1
|
Pozharskiy A, Mendybayeva A, Moisseyev R, Khusnitdinova M, Nizamdinova G, Gritsenko D. Molecular detection and sequencing of beet necrotic yellow vein virus and beet cryptic virus 2 in sugar beet from Kazakhstan. Front Microbiol 2024; 15:1461988. [PMID: 39600569 PMCID: PMC11588710 DOI: 10.3389/fmicb.2024.1461988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 10/23/2024] [Indexed: 11/29/2024] Open
Abstract
Introduction Beet necrotic yellow vein virus (BNYVV) is a common viral pathogen that causes considerable economic loss globally. In the present study, a commercial realtime PCR test system and custom loop mediated amplification primers were used to detect the virus in asymptomatic sugar beet samples. Methods A total of 107 of 124 samples tested positive for the presence of the A type BNYVV coat protein gene. Near complete sequences of RNA-3 and RNA-4 were obtained using reverse transcription, followed by nanopore sequencing of 14 samples. Results and discussion A comparison with available sequences, including previously published isolates Kas2 and Kas3 from Kazakhstan, identified RNA-3 as similar to such of the P-type isolates Puthiviers and Kas3. RNA-5 was not detected using real-time PCR or cDNA amplification. Unique variable sites were identified in the p25 protein sequence translated from RNA-3. Another virus, beet cryptic virus 2 (BCV2), was identified and sequenced in samples infected with BNYVV. With 85.28% genome coverage, the identified BCV2 samples were very similar to the previously reported isolates from Hungary and Germany.
Collapse
Affiliation(s)
- Alexandr Pozharskiy
- Laboratory of Molecular Biology, Institute of Plant Biology and Biotechnology, Almaty, Kazakhstan
| | - Aruzhan Mendybayeva
- Laboratory of Molecular Biology, Institute of Plant Biology and Biotechnology, Almaty, Kazakhstan
| | - Ruslan Moisseyev
- Laboratory of Molecular Biology, Institute of Plant Biology and Biotechnology, Almaty, Kazakhstan
- Department of Molecular Biology and Genetics, Al-Farabi Kazakh National University, Almaty, Kazakhstan
| | - Marina Khusnitdinova
- Laboratory of Molecular Biology, Institute of Plant Biology and Biotechnology, Almaty, Kazakhstan
| | - Gulnaz Nizamdinova
- Laboratory of Molecular Biology, Institute of Plant Biology and Biotechnology, Almaty, Kazakhstan
| | - Dilyara Gritsenko
- Laboratory of Molecular Biology, Institute of Plant Biology and Biotechnology, Almaty, Kazakhstan
- Department of Molecular Biology and Genetics, Al-Farabi Kazakh National University, Almaty, Kazakhstan
| |
Collapse
|
2
|
Weiland JJ, Wyatt N, Camelo V, Spanner RE, Hladky LJ, Ramachandran V, Secor GA, Martin FN, Wintermantel WM, Bolton MD. Beet Soil-Borne Virus Is a Helper Virus for the Novel Beta vulgaris Satellite Virus 1A. PHYTOPATHOLOGY 2024; 114:1126-1136. [PMID: 38451582 DOI: 10.1094/phyto-08-23-0299-kc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
Sugar beet (Beta vulgaris) is grown in temperate regions around the world as a source of sucrose used for natural sweetening. Sugar beet is susceptible to a number of viral diseases, but identification of the causal agent(s) under field conditions is often difficult due to mixtures of viruses that may be responsible for disease symptoms. In this study, the application of RNAseq to RNA extracted from diseased sugar beet roots obtained from the field and from greenhouse-reared plants grown in soil infested with the virus disease rhizomania (causal agent beet necrotic yellow vein virus; BNYVV) yielded genome-length sequences from BNYVV, as well as beet soil-borne virus (BSBV). The nucleotide identities of the derived consensus sequence of BSBV RNAs ranged from 99.4 to 96.7% (RNA1), 99.3 to 95.3% (RNA2), and 98.3 to 95.9% (RNA3) compared with published BSBV sequences. Based on the BSBV genome consensus sequence, clones of the genomic RNAs 1, 2, and 3 were obtained to produce RNA copies of the genome through in vitro transcription. Capped RNA produced from the clones was infectious when inoculated into leaves of Chenopodium quinoa and B. vulgaris, and extracts from transcript-infected C. quinoa leaves could infect sugar beet seedling roots through a vortex inoculation method. Subsequent exposure of these infected sugar beet seedling roots to aviruliferous Polymyxa betae, the protist vector of both BNYVV and BSBV, confirmed that BSBV derived from the infectious clones could be transmitted by the vector. Co-inoculation of BSBV synthetic transcripts with transcripts of a cloned putative satellite virus designated Beta vulgaris satellite virus 1A (BvSat1A) resulted in the production of lesions on leaves of C. quinoa similar to those produced by inoculation with BSBV alone. Nevertheless, accumulation of genomic RNA and the encoded protein of the satellite virus in co-inoculated leaves was readily detected on Northern and Western blots, respectively, whereas no accumulation of satellite virus products occurred when satellite virus RNA was inoculated alone. The predicted sequence of the detected protein encoded by BvSat1A bears hallmarks of coat proteins of other satellite viruses, and virions of a size consistent with a satellite virus were observed in samples testing positive for the virus. The results demonstrate that BSBV is a helper virus for the novel satellite virus BvSat1A.
Collapse
Affiliation(s)
- John J Weiland
- U.S. Department of Agriculture-Agricultural Research Service, Edward T. Schafer Agricultural Research Center, Fargo, ND
| | - Nathan Wyatt
- U.S. Department of Agriculture-Agricultural Research Service, Edward T. Schafer Agricultural Research Center, Fargo, ND
| | - Viviana Camelo
- U.S. Department of Agriculture-Agricultural Research Service, Sam Farr Crop Improvement and Protection Research Center, Salinas, CA
| | - Rebecca E Spanner
- U.S. Department of Agriculture-Agricultural Research Service, Edward T. Schafer Agricultural Research Center, Fargo, ND
- Department of Plant Pathology, North Dakota State University, Fargo, ND
| | - Laura Jenkins Hladky
- U.S. Department of Agriculture-Agricultural Research Service, Sam Farr Crop Improvement and Protection Research Center, Salinas, CA
| | - Vanitharani Ramachandran
- U.S. Department of Agriculture-Agricultural Research Service, Edward T. Schafer Agricultural Research Center, Fargo, ND
| | - Gary A Secor
- Department of Plant Pathology, North Dakota State University, Fargo, ND
| | - Frank N Martin
- U.S. Department of Agriculture-Agricultural Research Service, Sam Farr Crop Improvement and Protection Research Center, Salinas, CA
| | - William M Wintermantel
- U.S. Department of Agriculture-Agricultural Research Service, Sam Farr Crop Improvement and Protection Research Center, Salinas, CA
| | - Melvin D Bolton
- U.S. Department of Agriculture-Agricultural Research Service, Edward T. Schafer Agricultural Research Center, Fargo, ND
- Department of Plant Pathology, North Dakota State University, Fargo, ND
| |
Collapse
|
3
|
Liebe S, Maiss E, Varrelmann M. The arms race between beet necrotic yellow vein virus and host resistance in sugar beet. FRONTIERS IN PLANT SCIENCE 2023; 14:1098786. [PMID: 37063189 PMCID: PMC10102433 DOI: 10.3389/fpls.2023.1098786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 03/13/2023] [Indexed: 06/19/2023]
Abstract
Beet necrotic yellow vein virus (BNYVV) causes rhizomania disease in sugar beet (Beta vulgaris), which is controlled since more than two decades by cultivars harboring the Rz1 resistance gene. The development of resistance-breaking strains has been favored by a high selection pressure on the soil-borne virus population. Resistance-breaking is associated with mutations at amino acid positions 67-70 (tetrad) in the RNA3 encoded pathogenicity factor P25 and the presence of an additional RNA component (RNA5). However, natural BNYVV populations are highly diverse making investigations on the resistance-breaking mechanism rather difficult. Therefore, we applied a reverse genetic system for BNYVV (A type) to study Rz1 resistance-breaking by direct agroinoculation of sugar beet seedlings. The bioassay allowed a clear discrimination between susceptible and Rz1 resistant plants already four weeks after infection, and resistance-breaking was independent of the sugar beet Rz1 genotype. A comprehensive screen of natural tetrads for resistance-breaking revealed several new mutations allowing BNYVV to overcome Rz1. The supplementation of an additional RNA5 encoding the pathogenicity factor P26 allowed virus accumulation in the Rz1 genotype independent of the P25 tetrad. This suggests the presence of two distinct resistance-breaking mechanisms allowing BNYVV to overcome Rz1. Finally, we showed that the resistance-breaking effect of the tetrad and the RNA5 is specific to Rz1 and has no effect on the stability of the second resistance gene Rz2. Consequently, double resistant cultivars (Rz1+Rz2) should provide effective control of Rz1 resistance-breaking strains. Our study highlights the flexibility of the viral genome allowing BNYVV to overcome host resistance, which underlines the need for a continuous search for alternative resistance genes.
Collapse
Affiliation(s)
- Sebastian Liebe
- Department of Phytopathology, Institute of Sugar Beet Research, Göttingen, Germany
| | - Edgar Maiss
- Department of Phytomedicine, Plant Virology, Institute of Horticultural Production Systems, Leibniz University, Hannover, Germany
| | - Mark Varrelmann
- Department of Phytopathology, Institute of Sugar Beet Research, Göttingen, Germany
| |
Collapse
|
4
|
Müllender MM, Varrelmann M, Maiss E, Liebe S. Comparative analysis of virus pathogenicity and resistance-breaking between the P- and A-type from the beet necrotic yellow vein virus using infectious cDNA clones. J Gen Virol 2022; 103. [PMID: 35947097 DOI: 10.1099/jgv.0.001777] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The A-type of beet necrotic yellow vein virus (BNYVV) is widely distributed in Europe and is one of the major virus types causing rhizomania disease in sugar beet. The closely related P-type is mainly limited to a small region in France (Pithiviers). Both virus types possess four RNAs (RNA1-4), but the P-type harbours an additional fifth RNA species (RNA5). The P-type is associated with stronger disease symptoms and resistance-breaking of Rz1, one of the two resistance genes which are used to control BNYVV infection. These characteristics are presumably due to the presence of RNA5, but experimental evidence for this is lacking. We generated the first infectious cDNA clone of BNYVV P-type to study its pathogenicity in sugar beet in comparison to a previously developed A-type clone. Using this tool, we confirmed the pathogenicity of the P-type clone in the experimental host Nicotiana benthamiana and two Beta species, B. macrocarpa and B. vulgaris. Independent of RNA5, both the A- and the P-type accumulated in lateral roots and reduced the taproot weight of a susceptible sugar beet genotype to a similar extent. In contrast, only the P-type clone was able to accumulate a virus titre in an Rz1-resistant variety whereas the A-type clone failed to infect this variety. The efficiency of the P-type to overcome Rz1 resistance was strongly associated with the presence of RNA5. Only a double resistant variety, harbouring Rz1 and Rz2, prevented an infection with the P-type. Reassortment experiments between the P- and A-type clones demonstrated that both virus types can exchange whole RNA components without losing the ability to replicate and to move systemically in sugar beet. Although our study highlights the close evolutionary relationship between the two virus types, we were able to demonstrate distinct pathogenicity properties that are attributed to the presence of RNA5 in the P-type.
Collapse
Affiliation(s)
| | - Mark Varrelmann
- Department of Phytopathology, Institute of Sugar Beet Research, Göttingen, Germany
| | - Edgar Maiss
- Institute of Horticultural Production Systems, Plant Virology, Department of Phytomedicine, Leibniz University, Hannover, Germany
| | - Sebastian Liebe
- Department of Phytopathology, Institute of Sugar Beet Research, Göttingen, Germany
| |
Collapse
|
5
|
Wetzel V, Willlems G, Darracq A, Galein Y, Liebe S, Varrelmann M. The Beta vulgaris-derived resistance gene Rz2 confers broad-spectrum resistance against soilborne sugar beet-infecting viruses from different families by recognizing triple gene block protein 1. MOLECULAR PLANT PATHOLOGY 2021; 22:829-842. [PMID: 33951264 PMCID: PMC8232027 DOI: 10.1111/mpp.13066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/19/2021] [Accepted: 03/23/2021] [Indexed: 05/03/2023]
Abstract
Sugar beet cultivation is dependent on an effective control of beet necrotic yellow vein virus (BNYVV, family Benyviridae), which causes tremendous economic losses in sugar production. As the virus is transmitted by a soilborne protist, the use of resistant cultivars is currently the only way to control the disease. The Rz2 gene product belongs to a family of proteins conferring resistance towards diverse pathogens in plants. These proteins contain coiled-coil and leucine-rich repeat domains. After artificial inoculation of homozygous Rz2 resistant sugar beet lines, BNYVV and beet soilborne mosaic virus (BSBMV, family Benyviridae) were not detected. Analysis of the expression of Rz2 in naturally infected plants indicated constitutive expression in the root system. In a transient assay, coexpression of Rz2 and the individual BNYVV-encoded proteins revealed that only the combination of Rz2 and triple gene block protein 1 (TGB1) resulted in a hypersensitive reaction (HR)-like response. Furthermore, HR was also triggered by the TGB1 homologues from BSBMV as well as from the more distantly related beet soilborne virus (family Virgaviridae). This is the first report of an R gene providing resistance across different plant virus families.
Collapse
|
6
|
Dehnen‐Schmutz K, Di Serio F, Gonthier P, Jacques M, Jaques Miret JA, Fejer Justesen A, MacLeod A, Magnusson CS, Milonas P, Navas‐Cortes JA, Parnell S, Potting R, Reignault PL, Thulke H, Van der Werf W, Civera AV, Yuen J, Zappalà L, Candresse T, Chatzivassiliou E, Winter S, Maiorano A, Delbianco A, Bragard C. Pest categorisation of beet necrotic yellow vein virus. EFSA J 2020; 18:e06360. [PMID: 33363645 PMCID: PMC7754942 DOI: 10.2903/j.efsa.2020.6360] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Following a request from the EU Commission, the Panel on Plant Health performed a categorisation of beet necrotic yellow vein virus (BNYVV), the causal agent of the sugar beet rhizomania disease. The virus is currently listed in Annex III as a protected zone (PZ) quarantine pest of the Commission Implementing Regulation (EU) 2019/2072. The identity of the BNYVV is well established. BNYVV is a soil-borne virus transmitted by the obligate root plasmodiophorid endoparasite Polymyxa betae. BNYVV is widely distributed in the EU, but is not reported in the following EU PZs: Ireland, France (Brittany), Portugal (Azores), Finland and Northern Ireland. The virus may enter, become established and spread in the PZs via P. betae resting spores with soil and growing media as such or attached to machinery and with roots and tubercles of species other than B. vulgaris and with plants for planting. Introduction of BNYVV would have a negative impact on sugar beet and other beet crops in PZs, because of yield and sugar content reduction. Phytosanitary measures are available to reduce the likelihood of entry and spread in the PZs. Once the virus and its plasmodiophorid vector have entered a PZ, their eradication would be difficult due to the persistence of viruliferous resting spores in the soil. The main knowledge gaps or uncertainties identified concerning the presence of BNYVV in the PZs and the incidence and distribution of BNYVV in Switzerland, a country to which a range of specific requirements do not apply. BNYVV meets all the criteria that are within the remit of EFSA to qualify as a potential protected zone union quarantine pest. Plants for planting are not considered as a main means of spread, and therefore BNYVV does not satisfy all the criteria evaluated by EFSA to qualify as potential Union regulated non-quarantine pest.
Collapse
|
7
|
RNAseq Analysis of Rhizomania-Infected Sugar Beet Provides the First Genome Sequence of Beet Necrotic Yellow Vein Virus from the USA and Identifies a Novel Alphanecrovirus and Putative Satellite Viruses. Viruses 2020; 12:v12060626. [PMID: 32531939 PMCID: PMC7354460 DOI: 10.3390/v12060626] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/04/2020] [Accepted: 06/09/2020] [Indexed: 02/06/2023] Open
Abstract
“Rhizomania” of sugar beet is a soilborne disease complex comprised of beet necrotic yellow vein virus (BNYVV) and its plasmodiophorid vector, Polymyxa betae. Although BNYVV is considered the causal agent of rhizomania, additional viruses frequently accompany BNYVV in diseased roots. In an effort to better understand the virus cohort present in sugar beet roots exhibiting rhizomania disease symptoms, five independent RNA samples prepared from diseased beet seedlings reared in a greenhouse or from field-grown adult sugar beet plants and enriched for virus particles were subjected to RNAseq. In all but a healthy control sample, the technique was successful at identifying BNYVV and provided sequence reads of sufficient quantity and overlap to assemble > 98% of the published genome of the virus. Utilizing the derived consensus sequence of BNYVV, infectious RNA was produced from cDNA clones of RNAs 1 and 2. The approach also enabled the detection of beet soilborne mosaic virus (BSBMV), beet soilborne virus (BSBV), beet black scorch virus (BBSV), and beet virus Q (BVQ), with near-complete genome assembly afforded to BSBMV and BBSV. In one field sample, a novel virus sequence of 3682 nt was assembled with significant sequence similarity and open reading frame (ORF) organization to members within the subgenus Alphanecrovirus (genus Necrovirus; family Tombusviridae). Construction of a DNA clone based on this sequence led to the production of the novel RNA genome in vitro that was capable of inducing local lesion formation on leaves of Chenopodium quinoa. Additionally, two previously unreported satellite viruses were revealed in the study; one possessing weak similarity to satellite maize white line mosaic virus and a second possessing moderate similarity to satellite tobacco necrosis virus C. Taken together, the approach provides an efficient pipeline to characterize variation in the BNYVV genome and to document the presence of other viruses potentially associated with disease severity or the ability to overcome resistance genes used for sugar beet rhizomania disease management.
Collapse
|
8
|
Yüksel Özmen C, Khabbazi SD, Khabbazi AD, Gürel S, Kaya R, Oğuz MÇ, Turan F, Rezaei F, Kibar U, Gürel E, Ergül A. Genome composition analysis of multipartite BNYVV reveals the occurrence of genetic re-assortment in the isolates of Asia Minor and Thrace. Sci Rep 2020; 10:4129. [PMID: 32139777 PMCID: PMC7058063 DOI: 10.1038/s41598-020-61091-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 02/17/2020] [Indexed: 11/08/2022] Open
Abstract
Beet necrotic yellow vein virus (BNYVV) is the cause of rhizomania, an important disease of sugar beet around the world. The multipartite genome of the BNYVV contains four or five single-stranded RNA that has been used to characterize the virus. Understanding genome composition of the virus not only determines the degree of pathogenicity but also is required to development of resistant varieties of sugar beet. Resistance to rhizomania has been conferred to sugar beet varieties by conventional breeding methods or modern genome engineering tools. However, over time, viruses undergo genetic alterations and develop new variants to break crop resistance. Here, we report the occurrence of genetic reassortment and emergence of new variants of BNYVV among the isolates of Thrace and Asia Minor (modern-day Turkey). Our findings indicate that the isolates harbor European A-type RNA-2 and RNA-3, nevertheless, RNA-5 is closely related to East Asian J-type. Furthermore, RNA-1 and RNA-4 are either derived from A, B, and P-types or a mixture of them. The RNA-5 factor which enhance the pathogenicity, is rarely found in the isolates studied (20%). The creation of new variants of the virus emphasizes the necessity to develop new generation of resistant crops. We anticipate that these findings will be useful for future genetic characterization and evolutionary studies of BNYVV, as well as for developing sustainable strategies for the control of this destructive disease.
Collapse
Affiliation(s)
| | | | | | - Songül Gürel
- Bolu Abant İzzet Baysal University, Department of Biology, 14030, Bolu, Turkey
| | - Rıza Kaya
- Sugar Institute, Department of Phytopathology, Etimesgut, 06930, Ankara, Turkey
| | | | - Ferzat Turan
- Ankara University, Biotechnology Institute, 06135, Ankara, Turkey
| | - Fereshteh Rezaei
- Ankara University, Biotechnology Institute, 06135, Ankara, Turkey
- Başkent University, Institute of Transplantation and Gene Sciences, 06980, Kahramankazan, Ankara, Turkey
| | - Umut Kibar
- Republic of Turkey Ministry of Agriculture and Forestry, Agriculture and Rural Development Support Institution, 06550, Ankara, Turkey
| | - Ekrem Gürel
- Bolu Abant İzzet Baysal University, Department of Biology, 14030, Bolu, Turkey
| | - Ali Ergül
- Ankara University, Biotechnology Institute, 06135, Ankara, Turkey.
| |
Collapse
|
9
|
Liebe S, Wibberg D, Maiss E, Varrelmann M. Application of a Reverse Genetic System for Beet Necrotic Yellow Vein Virus to Study Rz1 Resistance Response in Sugar Beet. FRONTIERS IN PLANT SCIENCE 2020; 10:1703. [PMID: 32010172 PMCID: PMC6978805 DOI: 10.3389/fpls.2019.01703] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 12/03/2019] [Indexed: 05/20/2023]
Abstract
Beet necrotic yellow vein virus (BNYVV) is causal agent of rhizomania disease, which is the most devastating viral disease in sugar beet production leading to a dramatic reduction in beet yield and sugar content. The virus is transmitted by the ubiquitous distributed soil-borne plasmodiophoromycete Polymyxa betae that infects the root tissue of young sugar beet plants. Rz1 is the major resistance gene widely used in most sugar beet varieties to control BNYVV. The strong selection pressure on the virus population promoted the development of strains that can overcome Rz1 resistance. Resistance-breaking has been associated with mutations in the RNA3-encoded pathogenicity factor P25 at amino acid positions 67-70 (tetrad) as well as with the presence of an additional RNA component (RNA5). However, respective studies investigating the resistance-breaking mechanism by a reverse genetic system are rather scarce. Therefore, we studied Rz1 resistance-breaking in sugar beet using a recently developed infectious clone of BNYVV A-type. A vector free infection system for the inoculation of young sugar beet seedlings was established. This assay allowed a clear separation between a susceptible and a Rz1 resistant genotype by measuring the virus content in lateral roots at 52 dpi. However, mechanical inoculation of sugar beet leaves led to the occurrence of genotype independent local lesions, suggesting that Rz1 mediates a root specific resistance toward BNYVV that is not active in leaves. Mutation analysis demonstrated that different motifs within the P25 tetrad enable increased virus replication in roots of the resistant genotype. The resistance-breaking ability was further confirmed by the visualization of BNYVV in lateral roots and leaves using a fluorescent-labeled complementary DNA clone of RNA2. Apart from that, reassortment experiments evidenced that RNA5 enables Rz1 resistance-breaking independent of the P25 tetrad motif. Finally, we could identify a new resistance-breaking mutation, which was selected by high-throughput sequencing of a clonal virus population after one host passage in a resistant genotype. Our results demonstrate the feasibility of the reverse genetic system for resistance-breaking analysis and illustrates the genome plasticity of BNYVV allowing the virus to adapt rapidly to sugar beet resistance traits.
Collapse
Affiliation(s)
- Sebastian Liebe
- Department of Phytopathology, Institute of Sugar Beet Research, Göttingen, Germany
| | - Daniel Wibberg
- Genome Research of Industrial Microorganisms, CeBiTec, Bielefeld University, Bielefeld, Germany
| | - Edgar Maiss
- Plant Virology, Department of Phytomedicine, Institute of Horticultural Production Systems, Leibniz University, Hannover, Germany
| | - Mark Varrelmann
- Department of Phytopathology, Institute of Sugar Beet Research, Göttingen, Germany
| |
Collapse
|
10
|
Galein Y, Legrève A, Bragard C. Long Term Management of Rhizomania Disease-Insight Into the Changes of the Beet necrotic yellow vein virus RNA-3 Observed Under Resistant and Non-resistant Sugar Beet Fields. FRONTIERS IN PLANT SCIENCE 2018; 9:795. [PMID: 30013579 PMCID: PMC6036237 DOI: 10.3389/fpls.2018.00795] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 05/24/2018] [Indexed: 05/09/2023]
Abstract
Rhizomania disease, caused by the Beet necrotic yellow vein virus (BNYVV), is considered as one of the major constraints for sugar beet production, worldwide. As a result of the introgression of major resistance genes (Holly, Rz2) in commercially available sugar beet varieties, the virus has endured strong selection pressure since the 90s'. Understanding the virus response and diversity to sugar beet resistance is a key factor for a sustainable management of only few resistance genes. Here we report rhizomania surveys conducted in a rhizomania hot spot, the Pithiviers area (France) during a 4-year period and complementary to the study of Schirmer et al. (2005). The study aimed at evaluating the intra- and inter-field BNYVV diversity in response to different sources of resistance and over the growing season. To follow rhizomania development over the sugar beet growing season, extensive field samplings combined with field assays were performed in this study. The evolution of the BNYVV diversity was assessed at intra- and inter-field levels, with sugar beet cultivars containing different resistance genes (Rz1, Rz1 + Heterodera schachtii resistance and Rz1Rz2). Intra-field diversity was analyzed at the beginning and the end of the growing season of each field. From more than one thousand field samples, the simultaneous presence of the different A, B and P types of BNYVV was confirmed, with 21 variants identified at positions 67-70 of the p25 tetrad. The first variant, AYHR, was found most commonly followed by SYHG. Numerous mixed infections (9.93% of the samples), mostly of B-type with P-type, have also been evidenced. Different tetrads associated with the A- or B-type were also found with a fifth RNA-genome component known to allow more aggressiveness to BNYVV on sugar beet roots. Cultivars with Rz1+Rz2 resistant genes showed few root symptoms even if the BNYVV titre was quite high according to the BNYVV type present. The virus infectious potential in the soil at the end of the growing season with such cultivars was also lower despite a wider diversity at the BNYVV RNA3 sequence level. Rz1+Rz2 cultivars also exhibited a lower presence of Beet soil-borne virus (BSBV), a P. betae-transmitted Pomovirus. Cultivars with Rz1 and nematode (N) resistance genes cultivated in field infected with nematodes showed lower BNYVV titre than those with Rz1 or Rz1+Rz2 cultivars. Overall, the population structure of BNYVV in France is shown to be different from that previously evidenced in different world areas. Implications for long-term management of the resistance to rhizomania is discussed.
Collapse
Affiliation(s)
| | - Anne Legrève
- Applied Microbiology-Phytopathology, Earth & Life Institute, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Claude Bragard
- Applied Microbiology-Phytopathology, Earth & Life Institute, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| |
Collapse
|
11
|
Almasi MA, Almasi G. Development and evaluation of a reverse transcription loop-mediated isothermal amplification assay for detection of beet necrotic yellow vein virus. Arch Virol 2016; 162:495-500. [PMID: 27738843 DOI: 10.1007/s00705-016-3116-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 10/08/2016] [Indexed: 10/20/2022]
Abstract
Sugar beet can be infected by many different viruses that can reduce yield; beet necrotic yellow vein virus (BNYVV) is one of the most economically important viruses of this crop plant. This report describes a new reverse transcription loop-mediated isothermal amplification (RT-LAMP) assay for identification of BNYVV. In addition, a novel immunocapture (IC) RT-LAMP assay for rapid and easy detection (without RNA extraction) of BNYVV was developed here and compared with DAS-ELISA and RT-LAMP assays. Our results show that the IC-RT-LAMP assay is a highly reliable alternative assay for identification of BNYVV.
Collapse
Affiliation(s)
- Mohammad Amin Almasi
- Young Researchers and Elites Club, North Tehran Branch, Islamic Azad University, Tehran, Iran.
| | - Galavizh Almasi
- Young Researchers and Elites Club, North Tehran Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
12
|
Zhuo N, Jiang N, Zhang C, Zhang ZY, Zhang GZ, Han CG, Wang Y. Genetic diversity and population structure of beet necrotic yellow vein virus in China. Virus Res 2015; 205:54-62. [PMID: 25997927 DOI: 10.1016/j.virusres.2015.05.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 05/04/2015] [Accepted: 05/10/2015] [Indexed: 10/23/2022]
Abstract
Beet necrotic yellow vein virus (BNYVV) is a serious threat to the sugar beet industry worldwide. However, little information is available regarding the genetic diversity and population structure of BNYVV in China. Here, we analyzed multiple sequences from four genomic regions (CP, RNA3, RNA4 and RNA5) of a set of Chinese isolates. Sequence analyses revealed that several isolates were mixed infections of variants with different genotypes and/or different p25 tetrad motifs. In total, 12 distinct p25 tetrads were found in the Chinese BNYVV population, of which four tetrads were newly identified. Phylogenetic analyses based on four genes (CP, RNA3-p25, RNA4-p31 and RNA5-p26) in isolates from around the world revealed the existence of two to four groups, which mostly corresponded to previously reported phylogenetic groups. Two new subgroups and a new group were identified from the Chinese isolates in p25 and p26 trees, respectively. Selection pressure analysis indicated that there was a positive selection pressure on the p25 from the Chinese isolates, but the other three proteins were under a negative selection pressure. There was frequent gene flow between geographically distant populations, which meant that BNYVV populations from different provinces were not geographically differentiated.
Collapse
Affiliation(s)
- Na Zhuo
- State Key Laboratory for Agrobiotechnology and Department of Plant Pathology, China Agricultural University, Beijing 100193, China.
| | - Ning Jiang
- State Key Laboratory for Agrobiotechnology and Department of Plant Pathology, China Agricultural University, Beijing 100193, China.
| | - Chao Zhang
- State Key Laboratory for Agrobiotechnology and Department of Plant Pathology, China Agricultural University, Beijing 100193, China.
| | - Zong-Ying Zhang
- State Key Laboratory for Agrobiotechnology and Department of Plant Pathology, China Agricultural University, Beijing 100193, China.
| | - Guo-Zhen Zhang
- State Key Laboratory for Agrobiotechnology and Department of Plant Pathology, China Agricultural University, Beijing 100193, China.
| | - Cheng-Gui Han
- State Key Laboratory for Agrobiotechnology and Department of Plant Pathology, China Agricultural University, Beijing 100193, China.
| | - Ying Wang
- State Key Laboratory for Agrobiotechnology and Department of Plant Pathology, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
13
|
A newly isolated reovirus has the simplest genomic and structural organization of any reovirus. J Virol 2014; 89:676-87. [PMID: 25355879 DOI: 10.1128/jvi.02264-14] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED A total of 2,691 mosquitoes representing 17 species was collected from eight locations in southwest Cameroon and screened for pathogenic viruses. Ten isolates of a novel reovirus (genus Dinovernavirus) were detected by culturing mosquito pools on Aedes albopictus (C6/36) cell cultures. A virus that caused overt cytopathic effects was isolated, but it did not infect vertebrate cells or produce detectable disease in infant mice after intracerebral inoculation. The virus, tentatively designated Fako virus (FAKV), represents the first 9-segment, double-stranded RNA (dsRNA) virus to be isolated in nature. FAKV appears to have a broad mosquito host range, and its detection in male specimens suggests mosquito-to-mosquito transmission in nature. The structure of the T=1 FAKV virion, determined to subnanometer resolution by cryoelectron microscopy (cryo-EM), showed only four proteins per icosahedral asymmetric unit: a dimer of the major capsid protein, one turret protein, and one clamp protein. While all other turreted reoviruses of known structures have at least two copies of the clamp protein per asymmetric unit, FAKV's clamp protein bound at only one conformer of the major capsid protein. The FAKV capsid architecture and genome organization represent the most simplified reovirus described to date, and phylogenetic analysis suggests that it arose from a more complex ancestor by serial loss-of-function events. IMPORTANCE We describe the detection, genetic, phenotypic, and structural characteristics of a novel Dinovernavirus species isolated from mosquitoes collected in Cameroon. The virus, tentatively designated Fako virus (FAKV), is related to both single-shelled and partially double-shelled viruses. The only other described virus in this genus was isolated from cultured mosquito cells. It was previously unclear whether the phenotypic characteristics of that virus were reflective of this genus in nature or were altered during serial passaging in the chronically infected cell line. FAKV is a naturally occurring single-shelled reovirus with a unique virion architecture that lacks several key structural elements thought to stabilize a single-shelled reovirus virion, suggesting what may be the minimal number of proteins needed to form a viable reovirus particle. FAKV evolved from more complex ancestors by losing a genome segment and several virion proteins.
Collapse
|
14
|
Wu WQ, Fan HY, Jiang N, Wang Y, Zhang ZY, Zhang YL, Wang XB, Li DW, Yu JL, Han CG. Infection of Beet necrotic yellow vein virus with RNA4-encoded P31 specifically up-regulates pathogenesis-related protein 10 in Nicotiana benthamiana. Virol J 2014; 11:118. [PMID: 24961274 PMCID: PMC4078943 DOI: 10.1186/1743-422x-11-118] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 06/09/2014] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Beet necrotic yellow vein virus (BNYVV) is the infectious agent of sugar beet rhizomania, which consists of four or five plus-sense RNAs. RNA4 of BNYVV is not essential for virus propagation in Nicotiana benthamiana but has a major effect on symptom expression. Early reports showed that RNA4-encoded P31 was associated with severe symptoms, such as curling and dwarfing, in N. benthamiana. RESULTS We discovered that the pathogenesis-related protein 10 (PR-10) gene can be up-regulated in BNYVV-infected N. benthamiana in the presence of RNA4 and that it had a close link with symptom development. Our frame-shift, deletion and substitution analysis showed that only the entire P31 could induce PR-10 up-regulation during BNYVV infection and that all the tryptophans and six cysteines (C174, C183, C186, C190, C197 and C199) in the cysteine-rich P31 had significant effects on PR-10 expression. However, P31 could not interact directly with PR-10 in yeast. CONCLUSIONS Our data demonstrated that only integrated P31 specifically induced PR-10 transcription, which coincided closely with the appearance of severe symptoms in BNYVV-infected N. benthamiana, although they could not interact directly with each other in yeast.
Collapse
Affiliation(s)
- Wen-Qi Wu
- State Key Laboratory of Agrobiotechnology and the Ministry of Agriculture Key Laboratory for Plant Pathology, China Agricultural University, Beijing 100193, China
| | - Hui-Yan Fan
- State Key Laboratory of Agrobiotechnology and the Ministry of Agriculture Key Laboratory for Plant Pathology, China Agricultural University, Beijing 100193, China
| | - Ning Jiang
- State Key Laboratory of Agrobiotechnology and the Ministry of Agriculture Key Laboratory for Plant Pathology, China Agricultural University, Beijing 100193, China
| | - Ying Wang
- State Key Laboratory of Agrobiotechnology and the Ministry of Agriculture Key Laboratory for Plant Pathology, China Agricultural University, Beijing 100193, China
| | - Zong-Ying Zhang
- State Key Laboratory of Agrobiotechnology and the Ministry of Agriculture Key Laboratory for Plant Pathology, China Agricultural University, Beijing 100193, China
| | - Yong-Liang Zhang
- State Key Laboratory of Agrobiotechnology and the Ministry of Agriculture Key Laboratory for Plant Pathology, China Agricultural University, Beijing 100193, China
| | - Xian-Bing Wang
- State Key Laboratory of Agrobiotechnology and the Ministry of Agriculture Key Laboratory for Plant Pathology, China Agricultural University, Beijing 100193, China
| | - Da-Wei Li
- State Key Laboratory of Agrobiotechnology and the Ministry of Agriculture Key Laboratory for Plant Pathology, China Agricultural University, Beijing 100193, China
| | - Jia-Lin Yu
- State Key Laboratory of Agrobiotechnology and the Ministry of Agriculture Key Laboratory for Plant Pathology, China Agricultural University, Beijing 100193, China
| | - Cheng-Gui Han
- State Key Laboratory of Agrobiotechnology and the Ministry of Agriculture Key Laboratory for Plant Pathology, China Agricultural University, Beijing 100193, China
- Department of Plant Pathology, China Agricultural University, Beijing 100193, China
| |
Collapse
|
15
|
Nouri S, Arevalo R, Falk BW, Groves RL. Genetic structure and molecular variability of Cucumber mosaic virus isolates in the United States. PLoS One 2014; 9:e96582. [PMID: 24801880 PMCID: PMC4012352 DOI: 10.1371/journal.pone.0096582] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Accepted: 04/08/2014] [Indexed: 12/17/2022] Open
Abstract
Cucumber mosaic virus (CMV) has a worldwide distribution and the widest host range of any known plant virus. From 2000 to 2012, epidemics of CMV severely affected the production of snap bean (Phaseulos vulgaris L.) in the Midwest and Northeastern United States. Virus diversity leading to emergence of new strains is often considered a significant factor in virus epidemics. In addition to epidemics, new disease phenotypes arising from genetic exchanges or mutation can compromise effectiveness of plant disease management strategies. Here, we captured a snapshot of genetic variation of 32 CMV isolates collected from different regions of the U.S including new field as well as historic isolates. Nucleotide diversity (π) was low for U.S. CMV isolates. Sequence and phylogenetic analyses revealed that CMV subgroup I is predominant in the US and further showed that the CMV population is a mixture of subgroups IA and IB. Furthermore, phylogenetic analysis suggests likely reassortment between subgroups IA and IB within five CMV isolates. Based on phylogenetic and computational analysis, recombination between subgroups I and II as well as IA and IB in RNA 3 was detected. This is the first report of recombination between CMV subgroups I and II. Neutrality tests illustrated that negative selection was the major force operating upon the CMV genome, although some positively selected sites were detected for all encoded proteins. Together, these data suggest that different regions of the CMV genome are under different evolutionary constraints. These results also delineate composition of the CMV population in the US, and further suggest that recombination and reassortment among strain subgroups does occur but at a low frequency, and point towards CMV genomic regions that differ in types of selection pressure.
Collapse
Affiliation(s)
- Shahideh Nouri
- Department of Plant Pathology, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Rafael Arevalo
- Department of Botany, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Bryce W. Falk
- Department of Plant Pathology, University of California Davis, Davis, California, United States of America
| | - Russell L. Groves
- Department of Entomology, University of Wisconsin, Madison, Wisconsin, United States of America
| |
Collapse
|
16
|
Webb KM, Broccardo CJ, Prenni JE, Wintermantel WM. Proteomic Profiling of Sugar Beet ( Beta vulgaris) Leaves during Rhizomania Compatible Interactions. Proteomes 2014; 2:208-223. [PMID: 28250378 PMCID: PMC5302737 DOI: 10.3390/proteomes2020208] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Revised: 03/15/2014] [Accepted: 03/27/2014] [Indexed: 11/16/2022] Open
Abstract
Rhizomania, caused by Beet necrotic yellow vein virus (BNYVV), severely impacts sugar beet (Beta vulgaris) production throughout the world, and is widely prevalent in most production regions. Initial efforts to characterize proteome changes focused primarily on identifying putative host factors that elicit resistant interactions with BNYVV, but as resistance breaking strains become more prevalent, effective disease control strategies will require the application of novel methods based on better understanding of disease susceptibility and symptom development. Herein, proteomic profiling was conducted on susceptible sugar beet, infected with two strains of BNYVV, to clarify the types of proteins prevalent during compatible virus-host plant interactions. Total protein was extracted from sugar beet leaf tissue infected with BNYVV, quantified, and analyzed by mass spectrometry. A total of 203 proteins were confidently identified, with a predominance of proteins associated with photosynthesis and energy, metabolism, and response to stimulus. Many proteins identified in this study are typically associated with systemic acquired resistance and general plant defense responses. These results expand on relatively limited proteomic data available for sugar beet and provide the ground work for additional studies focused on understanding the interaction of BNYVV with sugar beet.
Collapse
Affiliation(s)
- Kimberly M Webb
- USDA-ARS-SBRU, Crops Research Laboratory, 1701 Centre Ave., Fort Collins, CO 80526, USA.
| | - Carolyn J Broccardo
- Proteomics and Metabolomics Facility, Colorado State University, C130 Microbiology, 2021 Campus Delivery, Fort Collins, CO 80523, USA.
| | - Jessica E Prenni
- Proteomics and Metabolomics Facility, Colorado State University, C130 Microbiology, 2021 Campus Delivery, Fort Collins, CO 80523, USA.
| | | |
Collapse
|
17
|
Sun BJ, Sun LY, Tugume AK, Adams MJ, Yang J, Xie LH, Chen JP. Selection pressure and founder effects constrain genetic variation in differentiated populations of soilborne bymovirus Wheat yellow mosaic virus (Potyviridae) in China. PHYTOPATHOLOGY 2013; 103:949-59. [PMID: 23550972 DOI: 10.1094/phyto-01-13-0013-r] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
To study the population genetic structure and forces driving the evolution of Wheat yellow mosaic virus (WYMV), the nucleotide sequences encoding the coat protein (CP) (297 sequences) or the genome-linked virion protein (VPg) (87 sequences) were determined from wheat plants growing at 11 different locations distributed in five provinces in China. There were close phylogenetic relationships between all sequences but clustering on the phylogenetic trees was congruent with their provenance, suggesting an origin-dependent population genetic structure. There were low levels of genetic diversity, ranging from 0.00035 ± 0.00019 to 0.01536 ± 0.00043 (CP), and 0.00086 ± 0.00039 to 0.00573 ± 0.00111 (VPg), indicating genetic stability or recent emergence of WYMV in China. The results may suggest that founder effects play a role in shaping the genetic structure of WYMV. Between-population diversity was consistently higher than within-population diversity, suggesting limited gene flow between subpopulations (average FST 0.6241 for the CP and 0.7981 for the VPg). Consistent amino acid substitutions correlated with the provenance of the sequences were observed at nine positions in the CP (but none in the VPg), indicating an advanced stage in population structuring. Strong negative (purifying) selection was implicated on both the CP and VPg but positive selection on a few codons in the CP, indicating an ongoing molecular adaptation.
Collapse
Affiliation(s)
- B-J Sun
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, MoA Key Laboratory for Plant Protection and Biotechnology, Zhejiang Provincial Key Laboratory of Plant Virology, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | | | | | | | | | | | | |
Collapse
|
18
|
Bornemann K, Varrelmann M. Effect of sugar beet genotype on the Beet necrotic yellow vein virus P25 pathogenicity factor and evidence for a fitness penalty in resistance-breaking strains. MOLECULAR PLANT PATHOLOGY 2013; 14:356-64. [PMID: 23282068 PMCID: PMC6638868 DOI: 10.1111/mpp.12012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Beet necrotic yellow vein virus (BNYVV), vectored by Polymyxa betae, causes rhizomania in sugar beet. For disease control, the cultivation of hybrids carrying Rz1 resistance is crucial, but is compromised by resistance-breaking (RB) strains with specific mutations in the P25 protein at amino acids 67-70 (tetrad). To obtain evidence for P25 variability from soil-borne populations, where the virus persists for decades, populations with wild-type (WT) and RB properties were analysed by P25 deep sequencing. The level of P25 variation in the populations analysed did not correlate with RB properties. Remarkably, one WT population contained P25 with RB mutations at a frequency of 11%. To demonstrate selection by Rz1 and the influence of RB mutations on relative fitness, competition experiments between strains were performed. Following a mixture of strains with four RNAs, a shift in tetrad variants was observed, suggesting that strains did not mix or transreplicate. The plant genotype exerted a clear influence on the frequency of RB tetrads. In Rz1 plants, the RB variants outcompeted the WT variants, and mostly vice versa in susceptible plants, demonstrating a relative fitness penalty of RB mutations. The strong genotype effect supports the hypothesized Rz1 RB strain selection with four RNAs, suggesting that a certain tetrad needs to become dominant in a population to influence its properties. Tetrad selection was not observed when an RB strain, with an additional P26 protein encoded by a fifth RNA, competed with a WT strain, supporting its role as a second BNYVV pathogenicity factor and suggesting the reassortment of both types.
Collapse
Affiliation(s)
- Kathrin Bornemann
- Department of Phytopathology, Institute of Sugar Beet Research, D-37079, Goettingen, Germany
| | | |
Collapse
|
19
|
Chiba S, Hleibieh K, Delbianco A, Klein E, Ratti C, Ziegler-Graff V, Bouzoubaa S, Gilmer D. The benyvirus RNA silencing suppressor is essential for long-distance movement, requires both zinc-finger and NoLS basic residues but not a nucleolar localization for its silencing-suppression activity. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2013; 26:168-81. [PMID: 23013437 DOI: 10.1094/mpmi-06-12-0142-r] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The RNA silencing-suppression properties of Beet necrotic yellow vein virus (BNYVV) and Beet soil-borne mosaic virus (BSBMV) cysteine-rich p14 proteins have been investigated. Suppression of RNA silencing activities were made evident using viral infection of silenced Nicotiana benthamiana 16C, N. benthamiana agroinfiltrated with green fluorescent protein (GFP), and GF-FG hairpin triggers supplemented with viral suppressor of RNA silencing (VSR) constructs or using complementation of a silencing-suppressor-defective BNYVV virus in Chenopodium quinoa. Northern blot analyses of small-interfering RNAs (siRNAs) in agroinfiltration tests revealed reduced amounts of siRNA, especially secondary siRNA, suggesting that benyvirus VSR act downstream of the siRNA production. Using confocal laser-scanning microscopy imaging of infected protoplasts expressing functional p14 protein fused to an enhanced GFP reporter, we showed that benyvirus p14 accumulated in the nucleolus and the cytoplasm independently of other viral factors. Site-directed mutagenesis showed the importance of the nucleolar localization signal embedded in a C4 zinc-finger domain in the VSR function and intrinsic stability of the p14 protein. Conversely, RNA silencing suppression appeared independent of the nucleolar localization of the protein, and a correlation between BNYVV VSR expression and long-distance movement was established.
Collapse
Affiliation(s)
- Sotaro Chiba
- Institut de Biologie Moléculaire des Plantes, Laboratoire Propre du CNRS (UPR 2357) Conventionné avec l'Université de Strasbourg, 12 rue de Générale Zimmer, 67084 Strasbourg, France
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Pavli OI, Tampakaki AP, Skaracis GN. High level resistance against rhizomania disease by simultaneously integrating two distinct defense mechanisms. PLoS One 2012; 7:e51414. [PMID: 23284692 PMCID: PMC3527438 DOI: 10.1371/journal.pone.0051414] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2012] [Accepted: 11/01/2012] [Indexed: 11/18/2022] Open
Abstract
With the aim of achieving durable resistance against rhizomania disease of sugar beet, the employment of different sources of resistance to Beet necrotic yellow vein virus was pursued. To this purpose, Nicotiana benthamiana transgenic plants that simultaneously produce dsRNA originating from a conserved region of the BNYVV replicase gene and the HrpZ(Psph) protein in a secreted form (SP/HrpZ(Psph)) were produced. The integration and expression of both transgenes as well as proper production of the harpin protein were verified in all primary transformants and selfed progeny (T1, T2). Transgenic resistance was assessed by BNYVV-challenge inoculation on T2 progeny by scoring disease symptoms and DAS-ELISA at 20 and 30 dpi. Transgenic lines possessing single transformation events for both transgenes as well as wild type plants were included in inoculation experiments. Transgenic plants were highly resistant to virus infection, whereas in some cases immunity was achieved. In all cases, the resistant phenotype of transgenic plants carrying both transgenes was superior in comparison with the ones carrying a single transgene. Collectively, our findings demonstrate, for a first time, that the combination of two entirely different resistance mechanisms provide high level resistance or even immunity against the virus. Such a novel approach is anticipated to prevent a rapid virus adaptation that could potentially lead to the emergence of isolates with resistance breaking properties.
Collapse
Affiliation(s)
- Ourania I Pavli
- Department of Crop Sciences, Agricultural University of Athens, Athens, Greece.
| | | | | |
Collapse
|
21
|
Thiel H, Hleibieh K, Gilmer D, Varrelmann M. The P25 pathogenicity factor of Beet necrotic yellow vein virus targets the sugar beet 26S proteasome involved in the induction of a hypersensitive resistance response via interaction with an F-box protein. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2012; 25:1058-72. [PMID: 22512382 DOI: 10.1094/mpmi-03-12-0057-r] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
P25, a Beet necrotic yellow vein virus (BNYVV) pathogenicity factor, interacts with a sugar beet protein with high homology to Arabidopsis thaliana kelch repeat containing F-box family proteins (FBK) of unknown function in yeast. FBK are members of the Skp1-Cullin-F-box (SCF) complex that mediate protein degradation. Here, we confirm this sugar beet FBK-P25 interaction in vivo and in vitro and provide evidence for in planta interaction and similar subcellular distribution in Nicotiana tabacum leaf cells. P25 even interacts with an FBK from A. thaliana, a BNYVV nonhost. FBK functional classification was possible by demonstrating the interaction with A. thaliana orthologs of Skp1-like (ASK) genes, a member of the SCF E3 ligase. By means of a yeast two-hybrid bridging assay, a direct effect of P25 on SCF-complex formation involving ASK1 protein was demonstrated. FBK transient Agrobacterium tumefaciens-mediated expression in N. benthamiana leaves induced a hypersensitive response. The full-length F-box protein consists of one F-box domain followed by two kelch repeats, which alone were unable to interact with P25 in yeast and did not lead to cell-death induction. The results support the idea that P25 is involved in virus pathogenicity in sugar beet and suggest suppression of resistance response.
Collapse
Affiliation(s)
- Heike Thiel
- Department of Phytopathology, Institute of Sugar Beet Research, Gottingen, Germany
| | | | | | | |
Collapse
|
22
|
Moury B, Simon V. dN/dS-based methods detect positive selection linked to trade-offs between different fitness traits in the coat protein of potato virus Y. Mol Biol Evol 2011; 28:2707-17. [PMID: 21498601 DOI: 10.1093/molbev/msr105] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The dN/dS ratio between nonsynonymous and synonymous substitution rates has been used extensively to identify codon positions involved in adaptive processes. However, the accuracy of this approach has been questioned, and very few studies have attempted to validate experimentally its predictions. Using the coat protein (CP) of Potato virus Y (PVY; genus Potyvirus, family Potyviridae) as a case study, we identified several candidate positively selected codon positions that differed between clades. In the CP of the N clade of PVY, positive selection was detected at codon positions 25 and 68 by both the softwares PAML and HyPhy. We introduced nonsynonymous substitutions at these positions in an infectious cDNA clone of PVY and measured the effect of these mutations on virus accumulation in its two major cultivated hosts, tobacco and potato, and on its efficiency of transmission from plant to plant by aphid vectors. The mutation at codon position 25 significantly modified the virus accumulation in the two hosts, whereas the mutation at codon position 68 significantly modified the virus accumulation in one of its hosts and its transmissibility by aphids. Both mutations were involved in adaptive trade-offs. We suggest that our study was particularly favorable to the detection of adaptive mutations using dN/dS estimates because, as obligate parasites, viruses undergo a continuous and dynamic interaction with their hosts that favors the recurrent selection of adaptive mutations and because trade-offs between different fitness traits impede (or at least slow down) the fixation of these mutations and maintain polymorphism within populations.
Collapse
Affiliation(s)
- Benoît Moury
- UR407 Pathologie Végétale, Institut National de la Recherche Agronomique, Montfavet, France.
| | | |
Collapse
|
23
|
Moury B, Caromel B, Johansen E, Simon V, Chauvin L, Jacquot E, Kerlan C, Lefebvre V. The helper component proteinase cistron of Potato virus Y induces hypersensitivity and resistance in Potato genotypes carrying dominant resistance genes on chromosome IV. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2011; 24:787-797. [PMID: 21405985 DOI: 10.1094/mpmi-10-10-0246] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The Nc(tbr) and Ny(tbr) genes in Solanum tuberosum determine hypersensitive reactions, characterized by necrotic reactions and restriction of the virus systemic movement, toward isolates belonging to clade C and clade O of Potato virus Y (PVY), respectively. We describe a new resistance from S. sparsipilum which possesses the same phenotype and specificity as Nc(tbr) and is controlled by a dominant gene designated Nc(spl). Nc(spl) maps on potato chromosome IV close or allelic to Ny(tbr). The helper component proteinase (HC-Pro) cistron of PVY was shown to control necrotic reactions and resistance elicitation in plants carrying Nc(spl), Nc(tbr), and Ny(tbr). However, inductions of necrosis and of resistance to the systemic virus movement in plants carrying Nc(spl) reside in different regions of the HC-Pro cistron. Also, genomic determinants outside the HC-Pro cistron are involved in the systemic movement of PVY after induction of necroses on inoculated leaves of plants carrying Ny(tbr). These results suggest that the Ny(tbr) resistance may have been involved in the recent emergence of PVY isolates with a recombination breakpoint near the junction of HC-Pro and P3 cistrons in potato crops. Therefore, this emergence could constitute one of the rare examples of resistance breakdown by a virus which was caused by recombination instead of by successive accumulation of nucleotide substitutions.
Collapse
Affiliation(s)
- Benoît Moury
- INRA, UR407 Pathologie Vegetale, Montfavet, France.
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Bornemann K, Varrelmann M. Analysis of the resistance-breaking ability of different beet necrotic yellow vein virus isolates loaded into a single Polymyxa betae population in soil. PHYTOPATHOLOGY 2011; 101:718-24. [PMID: 21303211 DOI: 10.1094/phyto-06-10-0157] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The genome of most Beet necrotic yellow vein virus (BNYVV) isolates is comprised of four RNAs. The ability of certain isolates to overcome Rz1-mediated resistance in sugar beet grown in the United States and Europe is associated with point mutations in the pathogenicity factor P25. When the virus is inoculated mechanically into sugar beet roots at high density, the ability depends on an alanine to valine substitution at P25 position 67. Increased aggressiveness is shown by BNYVV P type isolates, which carry an additional RNA species that encodes a second pathogenicity factor, P26. Direct comparison of aggressive isolates transmitted by the vector, Polymyxa betae, has been impossible due to varying population densities of the vector and other soilborne pathogens that interfere with BNYVV infection. Mechanical root inoculation and subsequent cultivation in soil that carried a virus-free P. betae population was used to load P. betae with three BNYVV isolates: a European A type isolate, an American A type isolate, and a P type isolate. Resistance tests demonstrated that changes in viral aggressiveness towards Rz1 cultivars were independent of the vector population. This method can be applied to the study of the synergism of BNYVV with other P. betae-transmitted viruses.
Collapse
Affiliation(s)
- Kathrin Bornemann
- Institute of Sugar Beet Research, Holtenser Landstr. 77, D-37079 Goettingen, Germany
| | | |
Collapse
|
25
|
Pavli OI, Kelaidi GI, Tampakaki AP, Skaracis GN. The hrpZ gene of Pseudomonas syringae pv. phaseolicola enhances resistance to rhizomania disease in transgenic Nicotiana benthamiana and sugar beet. PLoS One 2011; 6:e17306. [PMID: 21394206 PMCID: PMC3048869 DOI: 10.1371/journal.pone.0017306] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2010] [Accepted: 01/24/2011] [Indexed: 11/18/2022] Open
Abstract
To explore possible sources of transgenic resistance to the rhizomania-causing Beet necrotic yellow vein virus (BNYVV), Nicotiana benthamiana plants were constructed to express the harpin of Pseudomonas syringae pv. phaseolicola (HrpZ(Psph)). The HrpZ protein was expressed as an N-terminal fusion to the PR1 signal peptide (SP/HrpZ) to direct harpin accumulation to the plant apoplast. Transgene integration was verified by mPCR in all primary transformants (T0), while immunoblot analysis confirmed that the protein HrpZ(Psph) was produced and the signal peptide was properly processed. Neither T0 plants nor selfed progeny (T1) showed macroscopically visible necrosis or any other macroscopic phenotypes. However, plants expressing the SP/HrpZ(Psph) showed increased vigor and grew faster in comparison with non-transgenic control plants. Transgenic resistance was assessed after challenge inoculation with BNYVV on T1 progeny by scoring of disease symptoms and by DAS-ELISA at 20 and 30 dpi. Transgenic and control lines showed significant differences in terms of the number of plants that became infected, the timing of infection and the disease symptoms displayed. Plants expressing the SP/HrpZ(Psph) developed localized leaf necrosis in the infection area and had enhanced resistance upon challenge with BNYVV. In order to evaluate the SP/HrpZ-based resistance in the sugar beet host, A. rhizogenes-mediated root transformation was exploited as a transgene expression platform. Upon BNYVV inoculation, transgenic sugar beet hairy roots showed high level of BNYVV resistance. In contrast, the aerial non-transgenic parts of the same seedlings had virus titers that were comparable to those of the seedlings that were untransformed or transformed with wild type R1000 cells. These findings indicate that the transgenically expressed SP/HrpZ protein results in enhanced rhizomania resistance both in a model plant and sugar beet, the natural host of BNYVV. Possible molecular mechanisms underlying the enhanced resistance and plant growth phenotypes observed in SP/HrpZ transgenic plants are discussed.
Collapse
Affiliation(s)
- Ourania I. Pavli
- Department of Crop Sciences, Agricultural
University of Athens, Athens, Greece
| | - Georgia I. Kelaidi
- Department of Crop Sciences, Agricultural
University of Athens, Athens, Greece
| | - Anastasia P. Tampakaki
- Department of Agricultural Biotechnology,
Agricultural University of Athens, Athens, Greece
| | - George N. Skaracis
- Department of Crop Sciences, Agricultural
University of Athens, Athens, Greece
| |
Collapse
|
26
|
Chiba S, Kondo H, Miyanishi M, Andika IB, Han C, Tamada T. The evolutionary history of Beet necrotic yellow vein virus deduced from genetic variation, geographical origin and spread, and the breaking of host resistance. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2011; 24:207-18. [PMID: 20977309 DOI: 10.1094/mpmi-10-10-0241] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Beet necrotic yellow vein virus (BNYVV) is an economically important pathogen of sugar beet and has been found worldwide, probably as the result of recent worldwide spread. The BNYVV genome consists of four or five RNA components. Here, we report analysis of sequence variation in the RNA3-p25, RNA4-p31, RNA2-CP, and RNA5-p26 genes of 73 worldwide isolates. The RNA3-p25 gene encodes virulence and avirulence factors. These four sets of gene sequences each fell into two to four groups, of which the three groups of p25 formed eight subgroups with different geographical distributions. Each of these subgroup isolates (strains) could have arisen from four original BNYVV population and their mixed infections. The genetic diversity for BNYVV was relatively small. Selection pressure varied greatly depending on the BNYVV gene and geographical location. Isolates of the Italy strain, in which p25 was subject to the strongest positive selection, were able to overcome the Rz1-host resistance gene to differing degrees, whereas other geographically limited strains could not. Resistance-breaking variants were generated by p25 amino acid changes at positions 67 and 68. Our studies suggest that BNYVV originally evolved in East Asia and has recently become a pathogen of cultivated sugar beet followed by the emergence of new resistance-breaking variants.
Collapse
Affiliation(s)
- Soutaro Chiba
- Institute of Plant Science and Bioresources, Okayama University, Kurashiki, Okayama, 710-0046, Japan
| | | | | | | | | | | |
Collapse
|
27
|
Adamian L, Naveed H, Liang J. Lipid-binding surfaces of membrane proteins: evidence from evolutionary and structural analysis. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2010; 1808:1092-102. [PMID: 21167813 DOI: 10.1016/j.bbamem.2010.12.008] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2010] [Revised: 11/25/2010] [Accepted: 12/09/2010] [Indexed: 12/20/2022]
Abstract
Membrane proteins function in the diverse environment of the lipid bilayer. Experimental evidence suggests that some lipid molecules bind tightly to specific sites on the membrane protein surface. These lipid molecules often act as co-factors and play important functional roles. In this study, we have assessed the evolutionary selection pressure experienced at lipid-binding sites in a set of α-helical and β-barrel membrane proteins using posterior probability analysis of the ratio of synonymous vs. nonsynonymous substitutions (ω-ratio). We have also carried out a geometric analysis of the membrane protein structures to identify residues in close contact with co-crystallized lipids. We found that residues forming cholesterol-binding sites in both β(2)-adrenergic receptor and Na(+)-K(+)-ATPase exhibit strong conservation, which can be characterized by an expanded cholesterol consensus motif for GPCRs. Our results suggest the functional importance of aromatic stacking interactions and interhelical hydrogen bonds in facilitating protein-cholesterol interactions, which is now reflected in the expanded motif. We also find that residues forming the cardiolipin-binding site in formate dehydrogenase-N γ-subunit and the phosphatidylglycerol binding site in KcsA are under strong purifying selection pressure. Although the lipopolysaccharide (LPS)-binding site in ferric hydroxamate uptake receptor (FhuA) is only weakly conserved, we show using a statistical mechanical model that LPS binds to the least stable FhuA β-strand and protects it from the bulk lipid. Our results suggest that specific lipid binding may be a general mechanism employed by β-barrel membrane proteins to stabilize weakly stable regions. Overall, we find that the residues forming specific lipid binding sites on the surfaces of membrane proteins often experience strong purifying selection pressure.
Collapse
Affiliation(s)
- Larisa Adamian
- Department of Bioengineering, Univeristy of Illinois, Chicago, IL, USA
| | | | | |
Collapse
|
28
|
Tentchev D, Verdin E, Marchal C, Jacquet M, Aguilar JM, Moury B. Evolution and structure of Tomato spotted wilt virus populations: evidence of extensive reassortment and insights into emergence processes. J Gen Virol 2010; 92:961-73. [DOI: 10.1099/vir.0.029082-0] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
|
29
|
Acosta-Leal R, Bryan BK, Rush CM. Host effect on the genetic diversification of beet necrotic yellow vein virus single-plant populations. PHYTOPATHOLOGY 2010; 100:1204-1212. [PMID: 20649415 DOI: 10.1094/phyto-04-10-0103] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Theoretical models predict that, under restrictive host conditions, virus populations will exhibit greater genetic variability. This virus response has been experimentally demonstrated in a few cases but its relation with a virus's capability to overcome plant resistance is unknown. To explore the genetic host effects on Beet necrotic yellow vein virus (BNYVV) populations that might be related to resistance durability, a wild-type virus isolate was vector inoculated into partially resistant Rz1, Rz2, and susceptible sugar beet cultivars during a serial planting experiment. Cloning and sequencing a region of the viral RNA-3, involving the pathogenic determinant p25, revealed that virus diversity significantly increased in direct proportion to the strength of host resistance. Thus, whereas virus titers were highest, intermediate, and lowest in susceptible, Rz1, and Rz2 plants, respectively; the average number of nucleotide differences among single-plant populations was 0.8 (±0.1) in susceptible, 1.4 (±0.1) in Rz1, and 2.4 (±0.2) in Rz2 genotypes. A similar relationship between host restriction to BNYVV root accumulation and virus genetic variability was detected in fields of sugar beet where these specific Rz1- and Rz2-mediated resistances have been defeated.
Collapse
Affiliation(s)
- Rodolfo Acosta-Leal
- Texas AgriLife Research ( Texas A & M University System), Amarillo, TX, USA.
| | | | | |
Collapse
|
30
|
Verchot-Lubicz J, Torrance L, Solovyev AG, Morozov SY, Jackson AO, Gilmer D. Varied movement strategies employed by triple gene block-encoding viruses. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2010; 23:1231-47. [PMID: 20831404 DOI: 10.1094/mpmi-04-10-0086] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Several RNA virus genera belonging to the Virgaviridae and Flexiviridae families encode proteins organized in a triple gene block (TGB) that facilitate cell-to-cell and long-distance movement. The TGB proteins have been traditionally classified as hordei-like or potex-like based on phylogenetic comparisons and differences in movement mechanisms of the Hordeivirus and Potexvirus spp. However, accumulating data from other model viruses suggests that a revised framework is needed to accommodate the profound differences in protein interactions occurring during infection and ancillary capsid protein requirements for movement. The goal of this article is to highlight common features of the TGB proteins and salient differences in movement properties exhibited by individual viruses encoding these proteins. We discuss common and divergent aspects of the TGB transport machinery, describe putative nucleoprotein movement complexes, highlight recent data on TGB protein interactions and topological properties, and review membrane associations occurring during subcellular targeting and cell-to-cell movement. We conclude that the existing models cannot be used to explain all TGB viruses, and we propose provisional Potexvirus, Hordeivirus, and Pomovirus models. We also suggest areas that might profit from future research on viruses harboring this intriguing arrangement of movement proteins.
Collapse
Affiliation(s)
- Jeanmarie Verchot-Lubicz
- Oklahoma State University, Department of Entomology and Plant Pathology, Stillwater, OK 74078, USA.
| | | | | | | | | | | |
Collapse
|
31
|
Jahromi ZM, Salmanian AH, Rastgoo N, Arbabi M. Isolation of BNYVV coat protein-specific single chain Fv from a mouse phage library antibody. Hybridoma (Larchmt) 2010; 28:305-13. [PMID: 19857111 DOI: 10.1089/hyb.2009.0004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Beet necrotic yellow vein virus (BNYVV) infects sugar beet plants worldwide and is responsible for the rhizomania disease and severe economic losses. Disease severity and lack of naturally occurring resistant plants make it very difficult to control the virus, both from epidemiological and economic standpoints. Therefore, early detection is vital to impose hygiene restrictions and prevent further spread of the virus in the field. Immunoassays are one of the most popular methodologies for the primary identification of plant pathogens including BNYVV since they are robust, sensitive, fast, and inexpensive. In this study, the major coat protein (CP21) of BNYVV was cloned and expressed in Escherichia coli. Thereafter, mice were immunized with purified CP21 and a phage antibody library was constructed from their PCR-amplified immunoglobulin repertoire. Following filamentous phage rescue of the library and four rounds of panning against recombinant CP21 antigen, several specific single chain Fv fragments were isolated and characterized. This approach may pave the way to develop novel immunoassays for a rapid detection of viral infection. Moreover, it will likely provide essential tools to establish antibody-mediated resistant transgenic technology in sugar beet plants.
Collapse
|
32
|
Acosta-Leal R, Bryan BK, Smith JT, Rush CM. Breakdown of host resistance by independent evolutionary lineages of Beet necrotic yellow vein virus involves a parallel c/u mutation in its p25 gene. PHYTOPATHOLOGY 2010; 100:127-33. [PMID: 20055646 DOI: 10.1094/phyto-100-2-0127] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
ABSTRACT Breakdown of sugar beet Rz1-mediated resistance against Beet necrotic yellow vein virus (BNYVV) infection was previously found, by reverse genetics, to be caused by a single mutation in its p25 gene. The possibility of alternative breaking mutations, however, has not been discarded. To explore the natural diversity of BNYVV in the field and its effects on overcoming Rz1, wild-type (WT) and resistance-breaking (RB) p25 genes from diverse production regions of North America were characterized. The relative titer of WT p25 was inversely correlated with disease expression in Rz1 plants from Minnesota and California. In Minnesota, the predominant WT p25 encoded the A(67)C(68) amino acid signature whereas, in California, it encoded A(67)L(68). In both locations, these WT signatures were associated with asymptomatic BNYVV infections of Rz1 cultivars. Further analyses of symptomatic resistant plants revealed that, in Minnesota, WT A(67)C(68) was replaced by V(67)C(68) whereas, in California, WT A(67)L(68) was replaced by V(67)L(68). Therefore, V(67) was apparently critical in overcoming Rz1 in both pathosystems. The greater genetic distances between isolates from different geographic regions rather than between WT and RB from the same location indicate that the underlying C to U transition originated independently in both BNYVV lineages.
Collapse
|
33
|
Janzac B, Fabre F, Palloix A, Moury B. Constraints on evolution of virus avirulence factors predict the durability of corresponding plant resistances. MOLECULAR PLANT PATHOLOGY 2009; 10:599-610. [PMID: 19694951 PMCID: PMC6640373 DOI: 10.1111/j.1364-3703.2009.00554.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
SUMMARY Understanding the factors driving pathogen emergence and re-emergence is a major challenge, particularly in agriculture, where the use of resistant plant cultivars imposes strong selective pressures on plant pathogen populations and leads frequently to 'resistance breakdown'. Presently, durable resistances are only identified after a long period of large-scale cultivation of resistant cultivars. We propose a new predictor of the durability of plant resistance. Because resistance breakdown involves modifications in the avirulence factors of pathogens, we tested for correlations between the evolutionary constraints acting on avirulence factors or their diversity and the durability of the corresponding resistance genes in the case of plant-virus interactions. An analysis performed on 20 virus species-resistance gene combinations revealed that the selective constraints applied on amino acid substitutions in virus avirulence factors correlate with the observed durability of the corresponding resistance genes. On the basis of this result, a model predicting the potential durability of resistance genes as a function of the selective constraints applied on the corresponding avirulence factors is proposed to help breeders to select the most durable resistance genes.
Collapse
Affiliation(s)
- Berenger Janzac
- INRA, UR407 Pathologie Végétale, Domaine Saint Maurice, BP94, F-84140 Montfavet, France.
| | | | | | | |
Collapse
|
34
|
Thiel H, Varrelmann M. Identification of Beet necrotic yellow vein virus P25 pathogenicity factor-interacting sugar beet proteins that represent putative virus targets or components of plant resistance. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2009; 22:999-1010. [PMID: 19589075 DOI: 10.1094/mpmi-22-8-0999] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Beet necrotic yellow vein virus (BNYVV) induces the most important disease threatening sugar beet. The growth of partially resistant hybrids carrying monogenic dominant resistance genes stabilize yield but are unable to entirely prevent virus infection and replication. P25 is responsible for symptom development and previous studies have shown that recently occurring resistance-breaking isolates possess increased P25 variability. To better understand the viral pathogenicity factor's interplay with plant proteins and to possibly unravel the molecular basis of sugar beet antivirus resistance, P25 was applied in a yeast two-hybrid screen of a resistant sugar beet cDNA library. This screen identified candidate proteins recognized as orthologues from other plant species which are known to be expressed following pathogen infection and involved in plant defense response. Most of the candidates potentially related to host-pathogen interactions were involved in the ubiquitylation process and plants response to stress, and were part of cell and metabolism components. The interaction of several candidate genes with P25 was confirmed in Nicotiana benthamiana leaf cells by transient agrobacterium-mediated expression applying bimolecular fluorescence complementation assay. The putative functions of several of the candidates identified support previous findings and present first targets for understanding the BNYVV pathogenicity and antivirus resistance mechanism.
Collapse
Affiliation(s)
- Heike Thiel
- Department of Crop Sciences, Section Plant Virology, University of Göttingen, Grisebachstrasse 6, D-37077 Göttingen, Germany
| | | |
Collapse
|
35
|
Koenig R, Loss S, Specht J, Varrelmann M, Lüddecke P, Deml G. A single U/C nucleotide substitution changing alanine to valine in the beet necrotic yellow vein virus P25 protein promotes increased virus accumulation in roots of mechanically inoculated, partially resistant sugar beet seedlings. J Gen Virol 2009; 90:759-763. [PMID: 19218223 DOI: 10.1099/vir.0.007112-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Beet necrotic yellow vein virus (BNYVV) A type isolates E12 and S8, originating from areas where resistance-breaking had or had not been observed, respectively, served as starting material for studying the influence of sequence variations in BNYVV RNA 3 on virus accumulation in partially resistant sugar beet varieties. Sub-isolates containing only RNAs 1 and 2 were obtained by serial local lesion passages; biologically active cDNA clones were prepared for RNAs 3 which differed in their coding sequences for P25 aa 67, 68 and 129. Sugar beet seedlings were mechanically inoculated with RNA 1+2/RNA 3 pseudorecombinants. The origin of RNAs 1+2 had little influence on virus accumulation in rootlets. E12 RNA 3 coding for V(67)C(68)Y(129) P25, however, enabled a much higher virus accumulation than S8 RNA 3 coding for A(67)H(68)H(129) P25. Mutants revealed that this was due only to the V(67) 'GUU' codon as opposed to the A(67) 'GCU' codon.
Collapse
Affiliation(s)
- R Koenig
- Julius Kühn Institut, Bundesforschungsinstitut für Kulturpflanzen, Institut für Epidemiologie und Pathogendiagnostik, Messeweg 11, D-38106 Braunschweig, Germany
| | - S Loss
- Julius Kühn Institut, Bundesforschungsinstitut für Kulturpflanzen, Institut für Epidemiologie und Pathogendiagnostik, Messeweg 11, D-38106 Braunschweig, Germany
| | - J Specht
- Julius Kühn Institut, Bundesforschungsinstitut für Kulturpflanzen, Institut für Epidemiologie und Pathogendiagnostik, Messeweg 11, D-38106 Braunschweig, Germany
| | - M Varrelmann
- Institut für Zuckerrübenforschung, Abteilung Phytomedizin, Holtenser Landstraße 77, D-37079 Göttingen, Germany
| | - P Lüddecke
- Julius Kühn Institut, Bundesforschungsinstitut für Kulturpflanzen, Institut für Epidemiologie und Pathogendiagnostik, Messeweg 11, D-38106 Braunschweig, Germany
| | - G Deml
- Julius Kühn Institut, Bundesforschungsinstitut für Kulturpflanzen, Institut für Epidemiologie und Pathogendiagnostik, Messeweg 11, D-38106 Braunschweig, Germany
| |
Collapse
|
36
|
Mehrvar M, Valizadeh J, Koenig R, Bragard CG. Iranian beet necrotic yellow vein virus (BNYVV): pronounced diversity of the p25 coding region in A-type BNYVV and identification of P-type BNYVV lacking a fifth RNA species. Arch Virol 2009; 154:501-6. [DOI: 10.1007/s00705-009-0322-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2008] [Accepted: 01/14/2009] [Indexed: 11/29/2022]
|
37
|
Ratti C, Hleibieh K, Bianchi L, Schirmer A, Autonell CR, Gilmer D. Beet soil-borne mosaic virus RNA-3 is replicated and encapsidated in the presence of BNYVV RNA-1 and -2 and allows long distance movement in Beta macrocarpa. Virology 2009; 385:392-9. [PMID: 19141358 DOI: 10.1016/j.virol.2008.12.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2008] [Revised: 11/18/2008] [Accepted: 12/06/2008] [Indexed: 11/19/2022]
Abstract
Beet soil-borne mosaic virus (BSBMV) and Beet necrotic yellow vein virus (BNYVV) belong to the Benyvirus genus. BSBMV has been reported only in the United States, while BNYVV has a worldwide distribution. Both viruses are vectored by Polymyxa betae and possess similar host ranges, particle number and morphology. BNYVV and BSBMV are not serologically related but they have similar genomic organizations. Field isolates usually consist of four RNA species but some BNYVV isolates contain a fifth RNA. RNAs 1 and 2 are essential for infection and replication while RNAs 3 and 4 play important roles in plant and vector interactions, respectively. Nucleotide and amino acid analyses revealed that BSBMV and BNYVV are sufficiently different to be classified as two species. Complementary base changes found within the BSBMV RNA-3 5' UTR made it resemble to BNYVV 5' RNA-3 structure whereas the 3' UTRs of both species were more conserved. cDNA clones were obtained, and allowed complete copies of BSBMV RNA-3 to be trans-replicated, trans-encapsidated by the BNYVV viral machinery. Long-distance movement was observed indicating that BSBMV RNA-3 could substitute BNYVV RNA-3 for systemic spread, even though the p29 encoded by BSBMV RNA-3 is much closer to the RNA-5-encoded p26 than to BNYVV RNA-3-encoded p25. Competition occurred when BSBMV RNA-3-derived replicons were used together with BNYVV-derived RNA-3 but not when the RNA-5-derived component was used. Exploitation of the similarities and divergences between BSBMV and BNYVV should lead to a better understanding of molecular interactions between Benyviruses and their hosts.
Collapse
Affiliation(s)
- Claudio Ratti
- DISTA-Plant pathology, University of Bologna, Viale G. Fanin, 40-40127 Bologna, Italy
| | | | | | | | | | | |
Collapse
|
38
|
Covelli L, Klein E, Gilmer D. The first 17 amino acids of the beet necrotic yellow vein virus RNA-5-encoded p26 protein are sufficient to activate transcription in a yeast one-hybrid system. Arch Virol 2009; 154:347-51. [PMID: 19137435 DOI: 10.1007/s00705-008-0306-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2008] [Accepted: 12/12/2008] [Indexed: 11/24/2022]
Abstract
The beet necrotic yellow vein virus (BNYVV) RNA-5-encoded p26 protein is involved in the accentuation of symptoms expression of infected Chenopodium quinoa plants and is capable of transcription activation (TA) in yeast. TA was previously localized within the first 55 residues of the p26 protein. Interestingly, TA did not occur when C-terminally deleted forms of p26 were used. We used a genetic screen in the yeast one-hybrid system to select restored TA from randomly generated mutants. The TA domain was found to be located within the first 17 residues. Alanine replacement of aspartic acids 11, 16, and 17 within the full-length p26 prevented TA but did not impair subcellular localization and the symptom expression.
Collapse
Affiliation(s)
- Laura Covelli
- Institut de Biologie Moléculaire des Plantes, Laboratoire propre du CNRS (UPR 2357) conventionné avec l'Université Louis Pasteur (Strasbourg 1), 12 rue du général Zimmer, 67084 Strasbourg Cedex, France
| | | | | |
Collapse
|
39
|
González-Vázquez M, Ayala J, García-Arenal F, Fraile A. Occurrence of Beet black scorch virus Infecting Sugar Beet in Europe. PLANT DISEASE 2009; 93:21-24. [PMID: 30764261 DOI: 10.1094/pdis-93-1-0021] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
In a survey of soilborne viruses infecting sugar beet in central Spain, Beet black scorch virus (BBSV) was detected in field grown sugar beets with symptoms of rhizomania disease. BBSV was found in all analyzed sugar beet producing regions from central Spain, as well as in bait plants grown in soils with a history of rhizomania from several Western European countries, thereby constituting the first report of BBSV in Europe. BBSV was transferred to Chenopodium quinoa, where it caused chlorotic local lesions from which virus particles were purified. The nucleotide sequence of the 3'-untranslated region of the genomic RNA was determined for 13 European isolates, and sequences were highly similar to those reported for Chinese and U.S. isolates. Sequence comparisons revealed three clusters of sequences, one including most European isolates, one including one European and two Chinese isolates, and the third including the U.S. isolate. BBSV was detected in a number of samples with rhizomania symptoms in which Beet necrotic yellow vein virus went undetected. However, its role in rhizomania disease in Europe, if any, remains to be established.
Collapse
Affiliation(s)
- Magali González-Vázquez
- Departamento de Biotecnología and Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid, 28040 Madrid, Spain
| | - Julián Ayala
- Asociación de Investigación y Mejora del Cultivo de la Remolacha Azucarera, Ctra. De Villabañez Km 2.7, 47012 Valladolid, Spain
| | - Fernando García-Arenal
- Departamento de Biotecnología and Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid, 28040 Madrid, Spain
| | - Aurora Fraile
- Departamento de Biotecnología and Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid, 28040 Madrid, Spain
| |
Collapse
|
40
|
McGrann GRD, Grimmer MK, Mutasa-Göttgens ES, Stevens M. Progress towards the understanding and control of sugar beet rhizomania disease. MOLECULAR PLANT PATHOLOGY 2009; 10:129-41. [PMID: 19161359 PMCID: PMC6640442 DOI: 10.1111/j.1364-3703.2008.00514.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Rhizomania is a soil-borne disease that occurs throughout the major sugar beet growing regions of the world, causing severe yield losses in the absence of effective control measures. It is caused by Beet necrotic yellow vein virus (BNYVV), which is transmitted by the obligate root-infecting parasite Polymyxa betae. BNYVV has a multipartite RNA genome with all natural isolates containing four RNA species, although some isolates have a fifth RNA. The larger RNA1 and RNA2 contain the housekeeping genes of the virus and are always required for infection, whereas the smaller RNAs are involved in pathogenicity and vector transmission. RNA5-containing isolates are restricted to Asia and some parts of Europe, and these isolates tend to be more aggressive. With no acceptable pesticides available to restrict the vector, the control of rhizomania is now achieved almost exclusively through the use of resistant cultivars. A single dominant resistance gene, Rz1, has been used to manage the disease worldwide in recent years, although this gene confers only partial resistance. More recently, new variants of BNYVV have evolved (both with and without RNA5) that are able to cause significant yield penalties on resistant cultivars. These isolates are not yet widespread, but their appearance has resulted in accelerated searches for new sources of resistance to both the virus and the vector. Combined virus and vector resistance, achieved either by conventional or transgenic breeding, offers the sugar beet industry a new approach in its continuing struggle against rhizomania.
Collapse
Affiliation(s)
- Graham R D McGrann
- Broom's Barn Research Centre, Rothamsted Research, Department of Applied Crop Sciences, Higham, Bury St Edmunds, Suffolk IP28 6NP, UK
| | | | | | | |
Collapse
|
41
|
Distribution of various types and P25 subtypes of Beet necrotic yellow vein virus in Germany and other European countries. Arch Virol 2008; 153:2139-44. [DOI: 10.1007/s00705-008-0234-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2008] [Accepted: 10/09/2008] [Indexed: 10/21/2022]
|
42
|
Chiba S, Miyanishi M, Andika IB, Kondo H, Tamada T. Identification of amino acids of the beet necrotic yellow vein virus p25 protein required for induction of the resistance response in leaves of Beta vulgaris plants. J Gen Virol 2008; 89:1314-1323. [PMID: 18420811 DOI: 10.1099/vir.0.83624-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The RNA3-encoded p25 protein of beet necrotic yellow vein virus (BNYVV) is responsible for the production of rhizomania symptoms of sugar beet roots (Beta vulgaris subsp. vulgaris). Here, it was found that the presence of the p25 protein is also associated with the resistance response in rub-inoculated leaves of sugar beet and wild beet (Beta vulgaris subsp. maritima) plants. The resistance phenotype displayed a range of symptoms from no visible lesions to necrotic or greyish lesions at the inoculation site, and only very low levels of virus and viral RNA accumulated. The susceptible phenotype showed large, bright yellow lesions and developed high levels of virus accumulation. In roots after Polymyxa betae vector inoculation, however, no drastic differences in virus and viral RNA accumulation levels were found between plants with susceptible and resistant phenotypes, except at an early stage of infection. There was a genotype-specific interaction between BNYVV strains and two selected wild beet lines (MR1 and MR2) and sugar beet cultivars. Sequence analysis of natural BNYVV isolates and site-directed mutagenesis of the p25 protein revealed that 3 aa residues at positions 68, 70 and 179 are important in determining the resistance phenotype, and that host-genotype specificity is controlled by single amino acid changes at position 68. The mechanism of the occurrence of resistance-breaking BNYVV strains is discussed.
Collapse
Affiliation(s)
- Soutaro Chiba
- Research Institute for Bioresources, Okayama University, Kurashiki, Okayama 710-0046, Japan
| | - Masaki Miyanishi
- Research Institute for Bioresources, Okayama University, Kurashiki, Okayama 710-0046, Japan
| | - Ida Bagus Andika
- Research Institute for Bioresources, Okayama University, Kurashiki, Okayama 710-0046, Japan
| | - Hideki Kondo
- Research Institute for Bioresources, Okayama University, Kurashiki, Okayama 710-0046, Japan
| | - Tetsuo Tamada
- Research Institute for Bioresources, Okayama University, Kurashiki, Okayama 710-0046, Japan
| |
Collapse
|
43
|
Acosta-Leal R, Fawley MW, Rush CM. Changes in the intraisolate genetic structure of Beet necrotic yellow vein virus populations associated with plant resistance breakdown. Virology 2008; 376:60-8. [PMID: 18423510 DOI: 10.1016/j.virol.2008.03.008] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2007] [Revised: 01/30/2008] [Accepted: 03/11/2008] [Indexed: 11/18/2022]
Abstract
The causal agent of rhizomania disease, Beet necrotic yellow vein virus (BNYVV), typically produces asymptomatic root-limited infections in sugar beets (Beta vulgaris) carrying the Rz1-allele. Unfortunately, this dominant resistance has been recently overcome. Multiple cDNA clones of the viral pathogenic determinant p25, derived from populations infecting susceptible or resistant plants, were sequenced to identify host effects on the viral population structure. Populations isolated from compatible plant-virus interactions (susceptible plant-wild type virus and resistant plant-resistant breaking variants) were large and relatively homogeneous, whereas those from the incompatible interaction (resistant plant-avirulent type virus) were small and highly heterogeneous. All populations from susceptible plants had the same dominant haplotype, whereas those from resistant cultivars had a different haplotype surrounded by a spectrum of mutants. Selection and diversification analyses suggest an evolutionary trajectory of BNYVV with positive selection for changes required to overcome resistance, followed by elimination of hitchhiking mutations through purifying selection.
Collapse
Affiliation(s)
- Rodolfo Acosta-Leal
- Texas A&M University, Texas Agricultural Research Station, Amarillo, TX 79106, USA.
| | | | | |
Collapse
|
44
|
Li M, Liu T, Wang B, Han C, Li D, Yu J. Phylogenetic analysis of Beet necrotic yellow vein virus isolates from China. Virus Genes 2008; 36:429-32. [DOI: 10.1007/s11262-008-0202-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2007] [Accepted: 01/11/2008] [Indexed: 11/28/2022]
|
45
|
Pinel-Galzi A, Rakotomalala M, Sangu E, Sorho F, Kanyeka Z, Traoré O, Sérémé D, Poulicard N, Rabenantoandro Y, Séré Y, Konaté G, Ghesquière A, Hébrard E, Fargette D. Theme and variations in the evolutionary pathways to virulence of an RNA plant virus species. PLoS Pathog 2007; 3:e180. [PMID: 18039030 PMCID: PMC2094307 DOI: 10.1371/journal.ppat.0030180] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2007] [Accepted: 10/12/2007] [Indexed: 11/19/2022] Open
Abstract
The diversity of a highly variable RNA plant virus was considered to determine the range of virulence substitutions, the evolutionary pathways to virulence, and whether intraspecific diversity modulates virulence pathways and propensity. In all, 114 isolates representative of the genetic and geographic diversity of Rice yellow mottle virus (RYMV) in Africa were inoculated to several cultivars with eIF(iso)4G-mediated Rymv1-2 resistance. Altogether, 41 virulent variants generated from ten wild isolates were analyzed. Nonconservative amino acid replacements at five positions located within a stretch of 15 codons in the central region of the 79-aa-long protein VPg were associated with virulence. Virulence substitutions were fixed predominantly at codon 48 in most strains, whatever the host genetic background or the experimental conditions. There were one major and two isolate-specific mutational pathways conferring virulence at codon 48. In the prevalent mutational pathway I, arginine (AGA) was successively displaced by glycine (GGA) and glutamic acid (GAA). Substitutions in the other virulence codons were displaced when E48 was fixed. In the isolate-specific mutational pathway II, isoleucine (ATA) emerged and often later coexisted with valine (GTA). In mutational pathway III, arginine, with the specific S2/S3 strain codon usage AGG, was displaced by tryptophane (TGG). Mutational pathway I never arose in the widely spread West African S2/S3 strain because G48 was not infectious in the S2/S3 genetic context. Strain S2/S3 least frequently overcame resistance, whereas two geographically localized variants of the strain S4 had a high propensity to virulence. Codons 49 and 26 of the VPg, under diversifying selection, are candidate positions in modulating the genetic barriers to virulence. The theme and variations in the evolutionary pathways to virulence of RYMV illustrates the extent of parallel evolution within a highly variable RNA plant virus species.
Collapse
Affiliation(s)
- Agnès Pinel-Galzi
- Institut de Recherche pour le Développement (IRD), UMR RPB, Montpellier, France
| | - Mbolarinosy Rakotomalala
- Centre National de la Recherche Appliquée au Développement Rural (FOFIFA), Mahajanga, Madagascar
| | - Emmanuel Sangu
- Botany Department, Dar es Salaam University, Dar es Salaam, Tanzania
| | | | - Zakaria Kanyeka
- Botany Department, Dar es Salaam University, Dar es Salaam, Tanzania
| | - Oumar Traoré
- Institut de l'Environnement et de Recherches Agricoles (INERA), Laboratoire de Biotechnologie et de Virologie Végétale, Kamboinsé, Ouagadougou, Burkina Faso
| | - Drissa Sérémé
- Institut de l'Environnement et de Recherches Agricoles (INERA), Laboratoire de Biotechnologie et de Virologie Végétale, Kamboinsé, Ouagadougou, Burkina Faso
| | - Nils Poulicard
- Institut de Recherche pour le Développement (IRD), UMR RPB, Montpellier, France
| | - Yvonne Rabenantoandro
- Centre National de la Recherche Appliquée au Développement Rural (FOFIFA), Antananarivo, Madagascar
| | | | - Gnissa Konaté
- Institut de l'Environnement et de Recherches Agricoles (INERA), Laboratoire de Biotechnologie et de Virologie Végétale, Kamboinsé, Ouagadougou, Burkina Faso
| | - Alain Ghesquière
- Institut de Recherche pour le Développement (IRD), UMR GDP, Montpellier, France
| | - Eugénie Hébrard
- Institut de Recherche pour le Développement (IRD), UMR RPB, Montpellier, France
| | - Denis Fargette
- Institut de Recherche pour le Développement (IRD), UMR RPB, Montpellier, France
| |
Collapse
|
46
|
Lennefors BL, van Roggen PM, Yndgaard F, Savenkov EI, Valkonen JPT. Efficient dsRNA-mediated transgenic resistance to Beet necrotic yellow vein virus in sugar beets is not affected by other soilborne and aphid-transmitted viruses. Transgenic Res 2007; 17:219-28. [PMID: 17431806 DOI: 10.1007/s11248-007-9092-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2006] [Accepted: 03/11/2007] [Indexed: 10/23/2022]
Abstract
Rhizomania caused by Beet necrotic yellow vein virus (BNYVV) is one of the most devastating sugar beet diseases. Sugar beet plants engineered to express a 0.4 kb inverted repeat construct based on the BNYVV replicase gene accumulated the transgene mRNA to similar levels in leaves and roots, whereas accumulation of the transgene-homologous siRNA was more pronounced in roots. The roots expressed high levels of resistance to BNYVV transmitted by the vector, Polymyxa betae. Resistance to BNYVV was not decreased following co-infection of the plants with Beet soil borne virus and Beet virus Q that share the same vector with BNYVV. Similarly, co-infection with the aphid-transmitted Beet mild yellowing virus, Beet yellows virus (BYV), or with all of the aforementioned viruses did not affect the resistance to BNYVV, while they accumulated in roots. These viruses are common in most of the sugar beet growing areas in Europe and world wide. However, there was a competitive interaction between BYV and BMYV in sugar beet leaves, as infection with BYV decreased the titres of BMYV. Other interactions between the viruses studied were not observed. The results suggest that the engineered resistance to BNYVV expressed in the sugar beets of this study is efficient in roots and not readily compromised following infection of the plants with heterologous viruses.
Collapse
|
47
|
Klein E, Link D, Schirmer A, Erhardt M, Gilmer D. Sequence variation within Beet necrotic yellow vein virus p25 protein influences its oligomerization and isolate pathogenicity on Tetragonia expansa. Virus Res 2007; 126:53-61. [PMID: 17350709 DOI: 10.1016/j.virusres.2006.12.019] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2006] [Revised: 12/19/2006] [Accepted: 12/19/2006] [Indexed: 12/25/2022]
Abstract
The p25 protein encoded by Beet necrotic yellow vein virus (BNYVV) RNA-3 is a pathogenicity determinant that has been implicated in symptom exacerbation on Chenopodiaceae hosts. Several p25 variants exist within natural isolates and p25 sequence variation may influence the degree of pathogenicity of such BNYVV isolates. Expression of p25 from natural A- and P-type isolates in the background of B-type BNYVV cDNA clones gave symptom discrepancies when compared to B-type p25 expression. Such pathogenicity fluctuation was not due to a different subcellular localization of p25 but was correlated with the nature of the tetrad motif present between amino acid residues 67-70, as well as with the capacity of p25 to self-associate and to activate transcription in a yeast one-hybrid system. Our data suggest that the complete sequence of p25 is required for its functions and the identified sequence variations may contribute to correct folding of the protein.
Collapse
Affiliation(s)
- Elodie Klein
- Institut de Biologie Moléculaire des Plantes, Laboratoire propre du CNRS (UPR 2357) conventionné avec l'Université Louis Pasteur (Strasbourg 1), 12 rue du Général Zimmer, 67084 Strasbourg, France
| | | | | | | | | |
Collapse
|
48
|
Acosta-Leal R, Rush CM. Mutations Associated with Resistance-Breaking Isolates of Beet necrotic yellow vein virus and Their Allelic Discrimination Using TaqMan Technology. PHYTOPATHOLOGY 2007; 97:325-30. [PMID: 18943652 DOI: 10.1094/phyto-97-3-0325] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
ABSTRACT Genetic resistance in sugar beet (Beta vulgaris) to Beet necrotic yellow vein virus (BNYVV), which causes the disease rhizomania, is conferred by the single dominant gene Rz1. However, since 2002, Rz1 cultivars grown in the Imperial Valley of California have been increasingly damaged by a new strain of BNYVV. Viral RNA 3 was extracted from asymptomatic and symptomatic sugar beets and, after amplification and sequencing of a region including the p25 cistron, two polymorphic sites, A67V and D135E, associated with the capability of the virus to overcome resistance were identified. Using the real-time reverse transcription-polymerase chain reaction allelic discrimination technique, TaqMan probes designed to detect the responsible nucleotide substitutions permitted the differentiation between wild type (WT) and resistance-breaking (RB) isolates. This method also allowed easy detection of mixed infections by giving a heterozygous call, which was verified by DNA sequencing of individual clones. The capability of this technology to typify numerous isolates facilitated the analysis of the spatial distribution of virus haplotypes in the field. Thus, RB variants were mostly baited from yellow strips with high incidence of rhizomania, whereas WT variants predominated in the surrounding green areas. Mixed infections were found mainly in green areas and transitional zones. The predominance of the RB isolates in yellow strips suggests that they have gained fitness in Rz1 cultivars and will eventually become the dominant haplotype.
Collapse
|
49
|
García-Andrés S, Accotto GP, Navas-Castillo J, Moriones E. Founder effect, plant host, and recombination shape the emergent population of begomoviruses that cause the tomato yellow leaf curl disease in the Mediterranean basin. Virology 2007; 359:302-12. [PMID: 17070885 DOI: 10.1016/j.virol.2006.09.030] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2006] [Revised: 08/10/2006] [Accepted: 09/19/2006] [Indexed: 11/28/2022]
Abstract
Tomato yellow leaf curl disease (TYLCD)-associated viruses present a highly structured population in the western Mediterranean basin, depending on host, geographical region and time. About 1,900 tomato and common bean samples were analyzed from which 111 isolates were characterized genetically based on a genome sequence that comprises coding and non-coding regions. Isolates of three distinct begomoviruses previously described were found (Tomato yellow leaf curl virus, TYLCV, Tomato yellow leaf curl Sardinia virus, TYLCSV, and Tomato yellow leaf curl Málaga virus, TYLCMalV), together with a novel recombinant virus. Mixed infections were detected in single plants, rationalizing the occurrence of recombinants. Except for TYLCV-type strain, single, undifferentiated subpopulations were present for each virus type, probably the result of founder effects. Limited genetic variation was observed in genomic regions, with selection against amino acid change in coding regions.
Collapse
Affiliation(s)
- Susana García-Andrés
- Estación Experimental "La Mayora", Consejo Superior de Investigaciones Científicas, 29750 Algarrobo-Costa, Málaga, Spain
| | | | | | | |
Collapse
|
50
|
Moury B, Desbiez C, Jacquemond M, Lecoq H. Genetic diversity of plant virus populations: towards hypothesis testing in molecular epidemiology. Adv Virus Res 2006; 67:49-87. [PMID: 17027677 DOI: 10.1016/s0065-3527(06)67002-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- B Moury
- INRA Avignon, Station de Pathologie Végétale, Domaine St Maurice BP94 84143 Montfavet cedex, France
| | | | | | | |
Collapse
|