1
|
Microbial arginine deiminase: A multifaceted green catalyst in biomedical sciences. Int J Biol Macromol 2022; 196:151-162. [PMID: 34920062 DOI: 10.1016/j.ijbiomac.2021.12.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 11/03/2021] [Accepted: 12/04/2021] [Indexed: 12/18/2022]
Abstract
Arginine deiminase is a well-recognized guanidino-modifying hydrolase that catalyzes the conversion of L-arginine to citrulline and ammonia. Their biopotential to regress tumors via amino acid deprivation therapy (AADT) has been well established. PEGylated formulation of recombinant Mycoplasma ADI is in the last-phase clinical trials against various arginine-auxotrophic cancers like hepatocellular carcinoma, melanoma, and mesothelioma. Recently, ADIs have attained immense importance in several other biomedical applications, namely treatment of Alzheimer's, as an antiviral drug, bioproduction of nutraceutical L-citrulline and bio-analytics involving L-arginine detection. Considering the wide applications of this biodrug, the demand for ADI is expected to escalate several-fold in the coming years. However, the sustainable production aspects of the enzyme with improved pharmacokinetics is still limited, creating bottlenecks for effective biopharmaceutical development. To circumvent the lacunae in enzyme production with appropriate paradigms of 'quality-by-design' an explicit overview of its properties with 'biobetter' formulations strategies are required. Present review provides an insight into all the potential biomedical applications of ADI along with the improvements required for its reach to clinics. Recent research advances with special emphasis on the development of ADI as a 'biobetter' enzyme have also been comprehensively elaborated.
Collapse
|
2
|
Kristmundsson Á, Erlingsdóttir Á, Lange S. Peptidylarginine Deiminase (PAD) and Post-Translational Protein Deimination-Novel Insights into Alveolata Metabolism, Epigenetic Regulation and Host-Pathogen Interactions. BIOLOGY 2021; 10:biology10030177. [PMID: 33653015 PMCID: PMC7996758 DOI: 10.3390/biology10030177] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/18/2021] [Accepted: 02/23/2021] [Indexed: 12/23/2022]
Abstract
The alveolates (Superphylum Alveolata) comprise a group of primarily single-celled eukaryotes that have adopted extremely diverse modes of nutrition, such as predation, photoautotrophy and parasitism. The alveolates consists of several major phyla including the apicomplexans, a large group of unicellular, spore forming obligate intracellular parasites, and chromerids, which are believed to be the phototrophic ancestors of the parasitic apicomplexans. Molecular pathways involved in Alveolata host-pathogen interactions, epigenetic regulation and metabolism in parasite development remain to be fully understood. Peptidylarginine deiminases (PADs) are a phylogenetically conserved enzyme family which causes post-translational protein deimination, affecting protein function through the conversion of arginine to citrulline in a wide range of target proteins, contributing to protein moonlighting in physiological and pathological processes. The identification of deiminated protein targets in alveolate parasites may therefore provide novel insight into pathogen survival and host-pathogen interactions. The current study assessed PAD homologues and deiminated protein profiles of two alveolate parasites, Piridium sociabile (Chromerida) and Merocystis kathae (Apicomplexa). Histological analysis verified strong cytoplasmic PAD expression in both Alveolates, detected deiminated proteins in nuclear and cytoplasmic compartments of the alveolate parasites and verified the presence of citrullinated histone H3 in Alveolata nucleus, indicating roles in epigenetic regulation. Histone H3 citrullination was also found significantly elevated in the host tissue, indicative of neutrophil extracellular trap formation, a host-defence mechanism against a range of pathogens, particularly those that are too large for phagocytosis. Proteomic analysis of deiminated proteins from both Alveolata identified GO and KEGG pathways strongly relating to metabolic and genetic regulation, with some species-specific differences between the apicomplexan and the chromerid. Our findings provide novel insights into roles for the conserved PAD/ADI enzyme family in the regulation of metabolic and epigenetic pathways in alveolate parasites, possibly also relating to their life cycle and host-pathogen interactions.
Collapse
Affiliation(s)
- Árni Kristmundsson
- Institute for Experimental Pathology at Keldur, University of Iceland, Keldnavegur 3, 112 Reykjavik, Iceland;
- Correspondence: (Á.K.); (S.L.)
| | - Ásthildur Erlingsdóttir
- Institute for Experimental Pathology at Keldur, University of Iceland, Keldnavegur 3, 112 Reykjavik, Iceland;
| | - Sigrun Lange
- Tissue Architecture and Regeneration Research Group, School of Life Sciences, University of Westminster, London W1W 6UW, UK
- Correspondence: (Á.K.); (S.L.)
| |
Collapse
|
3
|
Lopes BRP, Ribeiro AG, Silva TF, Barbosa LV, Jesus TI, Matsuda BK, Costa MF, Toledo KA. Diagnosis and treatment of HEp-2 cells contaminated with mycoplasma. BRAZ J BIOL 2021; 81:37-43. [PMID: 32321065 DOI: 10.1590/1519-6984.215721] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 08/20/2019] [Indexed: 11/22/2022] Open
Abstract
Contamination of primary and cell cultures by mycoplasmas is one of the main economic and biological pitfalls in basic research, diagnosis and manufacture of biotechnological products. It is a common issue which may be difficult to conduct surveillance on. Mycoplasma presence may affect several physiological parameters of the cell, besides being considered an important source of inaccurate and/or non-reproducible scientific results. Each cell type presents characteristical symptoms, mainly morphological, that indicate a contamination by mycoplasma. HEp-2 cells originate from carcinoma of the larynx and are, therefore, part of the respiratory tract, which is one of mycoplasma habitats. Despite the importance these cells in several biological research (evaluation of cell proliferation and migration, apoptosis, antiviral and antitumor compounds), the alterations induced by mycoplasma contamination in HEp-2 cells have not yet been described. Here, we describe the progressive morphological alterations in culture of HEp-2 cells infected with mycoplasma, as well as the-diagnosis of the infection and its treatment. Mycoplasma contamination described within this work led to cytoplasm elongation, cell-to-cell spacing, thin plasma membrane projections, cytoplasmic vacuoles, fusion with neighboring cells, and, finally, cell death. Contamination was detected by fluorescence imaging (DAPI) and PCR reactions. The cultures were treated with BM-Cyclin antibiotic to eliminate contamination. The data presented here will be of relevance to researchers whose investigations involve cell culture, especially respiratory and HEp-2 cells.
Collapse
Affiliation(s)
- B R P Lopes
- Departamento de Ciências Biológicas, Faculdade de Ciências e Letras, Universidade Estadual Paulista - UNESP, Av. Dom Antônio, 2100, Parque Universitário, CEP 19806-900, Assis, SP, Brasil.,Instituto de Biociências, Letras e Ciências Exatas - IBILCE, Universidade Estadual Paulista - UNESP, R. Cristovão Colombo, 2265, Jardim Nazareth, CEP 15054-000, São José do Rio Preto, SP, Brasil
| | - A G Ribeiro
- Departamento de Ciências Biológicas, Faculdade de Ciências e Letras, Universidade Estadual Paulista - UNESP, Av. Dom Antônio, 2100, Parque Universitário, CEP 19806-900, Assis, SP, Brasil.,Instituto de Biociências, Letras e Ciências Exatas - IBILCE, Universidade Estadual Paulista - UNESP, R. Cristovão Colombo, 2265, Jardim Nazareth, CEP 15054-000, São José do Rio Preto, SP, Brasil
| | - T F Silva
- Departamento de Ciências Biológicas, Faculdade de Ciências e Letras, Universidade Estadual Paulista - UNESP, Av. Dom Antônio, 2100, Parque Universitário, CEP 19806-900, Assis, SP, Brasil
| | - L V Barbosa
- Departamento de Ciências Biológicas, Faculdade de Ciências e Letras, Universidade Estadual Paulista - UNESP, Av. Dom Antônio, 2100, Parque Universitário, CEP 19806-900, Assis, SP, Brasil
| | - T I Jesus
- Departamento de Ciências Biológicas, Faculdade de Ciências e Letras, Universidade Estadual Paulista - UNESP, Av. Dom Antônio, 2100, Parque Universitário, CEP 19806-900, Assis, SP, Brasil
| | - B K Matsuda
- Departamento de Ciências Biológicas, Faculdade de Ciências e Letras, Universidade Estadual Paulista - UNESP, Av. Dom Antônio, 2100, Parque Universitário, CEP 19806-900, Assis, SP, Brasil
| | - M F Costa
- Departamento de Ciências Biológicas, Faculdade de Ciências e Letras, Universidade Estadual Paulista - UNESP, Av. Dom Antônio, 2100, Parque Universitário, CEP 19806-900, Assis, SP, Brasil
| | - K A Toledo
- Departamento de Ciências Biológicas, Faculdade de Ciências e Letras, Universidade Estadual Paulista - UNESP, Av. Dom Antônio, 2100, Parque Universitário, CEP 19806-900, Assis, SP, Brasil.,Instituto de Biociências, Letras e Ciências Exatas - IBILCE, Universidade Estadual Paulista - UNESP, R. Cristovão Colombo, 2265, Jardim Nazareth, CEP 15054-000, São José do Rio Preto, SP, Brasil
| |
Collapse
|
4
|
Arisan ED, Uysal-Onganer P, Lange S. Putative Roles for Peptidylarginine Deiminases in COVID-19. Int J Mol Sci 2020; 21:E4662. [PMID: 32629995 PMCID: PMC7370447 DOI: 10.3390/ijms21134662] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 06/26/2020] [Accepted: 06/28/2020] [Indexed: 02/06/2023] Open
Abstract
Peptidylarginine deiminases (PADs) are a family of calcium-regulated enzymes that are phylogenetically conserved and cause post-translational deimination/citrullination, contributing to protein moonlighting in health and disease. PADs are implicated in a range of inflammatory and autoimmune conditions, in the regulation of extracellular vesicle (EV) release, and their roles in infection and immunomodulation are known to some extent, including in viral infections. In the current study we describe putative roles for PADs in COVID-19, based on in silico analysis of BioProject transcriptome data (PRJNA615032 BioProject), including lung biopsies from healthy volunteers and SARS-CoV-2-infected patients, as well as SARS-CoV-2-infected, and mock human bronchial epithelial NHBE and adenocarcinoma alveolar basal epithelial A549 cell lines. In addition, BioProject Data PRJNA631753, analysing patients tissue biopsy data (n = 5), was utilised. We report a high individual variation observed for all PADI isozymes in the patients' tissue biopsies, including lung, in response to SARS-CoV-2 infection, while PADI2 and PADI4 mRNA showed most variability in lung tissue specifically. The other tissues assessed were heart, kidney, marrow, bowel, jejunum, skin and fat, which all varied with respect to mRNA levels for the different PADI isozymes. In vitro lung epithelial and adenocarcinoma alveolar cell models revealed that PADI1, PADI2 and PADI4 mRNA levels were elevated, but PADI3 and PADI6 mRNA levels were reduced in SARS-CoV-2-infected NHBE cells. In A549 cells, PADI2 mRNA was elevated, PADI3 and PADI6 mRNA was downregulated, and no effect was observed on the PADI4 or PADI6 mRNA levels in infected cells, compared with control mock cells. Our findings indicate a link between PADI expression changes, including modulation of PADI2 and PADI4, particularly in lung tissue, in response to SARS-CoV-2 infection. PADI isozyme 1-6 expression in other organ biopsies also reveals putative links to COVID-19 symptoms, including vascular, cardiac and cutaneous responses, kidney injury and stroke. KEGG and GO pathway analysis furthermore identified links between PADs and inflammatory pathways, in particular between PAD4 and viral infections, as well as identifying links for PADs with a range of comorbidities. The analysis presented here highlights roles for PADs in-host responses to SARS-CoV-2, and their potential as therapeutic targets in COVID-19.
Collapse
Affiliation(s)
- Elif Damla Arisan
- Gebze Technical University, Institute of Biotechnology, Gebze, 41400 Kocaeli, Turkey;
| | - Pinar Uysal-Onganer
- Cancer Research Group, School of Life Sciences, University of Westminster, London W1W 6UW, UK;
| | - Sigrun Lange
- Tissue Architecture and Regeneration Research Group, School of Life Sciences, University of Westminster, London W1W 6UW, UK
| |
Collapse
|
5
|
Criscitiello MF, Kraev I, Lange S. Post-Translational Protein Deimination Signatures in Serum and Serum-Extracellular Vesicles of Bos taurus Reveal Immune, Anti-Pathogenic, Anti-Viral, Metabolic and Cancer-Related Pathways for Deimination. Int J Mol Sci 2020; 21:E2861. [PMID: 32325910 PMCID: PMC7215346 DOI: 10.3390/ijms21082861] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 04/15/2020] [Accepted: 04/16/2020] [Indexed: 12/14/2022] Open
Abstract
The bovine immune system is known for its unusual traits relating to immunoglobulin and antiviral responses. Peptidylarginine deiminases (PADs) are phylogenetically conserved enzymes that cause post-translational deimination, contributing to protein moonlighting in health and disease. PADs also regulate extracellular vesicle (EV) release, forming a critical part of cellular communication. As PAD-mediated mechanisms in bovine immunology and physiology remain to be investigated, this study profiled deimination signatures in serum and serum-EVs in Bos taurus. Bos EVs were poly-dispersed in a 70-500 nm size range and showed differences in deiminated protein cargo, compared with whole sera. Key immune, metabolic and gene regulatory proteins were identified to be post-translationally deiminated with some overlapping hits in sera and EVs (e.g., immunoglobulins), while some were unique to either serum or serum-EVs (e.g., histones). Protein-protein interaction network analysis of deiminated proteins revealed KEGG pathways common for serum and serum-EVs, including complement and coagulation cascades, viral infection (enveloped viruses), viral myocarditis, bacterial and parasitic infections, autoimmune disease, immunodeficiency intestinal IgA production, B-cell receptor signalling, natural killer cell mediated cytotoxicity, platelet activation and hematopoiesis, alongside metabolic pathways including ferroptosis, vitamin digestion and absorption, cholesterol metabolism and mineral absorption. KEGG pathways specific to EVs related to HIF-1 signalling, oestrogen signalling and biosynthesis of amino acids. KEGG pathways specific for serum only, related to Epstein-Barr virus infection, transcription mis-regulation in cancer, bladder cancer, Rap1 signalling pathway, calcium signalling pathway and ECM-receptor interaction. This indicates differences in physiological and pathological pathways for deiminated proteins in serum-EVs, compared with serum. Our findings may shed light on pathways underlying a number of pathological and anti-pathogenic (viral, bacterial, parasitic) pathways, with putative translatable value to human pathologies, zoonotic diseases and development of therapies for infections, including anti-viral therapies.
Collapse
Affiliation(s)
- Michael F. Criscitiello
- Comparative Immunogenetics Laboratory, Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA;
- Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M Health Science Center, Texas A&M University, College Station, TX 77843, USA
| | - Igor Kraev
- Electron Microscopy Suite, Faculty of Science, Technology, Engineering and Mathematics, Open University, Milton Keynes MK7 6AA, UK;
| | - Sigrun Lange
- Tissue Architecture and Regeneration Research Group, School of Life Sciences, University of Westminster, London W1W 6XH, UK
| |
Collapse
|
6
|
Zarei M, Rahbar MR, Morowvat MH, Nezafat N, Negahdaripour M, Berenjian A, Ghasemi Y. Arginine Deiminase: Current Understanding and Applications. Recent Pat Biotechnol 2019; 13:124-136. [PMID: 30569861 DOI: 10.2174/1872208313666181220121400] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Revised: 11/07/2018] [Accepted: 12/25/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND Arginine deiminase (ADI), an arginine catabolizing enzyme, is considered as an anti-tumor agent for the treatment of arginine auxotrophic cancers. However, some obstacles limit its clinical applications. OBJECTIVE This review will summarize the clinical applications of ADI, from a brief history to its limitations, and will discuss the different ways to deal with the clinical limitations. METHOD The structure analysis, cloning, expression, protein engineering and applications of arginine deiminase enzyme have been explained in this review. CONCLUSION Recent patents on ADI are related to ADI engineering to increase its efficacy for clinical application. The intracellular delivery of ADI and combination therapy seem to be the future strategies in the treatment of arginine auxotrophic cancers. Applying ADIs with optimum features from different sources and or ADI engineering, are promising strategies to improve the clinical application of ADI.
Collapse
Affiliation(s)
- Mahboubeh Zarei
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Reza Rahbar
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Hossein Morowvat
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Navid Nezafat
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Manica Negahdaripour
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Aydin Berenjian
- School of Engineering, Faculty of Science & Engineering, The University of Waikato, Hamilton, New Zealand
| | - Younes Ghasemi
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
7
|
Fayura L. Development of Cultivation Technology for the Escherichia Coli Recombinant Strain Producing Arginine Deiminase of Mycoplasma Hominis. SCIENCE AND INNOVATION 2014. [DOI: 10.15407/scine10.04.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
8
|
Nagashima R, Kawakami F, Takahashi S, Obata F, Kubo M. Allo-antigen stimulated CD8+ T-cells suppress NF-κB and Ets-1 DNA binding activity, and inhibit phosphorylated NF-κB p65 nuclear localization in CD4+ T-cells. Viral Immunol 2014; 27:305-15. [PMID: 24844121 DOI: 10.1089/vim.2013.0113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
CD8+ T-cells of asymptomatic HIV-1 carriers (AC) suppress human immunodeficiency virus type 1 (HIV-1) replication in a class I major histocompatibility complex (MHC-I)-restricted and -unrestricted manner. In order to investigate the mechanism of MHC-I-unrestricted CD8+ T-cell-mediated HIV-1 suppression, we previously established allo-antigen stimulated CD8+T-cells from HIV-1-uninfected donors. These allo-antigen stimulated CD8+ T-cells suppressed HIV-1 replication in acutely infected autologous CD4+ T-cells when directly co-cultured. To elucidate the mechanism of HIV-1 replication suppression, we analyzed DNA-binding activity and phosphorylation of transcriptional factors associated with HIV-1 replication by electrophoresis mobility shift assay and Western blotting. When CD4+ T-cells were cultured with allo-antigen stimulated CD8+ T-cells, the reduction of NF-κB and Ets-1 DNA-binding activity was observed. Nuclear localization of NF-κB p65 and Ets-1 was suppressed in CD4+ T-cells. Although NF-κB p65 and Ets-1 are known to be regulated by protein kinase A (PKA), no difference was observed in the expression and phosphorylation of the PKA catalytic subunit in CD4+ T-cells cultured with PHA-treated CD8+ T-cells or allo-antigen stimulated CD8+ T-cells. Cyclic AMP is also known to enter through gap junctions, but the suppression of HIV-1 replication mediated by allo-antigen stimulated CD8+ T-cells was not affected by the gap junction inhibitor. The nuclear transport of phosphorylated NF-κB p65 (Ser276) was inhibited only in CD4+ T-cells cultured with allo-antigen stimulated CD8+ T-cells. Our results indicate that allo-antigen stimulated CD8+ T-cells suppress the transcriptional activity of NF-κB p65 or Ets-1 in an antigen-nonspecific manner, and inhibit the nuclear transport of phosphorylated NF-κB p65 (Ser276).
Collapse
Affiliation(s)
- Ryuichi Nagashima
- 1 Division of Clinical Immunology, Graduate School of Medical Sciences, Kitasato University , Sagamihara, Japan
| | | | | | | | | |
Collapse
|
9
|
Zhu L, Cheng F, Piatkowski V, Schwaneberg U. Protein Engineering of the Antitumor Enzyme PpADI for Improved Thermal Resistance. Chembiochem 2013; 15:276-83. [DOI: 10.1002/cbic.201300433] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Indexed: 11/10/2022]
|
10
|
Fayura LR, Boretsky YR, Pynyaha YV, Wheatley DN, Sibirny AA. Improved method for expression and isolation of the Mycoplasma hominis arginine deiminase from the recombinant strain of Escherichia coli. J Biotechnol 2013; 167:420-6. [DOI: 10.1016/j.jbiotec.2013.06.025] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Revised: 06/26/2013] [Accepted: 06/30/2013] [Indexed: 10/26/2022]
|
11
|
Zhu L, Verma R, Roccatano D, Ni Y, Sun ZH, Schwaneberg U. A Potential Antitumor Drug (Arginine Deiminase) Reengineered for Efficient Operation under Physiological Conditions. Chembiochem 2010; 11:2294-301. [DOI: 10.1002/cbic.201000458] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
12
|
Kozai M, Sasamori E, Fujihara M, Yamashita T, Taira H, Harasawa R. Growth inhibition of human melanoma cells by a recombinant arginine deiminase expressed in Escherichia coli. J Vet Med Sci 2009; 71:1343-7. [PMID: 19887741 DOI: 10.1292/jvms.001343] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We have cloned the arginine deiminase (ADI) gene from Mycoplasma hominis PG21 genomic DNA by polymerase chain reaction, and changed four TGA tryptophan codons (stop codon in E. coli) to TGG codons in the coding region by site-directed mutagenesis in order to express in E. coli. The recombinant ADI (rADI) was purified to apparent homogeneity by Ni-affinity chromatography after extraction from inclusion bodies followed by refolding. The rADI expressed in E. coli was estimated to be 50 kDa. Dimeric forms of rADI exerted enzymatic activity. We found that high concentration of potassium dihydrogenphosphate (PDP) and L-arginine addition in refolding reaction increases the enzyme activity. The specific activity of rADl was calculated as 0.618 U/mg. In addition, the enzyme activity of purified rADI remained for at least one month in 100 mM PDP solution (pH 6.5), but diminished within one week in 100 mM PDP solution (pH 7.4). Anti-tumor activity of the purified rADI was estimated to be 0.036 U/ml as 50% growth inhibitory activity against human melanoma cell line G-361.
Collapse
Affiliation(s)
- Megumi Kozai
- Department of Veterinary Microbiology, Faculty of Agriculture, Iwate University, 3-18-8 Ueda, Morioka 020-8550, Japan
| | | | | | | | | | | |
Collapse
|
13
|
Wang M, Basu A, Palm T, Hua J, Youngster S, Hwang L, Liu HC, Li X, Peng P, Zhang Y, Zhao H, Zhang Z, Longley C, Mehlig M, Borowski V, Sai P, Viswanathan M, Jang E, Petti G, Liu S, Yang K, Filpula D. Engineering an Arginine Catabolizing Bioconjugate: Biochemical and Pharmacological Characterization of PEGylated Derivatives of Arginine Deiminase fromMycoplasma arthritidis. Bioconjug Chem 2006; 17:1447-59. [PMID: 17105223 DOI: 10.1021/bc060198y] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Arginine is an important metabolite in the normal function of several biological systems, and arginine deprivation has been investigated in animal models and human clinical trials for its effects on inhibition of tumor growth, angiogenesis, or nitric oxide synthesis. In order to design an optimal arginine-catabolizing enzyme bioconjugate, a novel recombinant arginine deiminase (ADI) from Mycoplasma arthritidis was prepared, and multi-PEGylated derivatives were examined for enzymatic and biochemical properties in vitro, as well as pharmacokinetic and pharmacodynamic behavior in rats and mice. ADI bioconjugates constructed with 12 kDa or 20 kDa monomethoxy-poly(ethylene glycol) polymers with linear succinimidyl carbonate linkers were investigated via intravenous, intramuscular, or subcutaneous administration in rodents. The selected PEG-ADI compounds have 22 +/- 2 PEG strands per protein dimer, providing an additional molecular mass of about 0.2-0.5 x 10(6) Da and prolonging the plasma mean residence time of the enzyme over 30-fold in mice. Prolonged plasma arginine deprivation was demonstrated with each injection route for these bioconjugates. Pharmacokinetic analysis employed parallel measurement of enzyme activity in bioassays and enzyme assays and demonstrated a correlation with the pharmacodynamic analysis of plasma arginine concentrations. Either ADI bioconjugate depressed plasma arginine to undetectable levels for 10 days when administered intravenously at 5 IU per mouse, while the subcutaneous and intramuscular routes exhibited only slightly reduced potency. Both bioconjugates exhibited potent growth inhibition of several cultured tumor lines that are deficient in the anabolic enzyme, argininosuccinate synthetase. Investigations of structure-activity optimization for PEGylated ADI compounds revealed a benefit to constraining the PEG size and number of attachments to both conserve catabolic activity and streamline manufacturing of the experimental therapeutics. Specifically, ADI with either 12 kDa or 20 kDa PEG attachments on 33% of the primary amines retained about 60% or 48% of enzyme activity, respectively; the Km and pH profiles were nearly unchanged; IC50 values were diminished by less than 30%; while stability studies demonstrated full retention of activity at 4 degrees C for 5 months. A comparison of the enzymatic properties of a second ADI from Pseudomonas putida illustrated the superior characteristics of the M. arthritidis ADI enzyme.
Collapse
Affiliation(s)
- Maoliang Wang
- Enzon Pharmaceuticals, 20 Kingsbridge Road, Piscataway, New Jersey 08854-3969, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|