adapted strains but filamentous in strains isolated from patients. The viral proteins hemagglutinin (HA), neuraminidase (NA), matrix protein 1 (M1), and M2 ion channel all contribute to virus assembly. When expressed individually or in combination in cells, they can all, under certain conditions, mediate release of membrane-enveloped particles, but their relative roles in virus assembly, release, and morphology remain unclear. To investigate these roles, we produced membrane-enveloped particles by plasmid-derived expression of combinations of HA, NA, and M proteins (M1 and M2) or by infection with influenza A virus. We monitored particle release, particle morphology, and plasma membrane morphology by using biochemical methods, electron microscopy, electron tomography, and cryo-electron tomography. Our data suggest that HA, NA, or HANA (HA plus NA) expression leads to particle release through nonspecific induction of membrane curvature. In contrast, coexpression with the M proteins clusters the glycoproteins into filamentous membrane protrusions, which can be released as particles by formation of a constricted neck at the base. HA and NA are preferentially distributed to differently curved membranes within these particles. Both the budding intermediates and the released particles are morphologically similar to those produced during infection with influenza A virus. Together, our data provide new insights into influenza virus assembly and show that the M segment together with either of the glycoproteins is the minimal requirement to assemble and release membrane-enveloped particles that are truly virus-like. IMPORTANCE Influenza A virus is a major respiratory pathogen. It assembles membrane-enveloped virus particles whose shapes vary from spherical to filamentous. Here we examine the roles of individual viral proteins in mediating virus assembly and determining virus shape. To do this, we used a range of electron microscopy techniques to obtain and compare two- and three-dimensional images of virus particles and virus-like particles during and after assembly. The virus-like particles were produced using different combinations of viral proteins. Among our results, we found that coexpression of one or both of the viral surface proteins (hemagglutinin and neuraminidase) with the viral membrane-associated proteins encoded by the M segment results in assembly and release of filamentous virus-like particles in a manner very similar to that of the budding and release of influenza virions. These data provide novel insights into the roles played by individual viral proteins in influenza A virus assembly.
Collapse
|
15
|
Vasin AV, Temkina OA, Egorov VV, Klotchenko SA, Plotnikova MA, Kiselev OI. Molecular mechanisms enhancing the proteome of influenza A viruses: an overview of recently discovered proteins. Virus Res 2014; 185:53-63. [PMID: 24675275 DOI: 10.1016/j.virusres.2014.03.015] [Citation(s) in RCA: 123] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Revised: 02/19/2014] [Accepted: 03/11/2014] [Indexed: 12/11/2022]
Abstract
Influenza A virus is one of the major human pathogens. Despite numerous efforts to produce absolutely effective anti-influenza drugs or vaccines, no such agent has been developed yet. One of the main reasons for this complication is the high mutation rate and the specific structure of influenza A viruses genome. For more than 25 years since the first mapping of the viral genome, it was believed that its 8 genome segments encode 10 proteins. However, the proteome of influenza A viruses has turned out to be much more complex than previously thought. In 2001, the first accessory protein, PB1-F2, translated from the alternative open reading frame, was discovered. Subsequently, six more proteins, PB1-N40, PA-X, PA-N155, PA-N182, M42, and NS3, have been found. It is important to pay close attention to these novel proteins in order to evaluate their role in the pathogenesis of influenza, especially in the case of outbreaks of human infections with new avian viruses, such as H5N1 or H7N9. In this review we summarize the data on the molecular mechanisms used by influenza A viruses to expand their proteome and on the possible functions of the recently discovered viral proteins.
Collapse
Affiliation(s)
- A V Vasin
- Laboratory of Structural and Functional Proteomics, Research Institute of Influenza, St-Petersburg 197376, Russia.
| | - O A Temkina
- Laboratory of Structural and Functional Proteomics, Research Institute of Influenza, St-Petersburg 197376, Russia
| | - V V Egorov
- Laboratory of Structural and Functional Proteomics, Research Institute of Influenza, St-Petersburg 197376, Russia
| | - S A Klotchenko
- Laboratory of Structural and Functional Proteomics, Research Institute of Influenza, St-Petersburg 197376, Russia
| | - M A Plotnikova
- Laboratory of Structural and Functional Proteomics, Research Institute of Influenza, St-Petersburg 197376, Russia
| | - O I Kiselev
- Laboratory of Structural and Functional Proteomics, Research Institute of Influenza, St-Petersburg 197376, Russia
| |
Collapse
|
16
|
Adaptive mutation in influenza A virus non-structural gene is linked to host switching and induces a novel protein by alternative splicing. Emerg Microbes Infect 2012; 1:e42. [PMID: 26038410 PMCID: PMC3630925 DOI: 10.1038/emi.2012.38] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2012] [Revised: 07/23/2012] [Accepted: 09/19/2012] [Indexed: 01/03/2023]
Abstract
Little is known about the processes that enable influenza A viruses to jump into new host species. Here we show that the non-structural protein1 nucleotide substitution, A374G, encoding the D125G(GAT→GGT) mutation, which evolved during the adaptation of a human virus within a mouse host, activates a novel donor splice site in the non-structural gene, hence producing a novel influenza A viral protein, NS3. Using synonymous 125G mutations that do not activate the novel donor splice site, NS3 was shown to provide replicative gain-of-function. The protein sequence of NS3 is similar to NS1 protein but with an internal deletion of a motif comprised of three antiparallel β-strands spanning codons 126 to 168 in NS1. The NS1-125G(GGT) codon was also found in 33 natural influenza A viruses that were strongly associated with switching from avian to mammalian hosts, including human, swine and canine populations. In addition to the experimental human to mouse switch, the NS1-125G(GGT) codon was selected on avian to human transmission of the 1997 H5N1 and 1999 H9N2 lineages, as well as the avian to swine jump of 1979 H1N1 Eurasian swine influenza viruses, linking the NS1 125G(GGT) codon with host adaptation and switching among multiple species.
Collapse
|
17
|
Wise HM, Hutchinson EC, Jagger BW, Stuart AD, Kang ZH, Robb N, Schwartzman LM, Kash JC, Fodor E, Firth AE, Gog JR, Taubenberger JK, Digard P. Identification of a novel splice variant form of the influenza A virus M2 ion channel with an antigenically distinct ectodomain. PLoS Pathog 2012; 8:e1002998. [PMID: 23133386 PMCID: PMC3486900 DOI: 10.1371/journal.ppat.1002998] [Citation(s) in RCA: 174] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2011] [Accepted: 09/13/2012] [Indexed: 01/25/2023] Open
Abstract
Segment 7 of influenza A virus produces up to four mRNAs. Unspliced transcripts encode M1, spliced mRNA2 encodes the M2 ion channel, while protein products from spliced mRNAs 3 and 4 have not previously been identified. The M2 protein plays important roles in virus entry and assembly, and is a target for antiviral drugs and vaccination. Surprisingly, M2 is not essential for virus replication in a laboratory setting, although its loss attenuates the virus. To better understand how IAV might replicate without M2, we studied the reversion mechanism of an M2-null virus. Serial passage of a virus lacking the mRNA2 splice donor site identified a single nucleotide pseudoreverting mutation, which restored growth in cell culture and virulence in mice by upregulating mRNA4 synthesis rather than by reinstating mRNA2 production. We show that mRNA4 encodes a novel M2-related protein (designated M42) with an antigenically distinct ectodomain that can functionally replace M2 despite showing clear differences in intracellular localisation, being largely retained in the Golgi compartment. We also show that the expression of two distinct ion channel proteins is not unique to laboratory-adapted viruses but, most notably, was also a feature of the 1983 North American outbreak of H5N2 highly pathogenic avian influenza virus. In identifying a 14th influenza A polypeptide, our data reinforce the unexpectedly high coding capacity of the viral genome and have implications for virus evolution, as well as for understanding the role of M2 in the virus life cycle. Influenza A virus is a pathogen capable of infecting a wide range of avian and mammalian hosts, causing seasonal epidemics and pandemics in humans. In recent years, the unexpected coding capacity of the virus has begun to be unravelled, with the identification of three more protein products (PB1-F2, PB1-N40 and PA-X) on top of the 10 viral proteins originally identified 30 years ago. Here, we identify a 14th primary translation product, made from segment 7. Previously established protein products from segment 7 include the matrix (M1) and ion channel (M2) proteins. M2, made from a spliced transcript, has multiple roles in the virus lifecycle including in entry and budding. In a laboratory setting, it is possible to generate M2 deficient viruses, but these are highly attenuated. However, upon serial passage a virus lacking the M2 splice donor site quickly recovered wild type growth properties, without reverting the original mutation. Instead we found a compensatory single nucleotide mutation had upregulated another segment 7 mRNA. This mRNA encoded a novel M2-like protein with a variant extracellular domain, which we called M42. M42 compensated for loss of M2 in tissue culture cells and animals, although it displayed some differences in subcellular localisation. Our study therefore identifies a further novel influenza protein and gives insights into the evolution of the virus.
Collapse
MESH Headings
- Alternative Splicing
- Animals
- Birds
- Cell Line, Tumor
- Disease Outbreaks
- Dogs
- Humans
- Influenza A Virus, H5N2 Subtype/genetics
- Influenza A Virus, H5N2 Subtype/metabolism
- Influenza in Birds/epidemiology
- Influenza in Birds/genetics
- Influenza in Birds/metabolism
- Influenza, Human/epidemiology
- Influenza, Human/genetics
- Influenza, Human/metabolism
- Mice
- Mice, Inbred BALB C
- North America/epidemiology
- RNA, Messenger/biosynthesis
- RNA, Messenger/genetics
- RNA, Viral/biosynthesis
- RNA, Viral/genetics
- Viral Matrix Proteins/biosynthesis
- Viral Matrix Proteins/genetics
Collapse
Affiliation(s)
- Helen M. Wise
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge, United Kingdom
- The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian, United Kingdom
| | - Edward C. Hutchinson
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Brett W. Jagger
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge, United Kingdom
- Viral Pathogenesis and Evolution Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Amanda D. Stuart
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Zi H. Kang
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Nicole Robb
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Louis M. Schwartzman
- Viral Pathogenesis and Evolution Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - John C. Kash
- Viral Pathogenesis and Evolution Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Ervin Fodor
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Andrew E. Firth
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Julia R. Gog
- DAMTP, Centre for Mathematical Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Jeffery K. Taubenberger
- Viral Pathogenesis and Evolution Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Paul Digard
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge, United Kingdom
- The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian, United Kingdom
- * E-mail:
| |
Collapse
|
18
|
Backström Winquist E, Abdurahman S, Tranell A, Lindström S, Tingsborg S, Schwartz S. Inefficient splicing of segment 7 and 8 mRNAs is an inherent property of influenza virus A/Brevig Mission/1918/1 (H1N1) that causes elevated expression of NS1 protein. Virology 2012; 422:46-58. [DOI: 10.1016/j.virol.2011.10.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2011] [Revised: 09/16/2011] [Accepted: 10/05/2011] [Indexed: 11/16/2022]
|
19
|
Rossman JS, Jing X, Leser GP, Lamb RA. Influenza virus M2 protein mediates ESCRT-independent membrane scission. Cell 2010; 142:902-13. [PMID: 20850012 PMCID: PMC3059587 DOI: 10.1016/j.cell.2010.08.029] [Citation(s) in RCA: 405] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2010] [Revised: 05/26/2010] [Accepted: 08/05/2010] [Indexed: 01/10/2023]
Abstract
Many viruses utilize host ESCRT proteins for budding; however, influenza virus budding is thought to be ESCRT-independent. In this study we have found a role for the influenza virus M2 proton-selective ion channel protein in mediating virus budding. We observed that a highly conserved amphipathic helix located within the M2 cytoplasmic tail mediates a cholesterol-dependent alteration in membrane curvature. The 17 amino acid amphipathic helix is sufficient for budding into giant unilamellar vesicles, and mutation of this sequence inhibited budding of transfected M2 protein in vivo. We show that M2 localizes to the neck of budding virions and that mutation of the M2 amphipathic helix results in failure of the virus to undergo membrane scission and virion release. These data suggest that M2 mediates the final steps of budding for influenza viruses, bypassing the need for host ESCRT proteins.
Collapse
Affiliation(s)
- Jeremy S. Rossman
- Department of Biochemistry, Molecular Biology, and Cell Biology, Northwestern University, Evanston, IL 60208-3500
- Howard Hughes Medical Institute, Northwestern University, Evanston, IL 60208-3500
| | - Xianghong Jing
- Department of Biochemistry, Molecular Biology, and Cell Biology, Northwestern University, Evanston, IL 60208-3500
| | - George P. Leser
- Department of Biochemistry, Molecular Biology, and Cell Biology, Northwestern University, Evanston, IL 60208-3500
| | - Robert A. Lamb
- Department of Biochemistry, Molecular Biology, and Cell Biology, Northwestern University, Evanston, IL 60208-3500
- Howard Hughes Medical Institute, Northwestern University, Evanston, IL 60208-3500
| |
Collapse
|
20
|
Influenza virus m2 ion channel protein is necessary for filamentous virion formation. J Virol 2010; 84:5078-88. [PMID: 20219914 DOI: 10.1128/jvi.00119-10] [Citation(s) in RCA: 148] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Influenza A virus buds from cells as spherical (approximately 100-nm diameter) and filamentous (approximately 100 nm x 2 to 20 microm) virions. Previous work has determined that the matrix protein (M1) confers the ability of the virus to form filaments; however, additional work has suggested that the influenza virus M2 integral membrane protein also plays a role in viral filament formation. In examining the role of the M2 protein in filament formation, we observed that the cytoplasmic tail of M2 contains several sites that are essential for filament formation. Additionally, whereas M2 is a nonraft protein, expression of other viral proteins in the context of influenza virus infection leads to the colocalization of M2 with sites of virus budding and lipid raft domains. We found that an amphipathic helix located within the M2 cytoplasmic tail is able to bind cholesterol, and we speculate that M2 cholesterol binding is essential for both filament formation and the stability of existing viral filaments.
Collapse
|