1
|
Lawler C, Simas JP, Stevenson PG. Vaccine protection against murid herpesvirus-4 is maintained when the priming virus lacks known latency genes. Immunol Cell Biol 2019; 98:67-78. [PMID: 31630452 DOI: 10.1111/imcb.12299] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 10/13/2019] [Accepted: 10/16/2019] [Indexed: 11/30/2022]
Abstract
γ-Herpesviruses establish latent infections of lymphocytes and drive their proliferation, causing cancers and motivating a search for vaccines. Effective vaccination against murid herpesvirus-4 (MuHV-4)-driven lymphoproliferation by latency-impaired mutant viruses suggests that lytic access to the latency reservoir is a viable target for control. However, the vaccines retained the immunogenic MuHV-4 M2 latency gene. Here, a strong reduction in challenge virus load was maintained when the challenge virus lacked the main latency-associated CD8+ T-cell epitope of M2, or when the vaccine virus lacked M2 entirely. This protection was maintained also when the vaccine virus lacked both episome maintenance and the genomic region encompassing M1, M2, M3, M4 and ORF4. Therefore, protection did not require immunity to known MuHV-4 latency genes. As the remaining vaccine virus genes have clear homologs in human γ-herpesviruses, this approach of deleting viral latency genes could also be applied to them, to generate safe and effective vaccines against human disease.
Collapse
Affiliation(s)
- Clara Lawler
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, QLD, Australia
| | - João Pedro Simas
- Instituto de Medicina Molecular, Universidade de Lisboa, Lisboa, Portugal
| | - Philip G Stevenson
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, QLD, Australia.,Royal Children's Hospital, Brisbane, QLD, Australia
| |
Collapse
|
2
|
Abstract
Vaccination against γ-herpesviruses has been hampered by our limited understanding of their normal control. Epstein–Barr virus (EBV)-transformed B cells are killed by viral latency antigen-specific CD8+ T cells in vitro, but attempts to block B cell infection with antibody or to prime anti-viral CD8+ T cells have protected poorly in vivo. The Doherty laboratory used Murid Herpesvirus-4 (MuHV-4) to analyze γ-herpesvirus control in mice and found CD4+ T cell dependence, with viral evasion limiting CD8+ T cell function. MuHV-4 colonizes germinal center (GC) B cells via lytic transfer from myeloid cells, and CD4+ T cells control myeloid infection. GC colonization and protective, lytic antigen-specific CD4+ T cells are now evident also for EBV. Subunit vaccines have protected only transiently against MuHV-4, but whole virus vaccines give long-term protection, via CD4+ T cells and antibody. They block infection transfer to B cells, and need include no known viral latency gene, nor any MuHV-4-specific gene. Thus, the Doherty approach of in vivo murine analysis has led to a plausible vaccine strategy for EBV and, perhaps, some insight into what CD8+ T cells really do.
Collapse
Affiliation(s)
- Philip G Stevenson
- School of Chemistry and Molecular Biosciences, University of Queensland and Brisbane, Australia.,Child Health Research Center, Brisbane, Australia
| |
Collapse
|
3
|
Sheridan V, Polychronopoulos L, Dutia BM, Ebrahimi B. A shutoff and exonuclease mutant of murine gammaherpesvirus-68 yields infectious virus and causes RNA loss in type I interferon receptor knockout cells. J Gen Virol 2014; 95:1135-1143. [DOI: 10.1099/vir.0.059329-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Significant loss of RNA followed by severely reduced cellular protein pool, a phenomenon termed host shutoff, is associated with a number of lytic virus infections and is a critical player in viral pathogenesis. Until recently, viral DNA exonucleases were associated only with processing of viral genomic DNA and its encapsidation. However, recent observations have identified host shutoff and exonuclease function for the highly conserved viral exonucleases in γ-herpesviruses, which include Kaposi’s sarcoma-associated herpesvirus, Epstein–Barr virus and the mouse model murine gammaherpesvirus-68, also referred to as MHV-68. In this study, we show that although ablation of the MHV-68 exonuclease ORF37 caused a restrictive phenotype in WT IFN-α/β receptor-positive cells such as NIH 3T3, lack of ORF37 was tolerated in cells lacking the IFN-α/β receptor: the ORF37Stop virus was capable of forming infectious particles and caused loss of mRNA in IFN-α/β receptor knockout cells. Moreover, ORF37Stop virus was able to establish lytic infection in the lungs of mice lacking the IFN-α/β receptor. These observations provide evidence that lytic MHV-68 infection and subsequent loss of mRNA can take place independently of ORF37. Moreover, efficient growth of ORF37Stop virus also identifies a role for this family of viral nucleases in providing a window of opportunity for virus growth by overcoming type I IFN-dependent responses.
Collapse
Affiliation(s)
- Victoria Sheridan
- Department of Functional and Comparative Genomics, Institute of Integrative Biology, University of Liverpool, Crown Street, Liverpool L69 7ZB, UK
| | - Louise Polychronopoulos
- Department of Functional and Comparative Genomics, Institute of Integrative Biology, University of Liverpool, Crown Street, Liverpool L69 7ZB, UK
| | - Bernadette M. Dutia
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK
| | - Bahram Ebrahimi
- Department of Functional and Comparative Genomics, Institute of Integrative Biology, University of Liverpool, Crown Street, Liverpool L69 7ZB, UK
| |
Collapse
|
4
|
Abstract
UNLABELLED Lymphocyte colonization by gammaherpesviruses (γHVs) is an important target for cancer prevention. However, how it works is not clear. Epstein-Barr virus drives autonomous B cell proliferation in vitro but in vivo may more subtly exploit the proliferative pathways provided by lymphoid germinal centers (GCs). Murid herpesvirus 4 (MuHV-4), which realistically infects inbred mice, provides a useful tool with which to understand further how a γHV colonizes B cells in vivo. Not all γHVs necessarily behave the same, but common events can with MuHV-4 be assigned an importance for host colonization and so a potential as therapeutic targets. MuHV-4-driven B cell proliferation depends quantitatively on CD4(+) T cell help. Here we show that it also depends on T cell-independent survival signals provided by the B cell-activating factor (BAFF) receptor (BAFF-R). B cells could be infected in BAFF-R(-/-) mice, but virus loads remained low. This corresponded to a BAFF-R-dependent defect in GC colonization. The close parallels between normal, antigen-driven B cell responses and virus-infected B cell proliferation argue that in vivo, γHVs mostly induce infected B cells into normal GC reactions rather than generating large numbers of autonomously proliferating blasts. IMPORTANCE γHVs cause cancers by driving the proliferation of infected cells. B cells are a particular target. Thus, we need to know how virus-driven B cell proliferation works. Controversy exists as to whether viral genes drive it directly or less directly orchestrate the engagement of normal, host-driven pathways. Here we show that the B cell proliferation driven by a murid γHV requires BAFF-R. This supports the idea that γHVs exploit host proliferation pathways and suggests that interfering with BAFF-R could more generally reduce γHV-associated B cell proliferation.
Collapse
|
5
|
Taylor K. Reporting the Implementation of the Three Rs in European Primate and Mouse Research Papers: Are We Making Progress? Altern Lab Anim 2010; 38:495-517. [DOI: 10.1177/026119291003800613] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
It is now more than 20 years since both Council of Europe Convention ETS123 and EU Directive 86/609?EEC were introduced, to promote the implementation of the Three Rs in animal experimentation and to provide guidance on animal housing and care. It might therefore be expected that reports of the implementation of the Three Rs in animal research papers would have increased during this period. In order to test this hypothesis, a literature survey of animal-based research was conducted. A randomly-selected sample from 16 high-profile medical journals, of original research papers arising from European institutions that featured experiments which involved either mice or primates, were identified for the years 1986 and 2006 (Total sample = 250 papers). Each paper was scored out of 10 for the incidence of reporting on the implementation of Three Rs-related factors corresponding to Replacement (justification of non-use of non-animal methods), Reduction (statistical analysis of the number of animals needed) and Refinement (housing aspects, i.e. increased cage size, social housing, enrichment of cage environment and food; and procedural aspects, i.e. the use of anaesthesia, analgesia, humane endpoints, and training for procedures with positive reinforcement). There was no significant increase in overall reporting score over time, for either mouse or primate research. By 2006, mouse research papers scored an average of 0 out of a possible 10, and primate research papers scored an average of 1.5. This review provides systematic evidence that animal research is still not properly reported, and supports the call within the scientific community for action to be taken by journals to update their policies.
Collapse
Affiliation(s)
- Katy Taylor
- British Union for the Abolition of Vivisection, London, UK
| |
Collapse
|
6
|
Hughes DJ, Kipar A, Milligan SG, Cunningham C, Sanders M, Quail MA, Rajandream MA, Efstathiou S, Bowden RJ, Chastel C, Bennett M, Sample JT, Barrell B, Davison AJ, Stewart JP. Characterization of a novel wood mouse virus related to murid herpesvirus 4. J Gen Virol 2010; 91:867-79. [PMID: 19940063 PMCID: PMC2888160 DOI: 10.1099/vir.0.017327-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2009] [Accepted: 11/19/2009] [Indexed: 11/18/2022] Open
Abstract
Two novel gammaherpesviruses were isolated, one from a field vole (Microtus agrestis) and the other from wood mice (Apodemus sylvaticus). The genome of the latter, designated wood mouse herpesvirus (WMHV), was completely sequenced. WMHV had the same genome structure and predicted gene content as murid herpesvirus 4 (MuHV4; murine gammaherpesvirus 68). Overall nucleotide sequence identity between WMHV and MuHV4 was 85 % and most of the 10 kb region at the left end of the unique region was particularly highly conserved, especially the viral tRNA-like sequences and the coding regions of genes M1 and M4. The partial sequence (71 913 bp) of another gammaherpesvirus, Brest herpesvirus (BRHV), which was isolated ostensibly from a white-toothed shrew (Crocidura russula), was also determined. The BRHV sequence was 99.2 % identical to the corresponding portion of the WMHV genome. Thus, WMHV and BRHV appeared to be strains of a new virus species. Biological characterization of WMHV indicated that it grew with similar kinetics to MuHV4 in cell culture. The pathogenesis of WMHV in wood mice was also extremely similar to that of MuHV4, except for the absence of inducible bronchus-associated lymphoid tissue at day 14 post-infection and a higher load of latently infected cells at 21 days post-infection.
Collapse
Affiliation(s)
- David J. Hughes
- School of Infection and Host Defence, University of Liverpool, Liverpool L69 3GA, UK
| | - Anja Kipar
- Department of Veterinary Pathology, University of Liverpool, Liverpool, L69 7ZJ, UK
| | - Steven G. Milligan
- MRC Virology Unit, Institute of Virology, University of Glasgow, Church Street, Glasgow G11 5JR, UK
| | - Charles Cunningham
- MRC Virology Unit, Institute of Virology, University of Glasgow, Church Street, Glasgow G11 5JR, UK
| | - Mandy Sanders
- The Wellcome Trust Sanger Institute, The Wellcome Trust Genome Campus, Cambridge CB10 1SA, UK
| | - Michael A. Quail
- The Wellcome Trust Sanger Institute, The Wellcome Trust Genome Campus, Cambridge CB10 1SA, UK
| | - Marie-Adele Rajandream
- The Wellcome Trust Sanger Institute, The Wellcome Trust Genome Campus, Cambridge CB10 1SA, UK
| | - Stacey Efstathiou
- Division of Virology, Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK
| | - Rory J. Bowden
- MRC Virology Unit, Institute of Virology, University of Glasgow, Church Street, Glasgow G11 5JR, UK
| | - Claude Chastel
- Laboratoire de Virologie, Faculté de Médecine, 29285 Brest, France
| | - Malcolm Bennett
- Department of Veterinary Pathology, University of Liverpool, Liverpool, L69 7ZJ, UK
| | - Jeffery T. Sample
- Department of Microbiology and Immunology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Bart Barrell
- The Wellcome Trust Sanger Institute, The Wellcome Trust Genome Campus, Cambridge CB10 1SA, UK
| | - Andrew J. Davison
- MRC Virology Unit, Institute of Virology, University of Glasgow, Church Street, Glasgow G11 5JR, UK
| | - James P. Stewart
- School of Infection and Host Defence, University of Liverpool, Liverpool L69 3GA, UK
| |
Collapse
|
7
|
Marques S, Alenquer M, Stevenson PG, Simas JP. A single CD8+ T cell epitope sets the long-term latent load of a murid herpesvirus. PLoS Pathog 2008; 4:e1000177. [PMID: 18846211 PMCID: PMC2556087 DOI: 10.1371/journal.ppat.1000177] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2008] [Accepted: 09/15/2008] [Indexed: 12/29/2022] Open
Abstract
The pathogenesis of persistent viral infections depends critically on long-term viral loads. Yet what determines these loads is largely unknown. Here, we show that a single CD8+ T cell epitope sets the long-term latent load of a lymphotropic gamma-herpesvirus, Murid herpesvirus-4 (MuHV-4). The MuHV-4 M2 latency gene contains an H2-Kd -restricted T cell epitope, and wild-type but not M2− MuHV-4 was limited to very low level persistence in H2d mice. Mutating the epitope anchor residues increased viral loads and re-introducing the epitope reduced them again. Like the Kaposi's sarcoma–associated herpesvirus K1, M2 shows a high frequency of non-synonymous mutations, suggesting that it has been selected for epitope loss. In vivo competition experiments demonstrated directly that epitope presentation has a major impact on viral fitness. Thus, host MHC class I and viral epitope expression interact to set the long-term virus load. Persistent viruses present a major challenge to the immune response. Gamma-herpesviruses are a prime example, and the archetypal family member, Epstein-Barr virus (EBV), has been studied for many years. A major unanswered question with EBV is why long-term virus loads—a key pathogenesis outcome—vary so widely between individuals. As most EBV studies are necessarily descriptive, the murid gamma-herpesvirus MuHV-4 provides an important focus of pathogenesis research. Here, we used MuHV-4 to address what determines long-term gamma-herpesvirus loads. We find a major role for a single MHC class I–restricted latency epitope. This reflects that latency-associated viral immune evasion and transcriptional silencing create a unique setting, in which the pool of possible epitopes is small enough for epitope loss to have a significant impact on viral fitness. Our data suggest that polymorphisms in viral latency genes and in host HLA class I together determine long-term viral loads.
Collapse
Affiliation(s)
- Sofia Marques
- Instituto de Microbiologia e Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Marta Alenquer
- Instituto de Microbiologia e Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Philip G. Stevenson
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - J. Pedro Simas
- Instituto de Microbiologia e Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
- * E-mail:
| |
Collapse
|
8
|
Mistríková J, Rajčáni J. Comparison of pathogenic properties of the murid gammaherpesvirus (MuHV 4) strains: a role for immunomodulatory proteins encoded by the left (5′-)end of the genome. Open Life Sci 2008; 3:19-30. [DOI: 10.2478/s11535-008-0002-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
The murid herpesvirus 4 (MuHV 4) species encompasses 7 isolates, out of which at least two (MHV-68, MHV-72) became in vitro propagated laboratory strains. Following intranasal inoculation, MuHV 4 induces an acute infectious mononucleosis-like syndrome with elevated levels of peripheral blood leukocytes, shifts in the relative proportion of lymphocytes along with the appearance of atypical mononuclear cells. At least two isolates exhibited spontaneous deletions at the left hand (5′-end) of their genome, resulting in the absence of M1, M2, M3 genes (strain MHV-72) and also of the M4 gene (strain MHV-76). Based on DNA sequence amplifications only, another two isolates (MHV-Šum and MHV-60) were shown to possess similar deletions of varying length. During latency (until 24 months post-infection), the mice infected with any MuHV 4 isolate (except MHV-76) developed lymphoproliferative disorders. The lack of tumor formation in MHV-76 infected mice was associated with persistent virus production at late post-infection intervals. In addition to careful analysis of spontaneously occurring 5′-end genome defects, our knowledge of the function of 5′-end genes relies on the behaviour of mutants with corresponding deletions and/or insertions. While M2 and M3 genes encode immune evasion proteins, M4 codes for a soluble glycopeptide acting as immunomodulator and/or immunostimulator.
Collapse
Affiliation(s)
| | - Július Rajčáni
- Institute of Virology, Slovak Academy of Sciences, 84505, Bratislava, Slovakia
| |
Collapse
|
9
|
Abstract
MicroRNAs (miRNAs) are approximately 22 nucleotide RNAs that mediate the posttranscriptional regulation of gene expression. miRNAs regulate diverse cellular processes such as development, differentiation, cell cycling, apoptosis, and immune responses. More than 400 miRNAs have been identified in humans and it is predicted that over 30% of human gene transcripts are regulated via miRNAs. Since 2004, many viral miRNAs have been described in several families of viruses. More than half of currently known viral miRNAs are encoded by viruses of the human Herepsviridae and 14 miRNAs have been found to be encoded by Human cytomegalovirus (HCMV). Thus far, HCMV is the only betaherpesvirus in which miRNAs have been described and these miRNAs possess many characteristics, including their genomic arrangement and temporal/spatial expression, which distinguish them from the other known herpesvirus miRNAs described. As a herpesvirus, HCMV establishes infection for the life of the host characterized by latent infection with periodic reactivation for production and spread of infectious progeny. This multifaceted life cycle of the herpesvirus requires an abundance of gene products and regulatory elements that makes cytomegalovirus genomes one of the most complex among human viruses. The defining characteristics of the cytomegalovirus and the minimal impact on genome size afforded by miRNAs inform the logic of virus-encoded miRNAs.
Collapse
|
10
|
Kupresanin F, Chow J, Mount A, Smith CM, Stevenson PG, Belz GT. Dendritic cells present lytic antigens and maintain function throughout persistent gamma-herpesvirus infection. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2007; 179:7506-13. [PMID: 18025195 DOI: 10.4049/jimmunol.179.11.7506] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The activation and maintenance of Ag-specific CD8(+) T cells is central to the long-term control of persistent infections. These killer T cells act to continuously scan and remove reservoirs of pathogen that have eluded the acute immune response. Acutely cleared viral infections depend almost exclusively on dendritic cells (DC) to present Ags to, and to activate, the CD8(+) T cell response. Paradoxically, persistent pathogens often infect professional APCs such as DC, in addition to infecting a broad range of nonprofessional APC, raising the possibility that many cell types could present viral Ags and activate T cells. We addressed whether in persistent viral infection with murine gammaherpesviruses, DC or non-DC, such as B cells and macrophages, were required to maintain the continued activation of Ag-specific CD8(+) T cells. We found that presentation of the surrogate Ag, OVA, expressed under a lytic promoter to CD8(+) T cells during persistent infection was largely restricted to DC, with little contribution from other lymphoid resident cells, such as B cells. This is despite the fact that B cells harbor a very large reservoir of latent virus. Our results support that, during persistent viral infection, continual presentation of lytic Ags by DC leads to T cell activation critical for maintaining CD8(+) T cells capable of limiting persistent viral infection.
Collapse
Affiliation(s)
- Fiona Kupresanin
- The Walter and Eliza Hall Institute of Medical, Melbourne, Victoria, Australia
| | | | | | | | | | | |
Collapse
|