1
|
Kang SH, Sun YD, Atallah OO, Huguet-Tapia JC, Noble JD, Folimonova SY. A Long Non-Coding RNA of Citrus tristeza virus: Role in the Virus Interplay with the Host Immunity. Viruses 2019; 11:E436. [PMID: 31091710 PMCID: PMC6563247 DOI: 10.3390/v11050436] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 05/08/2019] [Accepted: 05/11/2019] [Indexed: 01/01/2023] Open
Abstract
During infection, Citrus tristeza virus (CTV) produces a non-coding subgenomic RNA referred to as low-molecular-weight tristeza 1 (LMT1), which for a long time has been considered as a by-product of the complex CTV replication machinery. In this study, we investigated the role of LMT1 in the virus infection cycle using a CTV variant that does not produce LMT1 (CTV-LMT1d). We showed that lack of LMT1 did not halt virus ability to replicate or form proper virions. However, the mutant virus demonstrated significantly reduced invasiveness and systemic spread in Nicotiana benthamiana as well as an inability to establish infection in citrus. Introduction of CTV-LMT1d into the herbaceous host resulted in elevation of the levels of salicylic acid (SA) and SA-responsive pathogenesis-related genes beyond those upon inoculation with wild-type (WT) virus (CTV-WT). Further analysis showed that the LMT1 RNA produced by CTV-WT or via ectopic expression in the N. benthamiana leaves suppressed SA accumulation and up-regulated an alternative oxidase gene, which appeared to mitigate the accumulation of reactive oxygen species. To the best of our knowledge, this is the first report of a plant viral long non-coding RNA being involved in counter-acting host response by subverting the SA-mediated plant defense.
Collapse
Affiliation(s)
- Sung-Hwan Kang
- Department of Plant Pathology, University of Florida, Gainesville, FL 32611, USA.
| | - Yong-Duo Sun
- Department of Plant Pathology, University of Florida, Gainesville, FL 32611, USA.
- Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL 32611, USA.
| | - Osama O Atallah
- Department of Plant Pathology, University of Florida, Gainesville, FL 32611, USA.
| | | | - Jerald D Noble
- Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL 32611, USA.
| | - Svetlana Y Folimonova
- Department of Plant Pathology, University of Florida, Gainesville, FL 32611, USA.
- Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL 32611, USA.
| |
Collapse
|
2
|
Inhibition of Satellite RNA Associated Cucumber Mosaic Virus Infection by Essential Oil of Micromeria croatica (Pers.) Schott. Molecules 2019; 24:molecules24071342. [PMID: 30959741 PMCID: PMC6479972 DOI: 10.3390/molecules24071342] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 03/29/2019] [Accepted: 04/01/2019] [Indexed: 12/28/2022] Open
Abstract
The present results dealing with the antiphytoviral activity of essential oil indicate that these plant metabolites can trigger a response to viral infection. The essential oil from Micromeria croatica and the main oil components β-caryophyllene and caryophyllene oxide were tested for antiphytoviral activity on plants infected with satellite RNA associated cucumber mosaic virus. Simultaneous inoculation of virus with essential oil or with the dominant components of oil, and the treatment of plants prior to virus inoculation, resulted in a reduction of virus infection in the local and systemic host plants. Treatment with essential oil changed the level of alternative oxidase gene expression in infected Arabidopsis plants indicating a connection between the essential oil treatment, aox gene expression and the development of viral infection.
Collapse
|
3
|
Carr JP, Murphy AM, Tungadi T, Yoon JY. Plant defense signals: Players and pawns in plant-virus-vector interactions. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 279:87-95. [PMID: 30709497 DOI: 10.1016/j.plantsci.2018.04.011] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 04/07/2018] [Accepted: 04/13/2018] [Indexed: 06/09/2023]
Abstract
Plant viruses face an array of host defenses. Well-studied responses that protect against viruses include effector-triggered immunity, induced resistance (such as systemic acquired resistance mediated by salicylic acid), and RNA silencing. Recent work shows that viruses are also affected by non-host resistance mechanisms; previously thought to affect only bacteria, oomycetes and fungi. However, an enduring puzzle is how viruses are inhibited by several inducible host resistance mechanisms. Many viruses have been shown to encode factors that inhibit antiviral silencing. A number of these, including the cucumoviral 2b protein, the poytviral P1/HC-Pro and, respectively, geminivirus or satellite DNA-encoded proteins such as the C2 or βC1, also inhibit defensive signaling mediated by salicylic acid and jasmonic acid. This helps to explain how viruses can, in some cases, overcome host resistance. Additionally, interference with defensive signaling provides a means for viruses to manipulate plant-insect interactions. This is important because insects, particularly aphids and whiteflies, transmit many viruses. Indeed, there is now substantial evidence that viruses can enhance their own transmission through their effects on hosts. Even more surprisingly, it appears that viruses may be able to manipulate plant interactions with beneficial insects by, for example, 'paying back' their hosts by attracting pollinators.
Collapse
Affiliation(s)
- John P Carr
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, United Kingdom.
| | - Alex M Murphy
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, United Kingdom
| | - Trisna Tungadi
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, United Kingdom
| | - Ju-Yeon Yoon
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, United Kingdom; Virology Unit, Department of Horticultural and Herbal Environment, National Institute of Horticultural and Herbal Science, Rural Development Agency, Wanju, 55365, Republic of Korea
| |
Collapse
|
4
|
Pu XJ, Li YN, Wei LJ, Xi DH, Lin HH. Mitochondrial energy-dissipation pathway and cellular redox disruption compromises Arabidopsis resistance to turnip crinkle virus infection. Biochem Biophys Res Commun 2016; 473:421-7. [DOI: 10.1016/j.bbrc.2016.03.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 03/07/2016] [Indexed: 02/06/2023]
|
5
|
Lee WS, Fu SF, Li Z, Murphy AM, Dobson EA, Garland L, Chaluvadi SR, Lewsey MG, Nelson RS, Carr JP. Salicylic acid treatment and expression of an RNA-dependent RNA polymerase 1 transgene inhibit lethal symptoms and meristem invasion during tobacco mosaic virus infection in Nicotiana benthamiana. BMC PLANT BIOLOGY 2016; 16:15. [PMID: 26757721 PMCID: PMC4710973 DOI: 10.1186/s12870-016-0705-8] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 01/06/2016] [Indexed: 05/23/2023]
Abstract
BACKGROUND Host RNA-dependent RNA polymerases (RDRs) 1 and 6 contribute to antiviral RNA silencing in plants. RDR6 is constitutively expressed and was previously shown to limit invasion of Nicotiana benthamiana meristem tissue by potato virus X and thereby inhibit disease development. RDR1 is inducible by salicylic acid (SA) and several other phytohormones. But although it contributes to basal resistance to tobacco mosaic virus (TMV) it is dispensable for SA-induced resistance in inoculated leaves. The laboratory accession of N. benthamiana is a natural rdr1 mutant and highly susceptible to TMV. However, TMV-induced symptoms are ameliorated in transgenic plants expressing Medicago truncatula RDR1. RESULTS In MtRDR1-transgenic N. benthamiana plants the spread of TMV expressing the green fluorescent protein (TMV.GFP) into upper, non-inoculated, leaves was not inhibited. However, in these plants exclusion of TMV.GFP from the apical meristem and adjacent stem tissue was greater than in control plants and this exclusion effect was enhanced by SA. TMV normally kills N. benthamiana plants but although MtRDR1-transgenic plants initially displayed virus-induced necrosis they subsequently recovered. Recovery from disease was markedly enhanced by SA treatment in MtRDR1-transgenic plants whereas in control plants SA delayed but did not prevent systemic necrosis and death. Following SA treatment of MtRDR1-transgenic plants, extractable RDR enzyme activity was increased and Western blot analysis of RDR extracts revealed a band cross-reacting with an antibody raised against MtRDR1. Expression of MtRDR1 in the transgenic N. benthamiana plants was driven by a constitutive 35S promoter derived from cauliflower mosaic virus, confirmed to be non-responsive to SA. This suggests that the effects of SA on MtRDR1 are exerted at a post-transcriptional level. CONCLUSIONS MtRDR1 inhibits severe symptom development by limiting spread of virus into the growing tips of infected plants. Thus, RDR1 may act in a similar fashion to RDR6. MtRDR1 and SA acted additively to further promote recovery from disease symptoms in MtRDR1-transgenic plants. Thus it is possible that SA promotes MtRDR1 activity and/or stability through post-transcriptional effects.
Collapse
Affiliation(s)
- Wing-Sham Lee
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EA, UK.
- Rothamsted Research, Harpenden, Hertfordshire, AL5 2JQ, UK.
| | - Shih-Feng Fu
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EA, UK.
- Department of Biology, National Changhua University of Education, 1 Jin-De Road, Changhua City, 500, Taiwan.
| | - Zheng Li
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EA, UK.
| | - Alex M Murphy
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EA, UK.
| | - Elizabeth A Dobson
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EA, UK.
| | - Laura Garland
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EA, UK.
| | - Srinivasa Rao Chaluvadi
- Plant Biology Division, Samuel Roberts Noble Foundation, Inc, 2510 Sam Noble Parkway, Ardmore, OK, 73401, USA.
| | - Mathew G Lewsey
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EA, UK.
- Centre for AgriBioscience, Department of Animal, Plant and Soil Science, School of Life Science, La Trobe University, Bundoora, Australia.
| | - Richard S Nelson
- Plant Biology Division, Samuel Roberts Noble Foundation, Inc, 2510 Sam Noble Parkway, Ardmore, OK, 73401, USA.
| | - John P Carr
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EA, UK.
| |
Collapse
|
6
|
Aguilar E, Allende L, Del Toro FJ, Chung BN, Canto T, Tenllado F. Effects of Elevated CO₂and Temperature on Pathogenicity Determinants and Virulence of Potato virus X/Potyvirus-Associated Synergism. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2015; 28:1364-1373. [PMID: 26422405 DOI: 10.1094/mpmi-08-15-0178-r] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Infections of plants by multiple viruses are common in nature and may result in synergisms in pathologies. Several environmental factors influence plant-virus interactions and act on virulence and host defense responses. Mixed viral infections may be more frequent under environmental conditions associated with global warming. Here, we address how changes in the two main parameters behind global warming, carbon dioxide concentrations ([CO₂]) and temperature, may affect virulence of Potato virus X (PVX)/potyvirus-associated synergism compared with single infections in Nicotiana benthamiana. Elevated [CO₂] resulted in attenuated virulence of single infection by PVX, which correlated with a lower accumulation of virus. In contrast, virulence of PVX/potyvirus-associated synergism was maintained at elevated [CO₂]. On the other hand, elevated temperature decreased markedly both virulence and virus titers in the synergistic infection. We also show that the HR-like response elicited by transient coexpression of PVX P25 together with the potyviral helper component-proteinase protein was significantly enhanced by elevated temperature, whereas it was reduced by elevated [CO₂]. Both proteins are main pathogenicity determinants in PVX-associated synergisms. These findings indicate that, under environmental conditions associated with global warming, virulence of PVX/potyvirus-associated synergisms is expected to vary relative to single infections and, thus, may have pathological consequences in the future.
Collapse
Affiliation(s)
- Emmanuel Aguilar
- 1 Departamento de Biología Medioambiental, Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, 28040, Madrid, Spain; and
| | - Lucía Allende
- 1 Departamento de Biología Medioambiental, Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, 28040, Madrid, Spain; and
| | - Francisco J Del Toro
- 1 Departamento de Biología Medioambiental, Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, 28040, Madrid, Spain; and
| | - Bong-Nam Chung
- 2 National Institute of Horticultural & Herbal Science. Agricultural Research Center for Climate Change. 281, Ayeon-ro, Jeju, 690-150, Jeju Island, Republic of Korea
| | - Tomás Canto
- 1 Departamento de Biología Medioambiental, Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, 28040, Madrid, Spain; and
| | - Francisco Tenllado
- 1 Departamento de Biología Medioambiental, Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, 28040, Madrid, Spain; and
| |
Collapse
|
7
|
Zhu F, Deng XG, Xu F, Jian W, Peng XJ, Zhu T, Xi DH, Lin HH. Mitochondrial alternative oxidase is involved in both compatible and incompatible host-virus combinations in Nicotiana benthamiana. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2015; 239:26-35. [PMID: 26398788 DOI: 10.1016/j.plantsci.2015.07.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 07/08/2015] [Accepted: 07/10/2015] [Indexed: 05/27/2023]
Abstract
The alternative oxidase (AOX) functions in the resistance to biotic stress. However, the mechanisms of AOX in the systemic antiviral defense response and N (a typical resistance gene)-mediated resistance to Tobacco mosaic virus (TMV) are elusive. A chemical approach was undertaken to investigate the role of NbAOX in the systemic resistance to RNA viruses. Furthermore, we used a virus-induced gene-silencing (VIGS)-based genetics approach to investigate the function of AOX in the N-mediated resistance to TMV. The inoculation of virus significantly increased the NbAOX transcript and protein levels and the cyanide-resistant respiration in the upper un-inoculated leaves. Pretreatment with potassium cyanide greatly increased the plant's systemic resistance, whereas the application of salicylhydroxamic acid significantly compromised the plant's systemic resistance. Additionally, in NbAOX1a-silenced N-transgenic Nicotiana benthamiana plants, the inoculated leaf collapsed and the movement of TMV into the systemic tissue eventually led to the spreading of HR-PCD and the death of the whole plant. The hypersensitive response marker gene HIN1 was significantly increased in the NbAOX1a-silenced plants. Significant amounts of TMV-CP mRNA and protein were detected in the NbAOX1a-silenced plants but not in the control plants. Overall, evidence is provided that AOX plays important roles in both compatible and incompatible plant-virus combinations.
Collapse
Affiliation(s)
- Feng Zhu
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610064, China; College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, China
| | - Xing-Guang Deng
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610064, China
| | - Fei Xu
- Applied Biotechnology Center, Wuhan Bioengineering Insititute, 430415, China
| | - Wei Jian
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610064, China
| | - Xing-Ji Peng
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610064, China
| | - Tong Zhu
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610064, China
| | - De-Hui Xi
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610064, China
| | - Hong-Hui Lin
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610064, China.
| |
Collapse
|
8
|
Salicylic Acid Signaling in Plant Innate Immunity. PLANT HORMONE SIGNALING SYSTEMS IN PLANT INNATE IMMUNITY 2015. [DOI: 10.1007/978-94-017-9285-1_2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
9
|
Li Z, Liang WS, Carr JP. Effects of modifying alternative respiration on nitric oxide-induced virus resistance and PR1 protein accumulation. J Gen Virol 2014; 95:2075-2081. [PMID: 24903327 DOI: 10.1099/vir.0.066662-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023] Open
Abstract
Nitric oxide (NO) is an important defensive signal in plants but its effects on virus infection are not well understood. Administration of NO-releasing compounds immediately before inoculation of tobacco leaves with potato virus X and tobacco mosaic virus decreased the accumulation of virus, indicating that NO can induce resistance rapidly. Resistance induction was inhibited by co-administration with an NO-scavenging compound or when experiments were done in transgenic tobacco plants expressing increased alternative respiratory pathway capacity due to constitutive expression of the plant mitochondrial enzyme, alternative oxidase (AOX). These results indicate that NO, which inhibits electron transport chain activity, is triggering defensive signalling by inducing changes in mitochondrial reactive oxygen species levels that are in turn regulated by AOX. Experiments using nahG-transgenic plants, which cannot accumulate the defensive plant hormone salicylic acid (SA) showed that NO rapidly induces resistance to virus infection independently of SA. However, this initial state of resistance may be transient. Subsequently, by 5 days post-treatment, NO had caused an increase in pathogenesis-related protein 1 (PR1) expression (a proxy for increased SA biosynthesis), which correlated with a longer-term state of resistance to virus infection. The induction by NO of PR1 accumulation was modified in AOX-transgenic plants. This indicates that the influence of NO on defensive gene expression is in part mediated through its effects on mitochondria.
Collapse
Affiliation(s)
- Zheng Li
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
| | - Wu-Sheng Liang
- Institute of Biotechnology, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, PR China
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
| | - John P Carr
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
| |
Collapse
|
10
|
García I, Rosas T, Bejarano ER, Gotor C, Romero LC. Transient transcriptional regulation of the CYS-C1 gene and cyanide accumulation upon pathogen infection in the plant immune response. PLANT PHYSIOLOGY 2013; 162:2015-27. [PMID: 23784464 PMCID: PMC3729779 DOI: 10.1104/pp.113.219436] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Cyanide is produced concomitantly with ethylene biosynthesis. Arabidopsis (Arabidopsis thaliana) detoxifies cyanide primarily through the enzyme β-cyanoalanine synthase, mainly by the mitochondrial CYS-C1. CYS-C1 loss of function is not toxic for the plant and leads to an increased level of cyanide in cys-c1 mutants as well as a root hairless phenotype. The classification of genes differentially expressed in cys-c1 and wild-type plants reveals that the high endogenous cyanide content of the cys-c1 mutant is correlated with the biotic stress response. Cyanide accumulation and CYS-C1 gene expression are negatively correlated during compatible and incompatible plant-bacteria interactions. In addition, cys-c1 plants present an increased susceptibility to the necrotrophic fungus Botrytis cinerea and an increased tolerance to the biotrophic Pseudomonas syringae pv tomato DC3000 bacterium and Beet curly top virus. The cys-c1 mutation produces a reduction in respiration rate in leaves, an accumulation of reactive oxygen species, and an induction of the alternative oxidase AOX1a and pathogenesis-related PR1 expression. We hypothesize that cyanide, which is transiently accumulated during avirulent bacterial infection and constitutively accumulated in the cys-c1 mutant, uncouples the respiratory electron chain dependent on the cytochrome c oxidase, and this uncoupling induces the alternative oxidase activity and the accumulation of reactive oxygen species, which act by stimulating the salicylic acid-dependent signaling pathway of the plant immune system.
Collapse
Affiliation(s)
- Irene García
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, E-41092 Seville, Spain.
| | | | | | | | | |
Collapse
|
11
|
Liao YWK, Shi K, Fu LJ, Zhang S, Li X, Dong DK, Jiang YP, Zhou YH, Xia XJ, Liang WS, Yu JQ. The reduction of reactive oxygen species formation by mitochondrial alternative respiration in tomato basal defense against TMV infection. PLANTA 2012; 235:225-38. [PMID: 21779957 DOI: 10.1007/s00425-011-1483-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2011] [Accepted: 07/07/2011] [Indexed: 05/07/2023]
Abstract
The role of mitochondrial alternative oxidase (AOX) and the relationship between systemic AOX induction, ROS formation, and systemic plant basal defense to Tobacco mosaic virus (TMV) were investigated in tomato plants. The results showed that TMV inoculation significantly increased the level of AOX gene transcripts, ubiquinone reduction levels, pyruvate content, and cyanide-resistant respiration (CN-resistant R) in upper, un-inoculated leaves. Pretreatment with potassium cyanide (KCN, a cytochrome pathway inhibitor) greatly increased CN-resistant R and reduced reactive oxygen species (ROS) formation, while application of salicylhydroxamic acid (SHAM, an AOX inhibitor) blocked the AOX activity and enhanced the production of ROS in the plants. Furthermore, TMV systemic infection was enhanced by SHAM and reduced by KCN pretreatment, as compared with the un-pretreated TMV counterpart. In addition, KCN application significantly diminished TMV-induced increase in antioxidant enzyme activities and dehydroascorbate/total ascorbate pool, while an opposite change was observed with SHAM-pretreated plants. These results suggest that the systemic induction of the mitochondrial AOX pathway plays a critical role in the reduction of ROS to enhance basal defenses. Additional antioxidant systems were also coordinately regulated in the maintenance of the cellular redox homeostasis.
Collapse
Affiliation(s)
- Yang-Wen-Ke Liao
- Department of Horticulture, Zijingang Campus, Zhejiang University, Yuhangtang Road 866, 310058 Hangzhou, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Ma H, Song C, Borth W, Sether D, Melzer M, Hu J. Modified expression of alternative oxidase in transgenic tomato and petunia affects the level of tomato spotted wilt virus resistance. BMC Biotechnol 2011; 11:96. [PMID: 22014312 PMCID: PMC3226446 DOI: 10.1186/1472-6750-11-96] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Accepted: 10/20/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Tomato spotted wilt virus (TSWV) has a very wide host range, and is transmitted in a persistent manner by several species of thrips. These characteristics make this virus difficult to control. We show here that the over-expression of the mitochondrial alternative oxidase (AOX) in tomato and petunia is related to TSWV resistance. RESULTS The open reading frame and full-length sequence of the tomato AOX gene LeAox1au were cloned and introduced into tomato 'Healani' and petunia 'Sheer Madness' using Agrobacterium-mediated transformation. Highly expressed AOX transgenic tomato and petunia plants were selfed and transgenic R1 seedlings from 10 tomato lines and 12 petunia lines were used for bioassay. For each assayed line, 22 to 32 tomato R1 progeny in three replications and 39 to 128 petunia progeny in 13 replications were challenged with TSWV. Enzyme-Linked Immunosorbent Assays showed that the TSWV levels in transgenic tomato line FKT4-1 was significantly lower than that of wild-type controls after challenge with TSWV. In addition, transgenic petunia line FKP10 showed significantly less lesion number and smaller lesion size than non-transgenic controls after inoculation by TSWV. CONCLUSION In all assayed transgenic tomato lines, a higher percentage of transgenic progeny had lower TSWV levels than non-transgenic plants after challenge with TSWV, and the significantly increased resistant levels of tomato and petunia lines identified in this study indicate that altered expression levels of AOX in tomato and petunia can affect the levels of TSWV resistance.
Collapse
Affiliation(s)
- Hao Ma
- Department of Plant and Environmental Protection Sciences, University of Hawaii, Honolulu, HI 96822, USA
| | | | | | | | | | | |
Collapse
|
13
|
Wang SD, Zhu F, Yuan S, Yang H, Xu F, Shang J, Xu MY, Jia SD, Zhang ZW, Wang JH, Xi DH, Lin HH. The roles of ascorbic acid and glutathione in symptom alleviation to SA-deficient plants infected with RNA viruses. PLANTA 2011; 234:171-81. [PMID: 21394469 DOI: 10.1007/s00425-011-1391-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2011] [Accepted: 02/21/2011] [Indexed: 05/23/2023]
Abstract
Salicylic acid (SA) is required for plant systemic acquired resistance (SAR) to viruses. However, SA-deficient plants adapt to RNA virus infections better, which show a lighter symptom and have less reactive oxygen species (ROS) accumulation. The virus replication levels are higher in the SA-deficient plants during the first 10 days, but lower than the wild-type seedlings after 20 dpi. The higher level of glutathione and ascorbic acid (AsA) in SA-deficient plants may contribute to their alleviated symptoms. Solo virus-control method for mortal viruses results in necrosis and chlorosis, no matter what level of virus RNAs would accumulate. Contrastingly, early and high-dose AsA treatment alleviates the symptom, and eventually inhibits virus replication after 20 days. ROS eliminators could not imitate the effect of AsA, and could neither alleviate symptom nor inhibit virus replication. It suggests that both symptom alleviation and virus replication control should be considered for plant virus cures.
Collapse
Affiliation(s)
- Shao-Dong Wang
- Plant Pathology Laboratory, College of Life Science, Sichuan University, Chengdu 610064, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Fan Y, Li W, Wang J, Liu J, Yang M, Xu D, Zhu X, Wang X. Efficient production of human acidic fibroblast growth factor in pea (Pisum sativum L.) plants by agroinfection of germinated seeds. BMC Biotechnol 2011; 11:45. [PMID: 21548923 PMCID: PMC3112411 DOI: 10.1186/1472-6750-11-45] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2010] [Accepted: 05/06/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND For efficient and large scale production of recombinant proteins in plants transient expression by agroinfection has a number of advantages over stable transformation. Simple manipulation, rapid analysis and high expression efficiency are possible. In pea, Pisum sativum, a Virus Induced Gene Silencing System using the pea early browning virus has been converted into an efficient agroinfection system by converting the two RNA genomes of the virus into binary expression vectors for Agrobacterium transformation. RESULTS By vacuum infiltration (0.08 Mpa, 1 min) of germinating pea seeds with 2-3 cm roots with Agrobacteria carrying the binary vectors, expression of the gene for Green Fluorescent Protein as marker and the gene for the human acidic fibroblast growth factor (aFGF) was obtained in 80% of the infiltrated developing seedlings. Maximal production of the recombinant proteins was achieved 12-15 days after infiltration. CONCLUSIONS Compared to the leaf injection method vacuum infiltration of germinated seeds is highly efficient allowing large scale production of plants transiently expressing recombinant proteins. The production cycle of plants for harvesting the recombinant protein was shortened from 30 days for leaf injection to 15 days by applying vacuum infiltration. The synthesized aFGF was purified by heparin-affinity chromatography and its mitogenic activity on NIH 3T3 cells confirmed to be similar to a commercial product.
Collapse
Affiliation(s)
- Yajun Fan
- Institute of Genetics and Cytology, Northeast Normal University, Changchun 130024, China
- Department of Biology, Changchun Normal University, Changchun 130032, China
| | - Wei Li
- Institute of Genetics and Cytology, Northeast Normal University, Changchun 130024, China
| | - Junjie Wang
- Institute of Genetics and Cytology, Northeast Normal University, Changchun 130024, China
- Yunnan-Guizhou Plateau Institute of Biodiversity, Qujing Normal University, Qujing 655000, China
| | - Jingying Liu
- Institute of Genetics and Cytology, Northeast Normal University, Changchun 130024, China
| | - Meiying Yang
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, China
| | - Duo Xu
- Institute of Genetics and Cytology, Northeast Normal University, Changchun 130024, China
| | - Xiaojuan Zhu
- Institute of Genetics and Cytology, Northeast Normal University, Changchun 130024, China
| | - Xingzhi Wang
- Institute of Genetics and Cytology, Northeast Normal University, Changchun 130024, China
| |
Collapse
|
15
|
Lee WS, Fu SF, Verchot-Lubicz J, Carr JP. Genetic modification of alternative respiration in Nicotiana benthamiana affects basal and salicylic acid-induced resistance to potato virus X. BMC PLANT BIOLOGY 2011; 11:41. [PMID: 21356081 PMCID: PMC3058079 DOI: 10.1186/1471-2229-11-41] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2010] [Accepted: 02/28/2011] [Indexed: 05/06/2023]
Abstract
BACKGROUND Salicylic acid (SA) regulates multiple anti-viral mechanisms, including mechanism(s) that may be negatively regulated by the mitochondrial enzyme, alternative oxidase (AOX), the sole component of the alternative respiratory pathway. However, studies of this mechanism can be confounded by SA-mediated induction of RNA-dependent RNA polymerase 1, a component of the antiviral RNA silencing pathway. We made transgenic Nicotiana benthamiana plants in which alternative respiratory pathway capacity was either increased by constitutive expression of AOX, or decreased by expression of a dominant-negative mutant protein (AOX-E). N. benthamiana was used because it is a natural mutant that does not express a functional RNA-dependent RNA polymerase 1. RESULTS Antimycin A (an alternative respiratory pathway inducer and also an inducer of resistance to viruses) and SA triggered resistance to tobacco mosaic virus (TMV). Resistance to TMV induced by antimycin A, but not by SA, was inhibited in Aox transgenic plants while SA-induced resistance to this virus appeared to be stronger in Aox-E transgenic plants. These effects, which were limited to directly inoculated leaves, were not affected by the presence or absence of a transgene constitutively expressing a functional RNA-dependent RNA polymerase (MtRDR1). Unexpectedly, Aox-transgenic plants infected with potato virus X (PVX) showed markedly increased susceptibility to systemic disease induction and virus accumulation in inoculated and systemically infected leaves. SA-induced resistance to PVX was compromised in Aox-transgenic plants but plants expressing AOX-E exhibited enhanced SA-induced resistance to this virus. CONCLUSIONS We conclude that AOX-regulated mechanisms not only play a role in SA-induced resistance but also make an important contribution to basal resistance against certain viruses such as PVX.
Collapse
Affiliation(s)
- Wing-Sham Lee
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
| | - Shih-Feng Fu
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
| | - Jeanmarie Verchot-Lubicz
- Oklahoma State University, Department of Entomology and Plant Pathology, 127 Noble Research Center, Stillwater, OK 74078, USA
| | - John P Carr
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
| |
Collapse
|
16
|
Li M, Li P, Song R, Xu Z. An induced hypersensitive-like response limits expression of foreign peptides via a recombinant TMV-based vector in a susceptible tobacco. PLoS One 2010; 5:e15087. [PMID: 21124743 PMCID: PMC2993970 DOI: 10.1371/journal.pone.0015087] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2010] [Accepted: 10/19/2010] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND By using tobacco mosaic virus (TMV)-based vectors, foreign epitopes of the VP1 protein from food-and-month disease virus (FMDV) could be fused near to the C-terminus of the TMV coat protein (CP) and expressed at high levels in susceptible tobacco plants. Previously, we have shown that the recombinant TMV vaccines displaying FMDV VP1 epitopes could generate protection in guinea pigs and swine against the FMDV challenge. Recently, some recombinant TMV, such as TMVFN20 that contains an epitope FN20 from the FMDV VP1, were found to induce local necrotic lesions (LNL) on the inoculated leaves of a susceptible tobacco, Nicotiana tabacum Samsun nn. This hypersensitive-like response (HLR) blocked amplification of recombinant TMVFN20 in tobacco and limited the utility of recombinant TMV vaccines against FMDV. METHODOLOGY/PRINCIPAL FINDINGS Here we investigate the molecular mechanism of the HLR in the susceptible Samsun nn. Histochemical staining analyses show that these LNL are similar to those induced in a resistant tobacco Samsun NN inoculated with wild type (wt) TMV. The recombinant CP subunits are specifically related to the HLR. Interestingly, this HLR in Samsun nn (lacking the N/N'-gene) was able to be induced by the recombinant TMV at both 25°C and 33°C, whereas the hypersensitive response (HR) in the resistant tobacco plants induced by wt TMV through the N/N'-gene pathways only at a permissive temperature (below 30°C). Furthermore, we reported for the first time that some of defense response (DR)-related genes in tobacco were transcriptionally upregulated during HLR. CONCLUSIONS Unlike HR, HLR is induced in the susceptible tobacco through N/N'-gene independent pathways. Induction of the HLR is associated with the expression of the recombinant CP subunits and upregulation of the DR-related genes.
Collapse
Affiliation(s)
- Mangmang Li
- Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, The Chinese Academy of Sciences, Shanghai, China
| | - Ping Li
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai, China
| | - Rentao Song
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai, China
| | - Zhengkai Xu
- Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, The Chinese Academy of Sciences, Shanghai, China
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai, China
| |
Collapse
|
17
|
|
18
|
Fu LJ, Shi K, Gu M, Zhou YH, Dong DK, Liang WS, Song FM, Yu JQ. Systemic induction and role of mitochondrial alternative oxidase and nitric oxide in a compatible tomato-Tobacco mosaic virus interaction. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2010; 23:39-48. [PMID: 19958137 DOI: 10.1094/mpmi-23-1-0039] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
The role of mitochondrial alternative oxidase (AOX) and the relationship between AOX and nitric oxide (NO) in virus-induced systemic defense to Tobacco mosaic virus (TMV) were investigated in susceptible tomato (Solanum lycopersicum) plants. TMV inoculation to the lower leaves induced a rapid NO synthesis and AOX activation in upper uninoculated leaves as early as 0.5 day postinoculation. Application of exogenous potassium cyanide (KCN, a cytochrome pathway inhibitor) at nonlethal concentrations and NO donor diethylamine NONOate (DEA/NO) to the upper uninoculated leaves greatly induced accumulation of AOX transcript, reduced TMV viral RNA accumulation, and increased the leaf photochemical quantum yield at photosystem II. Pretreatment with NO scavenger almost completely blocked TMV-induced AOX induction and substantially increased TMV susceptibility. Salicylhydroxamic acid (SHAM, an AOX inhibitor) pretreatment reduced the DEA/NO-induced cyanide-resistant respiration and partially compromised induced resistance to TMV. Conversely, KCN and SHAM pretreatment had very little effect on generation of NO, and pretreatment with NO scavenger did not affect KCN-induced AOX induction and TMV resistance. These results suggest that TMV-induced NO generation acts upstream and mediates AOX induction which, in turn, induces mitochondrial alternative electron transport and triggers systemic basal defense against the viral pathogen.
Collapse
Affiliation(s)
- Li-Jun Fu
- Department of Horticulture, Huajiachi Campus, Zhejiang University, P. R. China
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Zhang Y, Xi D, Wang J, Zhu D, Guo X. Functional analysis reveals effects of tobacco alternative oxidase gene (NtAOX1a) on regulation of defence responses against abiotic and biotic stresses. Biosci Rep 2009; 29:375-83. [PMID: 19125696 DOI: 10.1042/bsr20080133] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Mitochondrial AOX (alternative oxidase) is the terminal oxidase of the CN (cyanide)-resistant alternative respiratory pathway in plants. To investigate the role of the tobacco AOX gene (NtAOX1a) (where Nt is Nicotiana tabacum) under deleterious conditions which could induce ROS (reactive oxygen species) accumulation, we generated and characterized a number of independent transgenic tobacco (N. tabacum) lines with altered NtAOX1a gene expression and AP (alternative pathway) capacity. AOX efficiently inhibited the production of low-temperature-induced H2O2 and might be a major enzyme for scavenging H2O2 at low temperature. Furthermore, NtAOX1a may act as a regulator of KCN-induced resistance to TMV (tobacco mosaic virus) through the regulation of H2O2. Notably, a moderate accumulation of H2O2 under the control of NtAOX1a was crucial in viral resistance. Analysis of seed germination indicated an important role for NtAOX1a in germination under H2O2-induced oxidative stress when the CP (cytochrome pathway) was inhibited. These results demonstrate that NtAOX1a is necessary for plants to survive low temperature, pathogen attack and oxidative stress by scavenging ROS under these adverse conditions when the CP is restricted.
Collapse
Affiliation(s)
- Yi Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong 271018, People's Republic of China
| | | | | | | | | |
Collapse
|
20
|
Király L, Hafez YM, Fodor J, Király Z. Suppression of tobacco mosaic virus-induced hypersensitive-type necrotization in tobacco at high temperature is associated with downregulation of NADPH oxidase and superoxide and stimulation of dehydroascorbate reductase. J Gen Virol 2008; 89:799-808. [PMID: 18272772 DOI: 10.1099/vir.0.83328-0] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Tissue necroses and resistance during the hypersensitive response (HR) of tobacco to tobacco mosaic virus (TMV) are overcome at temperatures above 28 degrees C and the virus multiplies to high levels in the originally resistant N-gene expressing plants. We have demonstrated that chemical compounds that generate reactive oxygen species (ROS) or directly applied hydrogen peroxide (H(2)O(2)) are able to induce HR-type necroses in TMV-inoculated Xanthi-nc tobacco even at high temperatures (e.g. 30 degrees C). The amount of superoxide (O(2)(*-)) decreased, while H(2)O(2) slightly increased in TMV- and mock-inoculated leaves at 30 degrees C, as compared with 20 degrees C. Activity of NADPH oxidase and mRNA levels of genes that encode NADPH oxidase and an alternative oxidase, respectively, were significantly lower, while activity of dehydroascorbate reductase was significantly higher at 30 degrees C, as compared with 20 degrees C. It was possible to reverse or suppress the chemically induced HR-type necrotization at 30 degrees C by the application of antioxidants, such as superoxide dismutase and catalase, demonstrating that the development of HR-type necroses indeed depends on a certain level of superoxide and other ROS. Importantly, high TMV levels at 30 degrees C were similar in infected plants, whether the HR-type necrotization developed or not. Suppression of virus multiplication in resistant, HR-producing tobacco at lower temperatures seems to be independent of the appearance of necroses but is associated with temperatures below 28 degrees C.
Collapse
Affiliation(s)
- L Király
- Plant Protection Institute, Hungarian Academy of Sciences, PO Box 102, H-1525 Budapest, Hungary
| | - Y M Hafez
- Department of Botany, Plant Pathology Branch, Faculty of Agriculture, Kafr-El-Sheikh University, Kafr-El-Sheikh, Egypt
| | - J Fodor
- Plant Protection Institute, Hungarian Academy of Sciences, PO Box 102, H-1525 Budapest, Hungary
| | - Z Király
- Plant Protection Institute, Hungarian Academy of Sciences, PO Box 102, H-1525 Budapest, Hungary
| |
Collapse
|
21
|
Pasqualini S, Paolocci F, Borgogni A, Morettini R, Ederli L. The overexpression of an alternative oxidase gene triggers ozone sensitivity in tobacco plants. PLANT, CELL & ENVIRONMENT 2007; 30:1545-56. [PMID: 17944819 DOI: 10.1111/j.1365-3040.2007.01730.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The alternative oxidase (AOX) of plant mitochondria transfers electrons from the ubiquinione pool to oxygen without energy conservation and prevents the formation of reactive oxygen species (ROS) when the ubiquinone pool is over-reduced. Thus, AOX may be involved in plant acclimation to a number of oxidative stresses. To test this hypothesis, we exposed wild-type (WT) Xanthi tobacco plants as well as Xanthi plants transformed with the Bright Yellow tobacco AOX1a cDNA with enhanced (SN21 and SN29), and decreased (SN10) AOX capacity to an acute ozone (O3) fumigation. As a result of 5 h of O3 exposition (250 nL L(-1)), SN21 and SN29 plants surprisingly showed localized leaf damage, whereas SN10, similarly to WT plants, was undamaged. In keeping with this observation, WT and SN21 plants differed in their response to O3)for the expression profiles of catalase 1 (CAT1), catalase 2 (CAT2), glutathione peroxidase (GPX) and ascorbate peroxidase (APX) genes, and for the activity of these antioxidant enzymes, which were induced in WT. Concomitantly, although ozone induced H2O2 accumulation in WT and in all transgenic lines, only in transgenics with high AOX capacity the H2O2 level in the post-fumigation period was high. The alternative pathway of WT plants was strongly stimulated by O3, whereas in SN21 plants, the respiratory capacity was always high across the treatment. The present results show that, far from exerting a protective role, the overexpression of AOX triggers an increased O3 sensitivity in tobacco plants. We hypothesize that the AOX overexpression results in a decrease of mitochondrial ROS level that in turn alters the defensive mitochondrial to nucleus signalling pathway that activates ROS scavenging systems.
Collapse
Affiliation(s)
- Stefania Pasqualini
- Dipartimento di Biologia Vegetale e Biotecnologie Agroambientali e Zootecniche, Borgo XX Giugno, 74-I-06121 Perugia, Italy.
| | | | | | | | | |
Collapse
|
22
|
Ziebell H, Payne T, Berry JO, Walsh JA, Carr JP. A cucumber mosaic virus mutant lacking the 2b counter-defence protein gene provides protection against wild-type strains. J Gen Virol 2007; 88:2862-2871. [PMID: 17872541 DOI: 10.1099/vir.0.83138-0] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Several plant virus mutants, in which genes encoding silencing suppressor proteins have been deleted, are known to induce systemic or localized RNA silencing against themselves and other RNA molecules containing homologous sequences. Thus, it is thought that many cases of cross-protection, in which infection with a mild or asymptomatic virus mutant protects plants against challenge infection with closely related virulent viruses, can be explained by RNA silencing. We found that a cucumber mosaic virus (CMV) mutant of the subgroup IA strain Fny (Fny-CMVDelta2b), which cannot express the 2b silencing suppressor protein, cross-protects tobacco (Nicotiana tabacum) and Nicotiana benthamiana plants against disease induction by wild-type Fny-CMV. However, protection is most effective only if inoculation with Fny-CMVDelta2b and challenge inoculation with wild-type CMV occurs on the same leaf. Unexpectedly, Fny-CMVDelta2b also protected plants against infection with TC-CMV, a subgroup II strain that is not closely related to Fny-CMV. Additionally, in situ hybridization revealed that Fny-CMVDelta2b and Fny-CMV can co-exist in the same tissues but these tissues contain zones of Fny-CMVDelta2b-infected host cells from which Fny-CMV appears to be excluded. Taken together, it appears unlikely that cross-protection by Fny-CMVDelta2b occurs by induction of systemic RNA silencing against itself and homologous RNA sequences in wild-type CMV. It is more likely that protection occurs through either induction of very highly localized RNA silencing, or by competition between strains for host cells or resources.
Collapse
Affiliation(s)
- Heiko Ziebell
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, UK
| | - Tina Payne
- Warwick HRI, Wellesbourne, Warwick CV35 9EF, UK
| | - James O Berry
- Department of Biological Sciences, State University of New York at Buffalo, NY 14260, USA
| | | | - John P Carr
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, UK
| |
Collapse
|
23
|
Love AJ, Laval V, Geri C, Laird J, Tomos AD, Hooks MA, Milner JJ. Components of Arabidopsis defense- and ethylene-signaling pathways regulate susceptibility to Cauliflower mosaic virus by restricting long-distance movement. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2007; 20:659-70. [PMID: 17555274 DOI: 10.1094/mpmi-20-6-0659] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
We analyzed the susceptibility of Arabidopsis mutants with defects in salicylic acid (SA) and jasmonic acid (JA)/ethylene (ET) signaling to infection by Cauliflower mosaic virus (CaMV). Mutants cpr1-1 and cpr5-2, in which SA-dependent defense signaling is activated constitutively, were substantially more resistant than the wild type to systemic infection, implicating SA signaling in defense against CaMV. However, SA-deficient NahG, sid2-2, eds5-1, and pad4-1 did not show enhanced susceptibility. A cpr5 eds5 double mutant also was resistant, suggesting that resistance in cpr5 may function partially independently of SA. Treatment of cpr5 and cpr5 eds5, but not cpr1, with salicyl-hydroxamic acid, an inhibitor of alternative oxidase, partially restored susceptibility to wild-type levels. Mutants etr1-1, etr1-3, and ein2-1, and two mutants with lesions in ET/JA-mediated defense, eds4 and eds8, also showed reduced virus susceptibility, demonstrating that ET-dependent responses also play a role in susceptibility. We used a green fluorescent protein (GFP)-expressing CaMV recombinant to monitor virus movement. In mutants with reduced susceptibility, cpr1-1, cpr5-2, and etr1-1, CaMV-GFP formed local lesions similar to the wild type, but systemic spread was almost completely absent in cpr1 and cpr5 and was substantially reduced in etr1-1. Thus, mutations with enhanced systemic acquired resistance or compromised ET signaling show diminished long-distance virus movement.
Collapse
Affiliation(s)
- Andrew J Love
- Plant Science Group, Division of Biochemistry and Molecular Biology, Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow G12 8QQ, Scotland, UK
| | | | | | | | | | | | | |
Collapse
|
24
|
Li F, Zhang Y, Wang M, Zhang Y, Wu X, Guo X. Molecular cloning and expression characteristics of alternative oxidase gene of cotton (Gossypium hirsutum). Mol Biol Rep 2007; 35:97-105. [PMID: 17351819 DOI: 10.1007/s11033-007-9058-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2006] [Accepted: 01/17/2007] [Indexed: 10/23/2022]
Abstract
A novel alternative oxidase (AOX) gene derived from cotton (Gossypium hirsutum), designated as GhAOX1, was cloned with RACE-PCR. The full-length cDNA of GhAOX1was 1,298 bp in size, containing a 996 bp open reading frame (ORF) which corresponds to a precursor protein of 332 amino acid residues with a calculated molecular mass of 37.5 kDa. The predicted amino acid sequence exhibited 68.4%, 68.1%, 59.4%, and 69.8% homology to the alternative oxidases of Arabidopsis thaliana, Nicotiana tabacum, Solanum tuberosum and Glycine max, respectively. Interestingly, striking similarity in several coding regions, such as metal binding and hydrophobic alpha-helix regions was seen between GhAOX1 and other AOX1 proteins. Analysis of the exon/intron structure of the GhAOX1 gene showed that GhAOX1 consisted of four exons and three introns. Southern analysis indicated that the GhAOX1 was a single copy gene belonging to a multi-gene family. Expression analysis by Northern blot revealed that the GhAOX1 exhibited preferential expression in tissues, with the higher expression being found in cotyledons and petals. GhAOX1 was also found to be induced by a variety of stresses stimulation including cold, citrate, SA, KCN and antimycin A in cotton.
Collapse
Affiliation(s)
- Fang Li
- Shandong Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, 271018, Taian, Shandong, China
| | | | | | | | | | | |
Collapse
|
25
|
Alamillo JM, Saénz P, García JA. Salicylic acid-mediated and RNA-silencing defense mechanisms cooperate in the restriction of systemic spread of plum pox virus in tobacco. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2006; 48:217-27. [PMID: 17018032 DOI: 10.1111/j.1365-313x.2006.02861.x] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Plum pox virus (PPV) is able to replicate in inoculated leaves of Nicotiana tabacum, but is defective in systemic movement in this host. However, PPV produces a systemic infection in transgenic tobacco expressing the silencing suppressor P1/HC-Pro from tobacco etch virus (TEV). In this work we show that PPV is able to move to upper non-inoculated leaves of tobacco plants expressing bacterial salicylate hydroxylase (NahG) that degrades salicylic acid (SA). Replication and accumulation of PPV is higher in the locally infected leaves of plants deficient in SA or expressing TEV P1/HC-Pro silencing suppressor. Accumulation of viral derived small RNAs was reduced in the NahG transgenic plants, suggesting that SA might act as an enhancer of the RNA-silencing antiviral defense in tobacco. Besides, expression of SA-mediated defense transcripts, such as those of pathogenesis-related (PR) proteins PR-1 and PR-2 or alternative oxidase-1, as well as that of the putative RNA-dependent RNA polymerase NtRDR1, is induced in response to PPV infection, and the expression patterns of these defense transcripts are altered in the TEV P1/HC-Pro transgenic plants. Long-distance movement of PPV is highly enhanced in NahG x P1/HC-Pro double-transgenic plants and systemic symptoms in these plants reveal that the expression of an RNA-silencing suppressor and the lack of SA produce additive but distinct effects. Our results suggest that SA might act as an enhancer of the RNA-silencing antiviral defense in tobacco, and that silencing suppressors, such as P1/HC-Pro, also alter the SA-mediated defense. Both an RNA-silencing and an SA-mediated defense mechanism could act together to limit PPV infection.
Collapse
Affiliation(s)
- Josefa M Alamillo
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología (CSIC), Campus Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | | | | |
Collapse
|