1
|
Torralba B, Blanc S, Michalakis Y. Reassortments in single-stranded DNA multipartite viruses: Confronting expectations based on molecular constraints with field observations. Virus Evol 2024; 10:veae010. [PMID: 38384786 PMCID: PMC10880892 DOI: 10.1093/ve/veae010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/23/2023] [Accepted: 01/30/2024] [Indexed: 02/23/2024] Open
Abstract
Single-stranded DNA multipartite viruses, which mostly consist of members of the genus Begomovirus, family Geminiviridae, and all members of the family Nanoviridae, partly resolve the cost of genomic integrity maintenance through two remarkable capacities. They are able to systemically infect a host even when their genomic segments are not together in the same host cell, and these segments can be separately transmitted by insect vectors from host to host. These capacities potentially allow such viruses to reassort at a much larger spatial scale, since reassortants could arise from parental genotypes that do not co-infect the same cell or even the same host. To assess the limitations affecting reassortment and their implications in genome integrity maintenance, the objective of this review is to identify putative molecular constraints influencing reassorted segments throughout the infection cycle and to confront expectations based on these constraints with empirical observations. Trans-replication of the reassorted segments emerges as the major constraint, while encapsidation, viral movement, and transmission compatibilities appear more permissive. Confronting the available molecular data and the resulting predictions on reassortments to field population surveys reveals notable discrepancies, particularly a surprising rarity of interspecific natural reassortments within the Nanoviridae family. These apparent discrepancies unveil important knowledge gaps in the biology of ssDNA multipartite viruses and call for further investigation on the role of reassortment in their biology.
Collapse
Affiliation(s)
- Babil Torralba
- PHIM, Université Montpellier, IRD, CIRAD, INRAE, Institut Agro, Avenue du Campus d’Agropolis - ZAC de Baillarguet, Montpellier 34980, France
| | - Stéphane Blanc
- PHIM, Université Montpellier, IRD, CIRAD, INRAE, Institut Agro, Avenue du Campus d’Agropolis - ZAC de Baillarguet, Montpellier 34980, France
| | - Yannis Michalakis
- MIVEGEC, Université Montpellier, CNRS, IRD, 911, Avenue Agropolis, Montpellier 34394, France
| |
Collapse
|
2
|
Nonconcomitant host-to-host transmission of multipartite virus genome segments may lead to complete genome reconstitution. Proc Natl Acad Sci U S A 2022; 119:e2201453119. [PMID: 35914138 PMCID: PMC9371732 DOI: 10.1073/pnas.2201453119] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Because multipartite viruses package their genome segments in different viral particles, they face a potentially huge cost if the entire genomic information, i.e., all genome segments, needs to be present concomitantly for the infection to function. Previous work with the octapartite faba bean necrotic stunt virus (FBNSV; family Nanoviridae, genus Nanovirus) showed that this issue can be resolved at the within-host level through a supracellular functioning; all viral segments do not need to be present within the same host cell but may complement each other through intercellular trafficking of their products (protein or messenger RNA [mRNA]). Here, we report on whether FBNSV can as well decrease the genomic integrity cost during between-host transmission. Using viable infections lacking nonessential virus segments, we show that full-genome infections can be reconstituted and function through separate acquisition and/or inoculation of complementary sets of genome segments in recipient hosts. This separate acquisition/inoculation can occur either through the transmission of different segment sets by different individual aphid vectors or by the sequential acquisition by the same aphid of complementary sets of segments from different hosts. The possibility of a separate between-host transmission of different genome segments thus offers a way to at least partially resolve the genomic maintenance problem faced by multipartite viruses.
Collapse
|
3
|
Guyot V, Rajeswaran R, Chu HC, Karthikeyan C, Laboureau N, Galzi S, Mukwa LFT, Krupovic M, Kumar PL, Iskra-Caruana ML, Pooggin MM. A newly emerging alphasatellite affects banana bunchy top virus replication, transcription, siRNA production and transmission by aphids. PLoS Pathog 2022; 18:e1010448. [PMID: 35413079 PMCID: PMC9049520 DOI: 10.1371/journal.ppat.1010448] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 04/28/2022] [Accepted: 03/16/2022] [Indexed: 12/22/2022] Open
Abstract
Banana bunchy top virus (BBTV) is a six-component ssDNA virus (genus Babuvirus, family Nanoviridae) transmitted by aphids, infecting monocots (mainly species in the family Musaceae) and likely originating from South-East Asia where it is frequently associated with self-replicating alphasatellites. Illumina sequencing analysis of banana aphids and leaf samples from Africa revealed an alphasatellite that should be classified in a new genus, phylogenetically related to alphasatellites of nanoviruses infecting dicots. Alphasatellite DNA was encapsidated by BBTV coat protein and accumulated at high levels in plants and aphids, thereby reducing helper virus loads, altering relative abundance (formula) of viral genome components and interfering with virus transmission by aphids. BBTV and alphasatellite clones infected dicot Nicotiana benthamiana, followed by recovery and symptomless persistence of alphasatellite, and BBTV replication protein (Rep), but not alphasatellite Rep, induced leaf chlorosis. Transcriptome sequencing revealed 21, 22 and 24 nucleotide small interfering (si)RNAs covering both strands of the entire viral genome, monodirectional Pol II transcription units of viral mRNAs and pervasive transcription of each component and alphasatellite in both directions, likely generating double-stranded precursors of viral siRNAs. Consistent with the latter hypothesis, viral DNA formulas with and without alphasatellite resembled viral siRNA formulas but not mRNA formulas. Alphasatellite decreased transcription efficiency of DNA-N encoding a putative aphid transmission factor and increased relative siRNA production rates from Rep- and movement protein-encoding components. Alphasatellite itself spawned the most abundant siRNAs and had the lowest mRNA transcription rate. Collectively, following African invasion, BBTV got associated with an alphasatellite likely originating from a dicot plant and interfering with BBTV replication and transmission. Molecular analysis of virus-infected banana plants revealed new features of viral DNA transcription and siRNA biogenesis, both affected by alphasatellite. Costs and benefits of alphasatellite association with helper viruses are discussed. Self-replicating alphasatellites are frequently associated with plant ssDNA viruses. Their origin and costs versus benefits for helper virus replication, antiviral defense evasion and transmission by insect vectors are poorly understood. Here we describe identification in Africa and in depth molecular and biological characterization of a newly emerging alphasatellite of BBTV, a multicomponent ssDNA babuvirus causing one of the most economically-important diseases of monocotyledonous bananas and plantains. Phylogenetically, this alphasatellite represents a novel genus and is more related to alphasatellites of nanoviruses infecting dicot hosts than to other BBTV alphasatellites previously identified only in Asia. Consistent with its hypothetical dicot origin, cloned alphasatellite and BBTV can establish systemic infection in a model dicot plant, followed by recovery and symptomless alphasatellite persistence. In banana plants, alphasatellite competes for the host replication and transcription machinery and accumulates at high levels, thereby reducing loads of the helper virus, modifying relative abundance of its components and interfering with its acquisition and transmission by aphids. On the other hand, plant antiviral defenses silence alphasatellite gene expression at both transcriptional and posttranscriptional levels, generating highly-abundant 21, 22 and 24 nucleotide small interfering RNAs, suggesting that alphasatellite may serve as a decoy protecting its helper virus from gene silencing.
Collapse
Affiliation(s)
- Valentin Guyot
- PHIM Plant Health Institute, University of Montpellier, INRAE, CIRAD, IRD, Institute Agro, Montpellier, France
| | - Rajendran Rajeswaran
- PHIM Plant Health Institute, University of Montpellier, INRAE, CIRAD, IRD, Institute Agro, Montpellier, France
| | - Huong Cam Chu
- PHIM Plant Health Institute, University of Montpellier, INRAE, CIRAD, IRD, Institute Agro, Montpellier, France
| | - Chockalingam Karthikeyan
- PHIM Plant Health Institute, University of Montpellier, INRAE, CIRAD, IRD, Institute Agro, Montpellier, France
| | - Nathalie Laboureau
- PHIM Plant Health Institute, University of Montpellier, INRAE, CIRAD, IRD, Institute Agro, Montpellier, France
| | - Serge Galzi
- PHIM Plant Health Institute, University of Montpellier, INRAE, CIRAD, IRD, Institute Agro, Montpellier, France
| | - Lyna F. T. Mukwa
- Faculté des Sciences Agronomiques, Université Pédagogique Nationale, Kinshasa, Democratic Republic of the Congo
| | - Mart Krupovic
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Archaeal Virology Unit, Paris, France
| | - P. Lava Kumar
- International Institute of Tropical Agriculture (IITA), Ibadan, Nigeria
| | - Marie-Line Iskra-Caruana
- PHIM Plant Health Institute, University of Montpellier, INRAE, CIRAD, IRD, Institute Agro, Montpellier, France
- CIRAD, DGD-RS, Montpellier, France
| | - Mikhail M. Pooggin
- PHIM Plant Health Institute, University of Montpellier, INRAE, CIRAD, IRD, Institute Agro, Montpellier, France
- * E-mail:
| |
Collapse
|
4
|
Bashir S, Naqvi SMS, Muhammad A, Hussain I, Ali K, Khan MR, Farrakh S, Yasmin T, Hyder MZ. Banana bunchy top virus genetic diversity in Pakistan and association of diversity with recombination in its genomes. PLoS One 2022; 17:e0263875. [PMID: 35255085 PMCID: PMC8901069 DOI: 10.1371/journal.pone.0263875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 01/30/2022] [Indexed: 11/30/2022] Open
Abstract
Banana Bunchy top virus (BBTV) is a multipartite circular single strand DNA virus that belongs to genus Babuvirus and family Nanoviridae. It causes significant crop losses worldwide and also in Pakistan. BBTV is present in Pakistan since 1988 however, till now only few (about twenty only) sequence of genomic components have been reported from the country. To have insights into current genetic diversity in Pakistan fifty-seven genomic components including five complete genomes (comprises of DNA-R, -U3, -S, -M, -C and -N components) were sequenced in this study. The genetic diversity analysis of populations from Pakistan showed that DNA-R is highly conserved followed by DNA-N, whereas DNA-U3 is highly diverse with the most diverse Common Region Stem-loop (CR-SL) in BBTV genome, a functional region, which previously been reported to have undergone recombination in Pakistani population. A Maximum Likelihood (ML) phylogenetic analysis of entire genomes of isolates by using sequence of all the components concatenated together with the reported genomes around the world revealed deeper insights about the origin of the disease in Pakistan. A comparison of the genetic diversity of Pakistani and entire BBTV populations around the world indicates that there exists a correlation between genetic diversity and recombination. Population genetics analysis indicated that the degree of selection pressure differs depending on the area and genomic component. A detailed analysis of recombination across various components and functional regions suggested that recombination is closely associated with the functional parts of BBTV genome showing high genetic diversity. Both genetic diversity and recombination analyses suggest that the CR-SL is a recombination hotspot in all BBTV genomes and among the six components DNA-U3 is the only recombined component that has extensively undergone inter and intragenomic recombination. Diversity analysis of recombinant regions results on average one and half fold increase and, in some cases up to four-fold increase due to recombination. These results suggest that recombination is significantly contributing to the genetic diversity of BBTV populations around the world.
Collapse
Affiliation(s)
- Sana Bashir
- Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| | | | - Aish Muhammad
- National Institute for Genomics and Advanced Biotechnology, National Agriculture Research Centre, Islamabad, Pakistan
| | - Iqbal Hussain
- National Institute for Genomics and Advanced Biotechnology, National Agriculture Research Centre, Islamabad, Pakistan
| | - Kazim Ali
- National Institute for Genomics and Advanced Biotechnology, National Agriculture Research Centre, Islamabad, Pakistan
| | - Muhammad Ramzan Khan
- National Institute for Genomics and Advanced Biotechnology, National Agriculture Research Centre, Islamabad, Pakistan
| | - Sumaira Farrakh
- Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| | - Tayyaba Yasmin
- Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| | | |
Collapse
|
5
|
Effects of an alphasatellite on life cycle of the nanovirus Faba bean necrotic yellows virus. J Virol 2021; 96:e0138821. [PMID: 34818072 DOI: 10.1128/jvi.01388-21] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Nanoviruses are plant viruses with a multipartite single-stranded DNA (ssDNA) genome. Alphasatellites are commonly associated with nanovirus infections, but their putative impact on their helper viruses is unknown. In this study, we investigated the role of subterranean clover stunt alphasatellite 1 (hereafter named SCSA 1) on various important traits of faba bean necrotic yellows virus (FBNYV) in its host plant Vicia faba and aphid vector Acyrthosiphon pisum, including disease symptoms, viral accumulation and transmission. The results indicate that SCSA 1 does not affect the symptom severity nor the overall FBNYV accumulation in V. faba, but changes the relative amounts of its different genomic segments. Moreover, the association of SCSA 1 with FBNYV increases the rate of plant-to-plant transmission by a process seemingly unrelated to simple increase of the viral accumulation in the vector. These results represent the first study on the impact of an alphasatellite on the biology of its helper nanovirus. They suggest that SCSA 1 may benefit FBNYV, but the genericity of this conclusion is discussed and questioned. Importance Alphasatellites are circular single stranded DNA molecules frequently found in association with natural isolates of nanoviruses and some geminiviruse, the two ssDNA plant infecting virus families. While the implications of alphasatellite presence in geminivirus infections are relatively well documented, comparable studies on alphasatellites associated with nanoviruses are not available. Here we confirm that subterranean clover stunt alphasatellite 1 affects different traits of its helper nanovirus, faba bean necrotic yellows virus, both in the host plant and aphid vector. We show that the frequencies of the virus segments change in the presence of alphasatellite, in both plant and vector. We also confirm that while within-plant virus load and symptom are not affected by alphasatellite, the presence of alphasatellite decreases within-aphid virus load, but significantly increases virus transmission rate, so may confer a possible evolutionary advantage for the helper virus.
Collapse
|
6
|
Gaafar YZA, Herz K, Hartrick J, Fletcher J, Blouin AG, MacDiarmid R, Ziebell H. Investigating the Pea Virome in Germany-Old Friends and New Players in the Field(s). Front Microbiol 2020; 11:583242. [PMID: 33281777 PMCID: PMC7691430 DOI: 10.3389/fmicb.2020.583242] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 09/28/2020] [Indexed: 12/21/2022] Open
Abstract
Peas are an important legume for human and animal consumption and are also being used as green manure or intermediate crops to sustain and improve soil condition. Pea production faces constraints from fungal, bacterial, and viral diseases. We investigated the virome of German pea crops over the course of three successive seasons in different regions of pea production to gain an overview of the existing viruses. Pools from 540 plants, randomly selected from symptomatic and asymptomatic peas, and non-crop plants surrounding the pea fields were used for ribosomal RNA-depleted total RNA extraction followed by high-throughput sequencing (HTS) and RT-PCR confirmation. Thirty-five different viruses were detected in addition to nine associated nucleic acids. From these viruses, 25 are classified as either new viruses, novel strains or viruses that have not been reported previously from Germany. Pea enation mosaic virus 1 and 2 were the most prevalent viruses detected in the pea crops, followed by pea necrotic yellow dwarf virus (PNYDV) and turnip yellows virus which was also found also in the surrounding non-legume weeds. Moreover, a new emaravirus was detected in symptomatic peas in one region for two successive seasons. Most of the identified viruses are known to be aphid transmissible. The results revealed a high virodiversity in the German pea fields that poses new challenges to diagnosticians, researchers, risk assessors and policy makers, as the impact of the new findings are currently unknown.
Collapse
Affiliation(s)
- Yahya Z A Gaafar
- Julius Kühn Institute, Institute for Epidemiology and Pathogen Diagnostics, Braunschweig, Germany
| | - Kerstin Herz
- Julius Kühn Institute, Institute for Epidemiology and Pathogen Diagnostics, Braunschweig, Germany
| | - Jonas Hartrick
- Julius Kühn Institute, Institute for Epidemiology and Pathogen Diagnostics, Braunschweig, Germany
| | - John Fletcher
- The New Zealand Institute for Plant and Food Research Limited, Auckland, New Zealand
| | - Arnaud G Blouin
- The New Zealand Institute for Plant and Food Research Limited, Auckland, New Zealand.,School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| | - Robin MacDiarmid
- The New Zealand Institute for Plant and Food Research Limited, Auckland, New Zealand.,School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| | - Heiko Ziebell
- Julius Kühn Institute, Institute for Epidemiology and Pathogen Diagnostics, Braunschweig, Germany
| |
Collapse
|
7
|
Gaafar YZA, Ziebell H. Aphid transmission of nanoviruses. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2020; 104:e21668. [PMID: 32212397 DOI: 10.1002/arch.21668] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 02/28/2020] [Accepted: 03/03/2020] [Indexed: 06/10/2023]
Abstract
The genus Nanovirus consists of plant viruses that predominantly infect legumes leading to devastating crop losses. Nanoviruses are transmitted by various aphid species. The transmission occurs in a circulative nonpropagative manner. It was long suspected that a virus-encoded helper factor would be needed for successful transmission by aphids. Recently, a helper factor was identified as the nanovirus-encoded nuclear shuttle protein (NSP). The mode of action of NSP is currently unknown in contrast to helper factors from other plant viruses that, for example, facilitate binding of virus particles to receptors within the aphids' stylets. In this review, we are summarizing the current knowledge about nanovirus-aphid vector interactions.
Collapse
Affiliation(s)
- Yahya Z A Gaafar
- Institute for Epidemiology and Pathogen Diagnostics, Julius Kuehn Institute, Braunschweig, Lower Saxony, Germany
| | - Heiko Ziebell
- Institute for Epidemiology and Pathogen Diagnostics, Julius Kuehn Institute, Braunschweig, Lower Saxony, Germany
| |
Collapse
|
8
|
Venkataraman S, Selvarajan R. Recent advances in understanding the replication initiator protein of the ssDNA plant viruses of the family Nanoviridae. Virusdisease 2019; 30:22-31. [PMID: 31143829 PMCID: PMC6517469 DOI: 10.1007/s13337-019-00514-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 02/13/2019] [Indexed: 12/20/2022] Open
Abstract
The families of viruses possessing single-stranded (ss) circular genome employ a dedicated replication initiator protein (Rep) for making copies of their genome through the process of rolling circle replication. The replication begins at conserved nonanucleotide sequence at the intergenic region. The Rep protein seems to be the most conserved amongst the available proteins of the nanovirids and comprises of the N-terminal endonuclease domain and the C-terminal helicase domain. The structural studies of Faba bean necrotic yellows virus endonuclease domain suggests a α + β fold comprising of central β sheet built from five antiparallel β strands surrounded by outer short α helices. The catalysis is mediated by a conserved Tyr residue and employs divalent metal ions (Mn2+). On one hand, the Reps associate with each other and oligomerize and on the other hand interact with varied host and vector associated proteins for successful infection. The sequence analysis of Reps from previously known nanovirids and the newly found ones from metagenomics data shed light on the evolutionary pattern of nanovirids in comparison to other plant infecting ssDNA viruses.
Collapse
Affiliation(s)
- Sangita Venkataraman
- Department of Biotechnology, Acharya Nagarjuna University, Nagarjuna Nagar, Guntur, 522510 India
| | - R. Selvarajan
- ICAR National Research Centre for Banana, Thayanur Post, Tiruchirapalli, 620102 India
| |
Collapse
|
9
|
Lucía-Sanz A, Aguirre J, Manrubia S. Theoretical approaches to disclosing the emergence and adaptive advantages of multipartite viruses. Curr Opin Virol 2018; 33:89-95. [PMID: 30121469 DOI: 10.1016/j.coviro.2018.07.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 07/19/2018] [Accepted: 07/31/2018] [Indexed: 01/02/2023]
Abstract
Multipartite viruses have a segmented genome encapsidated in different viral particles that, in principle, propagate independently. Current empirical knowledge on the molecular, ecological and evolutionary features underlying the very existence of multipartitism is fragmented and puzzling. Although it is generally assumed that multipartitism is viable only when propagation occurs at high multiplicity of infection, evidence indicates that severe population bottlenecks are common. Mathematical models aimed at describing the dynamics of multipartite viruses typically assign an advantage to the multipartite form to compensate for the cost of high multiplicity of infection. Since progress in the theoretical understanding of the evolutionary ecology of multipartitism is strongly conditioned by empirical advances, both aspects are jointly revised in this contribution.
Collapse
Affiliation(s)
- Adriana Lucía-Sanz
- Spanish National Centre for Biotechnology (CSIC), Madrid, Spain; Grupo Interdisciplinar de Sistemas Complejos (GISC), Madrid, Spain
| | - Jacobo Aguirre
- Spanish National Centre for Biotechnology (CSIC), Madrid, Spain; Grupo Interdisciplinar de Sistemas Complejos (GISC), Madrid, Spain
| | - Susanna Manrubia
- Spanish National Centre for Biotechnology (CSIC), Madrid, Spain; Grupo Interdisciplinar de Sistemas Complejos (GISC), Madrid, Spain.
| |
Collapse
|
10
|
Grigoras I, Vetten HJ, Commandeur U, Ziebell H, Gronenborn B, Timchenko T. Nanovirus DNA-N encodes a protein mandatory for aphid transmission. Virology 2018; 522:281-291. [PMID: 30071404 DOI: 10.1016/j.virol.2018.07.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 07/04/2018] [Accepted: 07/04/2018] [Indexed: 12/15/2022]
Abstract
Nanoviruses possess a multipartite single-stranded DNA genome and are naturally transmitted to plants by various aphid species in a circulative non-propagative manner. Using the cloned genomic DNAs of faba bean necrotic stunt virus (FBNSV) for reconstituting nanovirus infections we analyzed the necessity of different virus components for infection and transmission by aphids. We found that in the absence of DNA-U1 and DNA-U2 symptom severity decreased, and in the absence of DNA-U1 the transmission efficiency decreased. Most significantly, we demonstrated that the protein encoded by DNA-N (NSP) is mandatory for aphid transmission. Moreover, we showed that the NSP of FBNSV could substitute for that of a distantly related nanovirus, pea necrotic yellow dwarf virus. Altering the FBNSV NSP by adding 13 amino acids to its carboxy-terminus resulted in an infectious but non-transmissible virus. We demonstrate that the NSP acts as a nanovirus transmission factor, the existence of which had been hypothesized earlier.
Collapse
Affiliation(s)
- Ioana Grigoras
- Institut des Sciences du Végétal, CNRS, 91198 Gif sur Yvette, France
| | | | - Ulrich Commandeur
- Institute for Molecular Biotechnology (Biology VII), RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | - Heiko Ziebell
- Julius Kühn Institute (JKI), Bundesforschungsinstitut für Kulturpflanzen, Institut für Epidemiologie und Pathogendiagnostik, 38104 Braunschweig, Germany
| | - Bruno Gronenborn
- Institut des Sciences du Végétal, CNRS, 91198 Gif sur Yvette, France; Institute for Integrative Biology of the Cell, UMR 9198, CNRS, Université Paris-Sud, CEA, Avenue de la Terrasse, 91198 Gif sur Yvette, France
| | - Tatiana Timchenko
- Institut des Sciences du Végétal, CNRS, 91198 Gif sur Yvette, France; Institute for Integrative Biology of the Cell, UMR 9198, CNRS, Université Paris-Sud, CEA, Avenue de la Terrasse, 91198 Gif sur Yvette, France.
| |
Collapse
|
11
|
Alphasatellitidae: a new family with two subfamilies for the classification of geminivirus- and nanovirus-associated alphasatellites. Arch Virol 2018; 163:2587-2600. [PMID: 29740680 DOI: 10.1007/s00705-018-3854-2] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 04/25/2018] [Indexed: 10/16/2022]
Abstract
Nanoviruses and geminiviruses are circular, single stranded DNA viruses that infect many plant species around the world. Nanoviruses and certain geminiviruses that belong to the Begomovirus and Mastrevirus genera are associated with additional circular, single stranded DNA molecules (~ 1-1.4 kb) that encode a replication-associated protein (Rep). These Rep-encoding satellite molecules are commonly referred to as alphasatellites and here we communicate the establishment of the family Alphasatellitidae to which these have been assigned. Within the Alphasatellitidae family two subfamilies, Geminialphasatellitinae and Nanoalphasatellitinae, have been established to respectively accommodate the geminivirus- and nanovirus-associated alphasatellites. Whereas the pairwise nucleotide sequence identity distribution of all the known geminialphasatellites (n = 628) displayed a troughs at ~ 70% and 88% pairwise identity, that of the known nanoalphasatellites (n = 54) had a troughs at ~ 67% and ~ 80% pairwise identity. We use these pairwise identity values as thresholds together with phylogenetic analyses to establish four genera and 43 species of geminialphasatellites and seven genera and 19 species of nanoalphasatellites. Furthermore, a divergent alphasatellite associated with coconut foliar decay disease is assigned to a species but not a subfamily as it likely represents a new alphasatellite subfamily that could be established once other closely related molecules are discovered.
Collapse
|
12
|
Lucía-Sanz A, Manrubia S. Multipartite viruses: adaptive trick or evolutionary treat? NPJ Syst Biol Appl 2017; 3:34. [PMID: 29263796 PMCID: PMC5680193 DOI: 10.1038/s41540-017-0035-y] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 09/25/2017] [Accepted: 10/04/2017] [Indexed: 12/18/2022] Open
Abstract
Multipartitism counts amongst the weirdest lifestyles found in the virosphere. Multipartite viruses have genomes segmented in pieces enclosed in different capsids that are independently transmitted. Since all segments have to meet in the host for complementation and completion of the viral cycle, multipartite viruses are bound to fight the loss of genomic information. While this is an obvious disadvantage of this strategy, no consensus on its actual advantages has been reached. In this review we present an exhaustive summary of all multipartite viruses described to date. Based on evidence, we discuss possible mechanistic and evolutionary origins of different groups, as well as their mutual relationships. We argue that the ubiquitous interactions of viruses with other unrelated viruses and with subviral elements might be regarded as a plausible first step towards multipartitism. In agreement with the view of the Virosphere as a deeply entangled network of gene sharing, we contend that the power of multipartitism relies on its dynamical and opportunistic nature, because it enables immediate adaptive responses to environmental changes. As such, perhaps the reasons for its success should be shought in multipartitism itself as an adaptive mechanism, to which its evolutionarily short-lived products (that is, the extant ensemble of multipartite viral species) are subordinated. We close by discussing how our understanding of multipartitism would improve by using concepts and tools from systems biology. The faithful transmission of the genome of an organism is a fundamental step to preserve information essential for survivability. However, multipartite viruses thrive with segmented genomes that propagate in independent viral particles. Though this adaptive strategy appears as counterintuitive and suboptimal, multipartitism is common in the viral world and has very likely arisen several times. Here we review the distribution and abundance of multipartite viruses and discuss possible evolutionary pathways for their emergence. Though no clear advantage of multipartitism has been identified, we suggest that the high prevalence of this strategy relies on its dynamic and opportunistic nature, and that it can only be understood in an ecological context. A systems biology perspective could help understanding some of the open questions regarding this weird lifestyle, while multipartitism could in turn inspire design principles based on the simultaneous exploration of an exploding number of transient collaborative associations.
Collapse
Affiliation(s)
- Adriana Lucía-Sanz
- Grupo Interdisciplinar de Sistemas Complejos (GISC), National Centre for Biotechnology (CSIC), c/Darwin 3, 28049 Madrid, Spain
| | - Susanna Manrubia
- Grupo Interdisciplinar de Sistemas Complejos (GISC), National Centre for Biotechnology (CSIC), c/Darwin 3, 28049 Madrid, Spain
| |
Collapse
|
13
|
Sicard A, Zeddam JL, Yvon M, Michalakis Y, Gutiérrez S, Blanc S. Circulative Nonpropagative Aphid Transmission of Nanoviruses: an Oversimplified View. J Virol 2015; 89:9719-26. [PMID: 26178991 PMCID: PMC4577921 DOI: 10.1128/jvi.00780-15] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2015] [Accepted: 07/08/2015] [Indexed: 01/30/2023] Open
Abstract
UNLABELLED Plant virus species of the family Nanoviridae have segmented genomes with the highest known number of segments encapsidated individually. They thus likely represent the most extreme case of the so-called multipartite, or multicomponent, viruses. All species of the family are believed to be transmitted in a circulative nonpropagative manner by aphid vectors, meaning that the virus simply crosses cellular barriers within the aphid body, from the gut to the salivary glands, without replicating or even expressing any of its genes. However, this assumption is largely based on analogy with the transmission of other plant viruses, such as geminiviruses or luteoviruses, and the details of the molecular and cellular interactions between aphids and nanoviruses are poorly investigated. When comparing the relative frequencies of the eight genome segments in populations of the species Faba bean necrotic stunt virus (FBNSV) (genus Nanovirus) within host plants and within aphid vectors fed on these plants, we unexpectedly found evidence of reproducible changes in the frequencies of some specific segments. We further show that these changes occur within the gut during early stages of the virus cycle in the aphid and not later, when the virus is translocated into the salivary glands. This peculiar observation, which was similarly confirmed in three aphid vector species, Acyrthosiphon pisum, Aphis craccivora, and Myzus persicae, calls for revisiting of the mechanisms of nanovirus transmission. It reveals an unexpected intimate interaction that may not fit the canonical circulative nonpropagative transmission. IMPORTANCE A specific mode of interaction between viruses and arthropod vectors has been extensively described in plant viruses in the three families Luteoviridae, Geminiviridae, and Nanoviridae, but never in arboviruses of animals. This so-called circulative nonpropagative transmission contrasts with the classical biological transmission of animal arboviruses in that the corresponding viruses are thought to cross the vector cellular barriers, from the gut lumen to the hemolymph and to the salivary glands, without expressing any of their genes and without replicating. By monitoring the genetic composition of viral populations during the life cycle of Faba bean necrotic stunt virus (FBNSV) (genus Nanovirus), we demonstrate reproducible genetic changes during the transit of the virus within the body of the aphid vector. These changes do not fit the view that viruses simply traverse the bodies of their arthropod vectors and suggest more intimate interactions, calling into question the current understanding of circulative nonpropagative transmission.
Collapse
|
14
|
Gray S, Cilia M, Ghanim M. Circulative, "nonpropagative" virus transmission: an orchestra of virus-, insect-, and plant-derived instruments. Adv Virus Res 2014; 89:141-99. [PMID: 24751196 DOI: 10.1016/b978-0-12-800172-1.00004-5] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Species of plant viruses within the Luteoviridae, Geminiviridae, and Nanoviridae are transmitted by phloem-feeding insects in a circulative, nonpropagative manner. The precise route of virus movement through the vector can differ across and within virus families, but these viruses all share many biological, biochemical, and ecological features. All share temporal and spatial constraints with respect to transmission efficiency. The viruses also induce physiological changes in their plant hosts resulting in behavioral changes in the insects that optimize the transmission of virus to new hosts. Virus proteins interact with insect, endosymbiont, and plant proteins to orchestrate, directly and indirectly, virus movement in insects and plants to facilitate transmission. Knowledge of these complex interactions allows for the development of new tools to reduce or prevent transmission, to quickly identify important vector populations, and to improve the management of these economically important viruses affecting agricultural and natural plant populations.
Collapse
Affiliation(s)
- Stewart Gray
- Biological Integrated Pest Management Research Unit, USDA, ARS, Ithaca, New York, USA; Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, New York, USA.
| | - Michelle Cilia
- Biological Integrated Pest Management Research Unit, USDA, ARS, Ithaca, New York, USA; Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, New York, USA; Boyce Thompson Institute for Plant Research, Ithaca, New York, USA
| | - Murad Ghanim
- Department of Entomology, Volcani Center, Bet Dagan, Israel
| |
Collapse
|
15
|
Grigoras I, Ginzo AIDC, Martin DP, Varsani A, Romero J, Mammadov AC, Huseynova IM, Aliyev JA, Kheyr-Pour A, Huss H, Ziebell H, Timchenko T, Vetten HJ, Gronenborn B. Genome diversity and evidence of recombination and reassortment in nanoviruses from Europe. J Gen Virol 2014; 95:1178-1191. [DOI: 10.1099/vir.0.063115-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The recent identification of a new nanovirus, pea necrotic yellow dwarf virus, from pea in Germany prompted us to survey wild and cultivated legumes for nanovirus infections in several European countries. This led to the identification of two new nanoviruses: black medic leaf roll virus (BMLRV) and pea yellow stunt virus (PYSV), each considered a putative new species. The complete genomes of a PYSV isolate from Austria and three BMLRV isolates from Austria, Azerbaijan and Sweden were sequenced. In addition, the genomes of five isolates of faba bean necrotic yellows virus (FBNYV) from Azerbaijan and Spain and those of four faba bean necrotic stunt virus (FBNSV) isolates from Azerbaijan were completely sequenced, leading to the first identification of FBNSV occurring in Europe. Sequence analyses uncovered evolutionary relationships, extensive reassortment and potential remnants of mixed nanovirus infections, as well as intra- and intercomponent recombination events within the nanovirus genomes. In some virus isolates, diverse types of the same genome component (paralogues) were observed, a type of genome complexity not described previously for any member of the family Nanoviridae. Moreover, infectious and aphid-transmissible nanoviruses from cloned genomic DNAs of FBNYV and BMLRV were reconstituted that, for the first time, allow experimental reassortments for studying the genome functions and evolution of these nanoviruses.
Collapse
Affiliation(s)
- Ioana Grigoras
- Institut des Sciences du Végétal, CNRS, 91198 Gif sur Yvette, France
| | - Ana Isabel del Cueto Ginzo
- Departamento de Protección Vegetal, Instituto Nacional de Investigación y Tecnología Agraria (INIA), Carretera de La Coruna Km. 7.0, Madrid 28040, Spain
| | - Darren P. Martin
- Computational Biology Group, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Arvind Varsani
- Electron Microscope Unit, University of Cape Town, Rondebosch, 7701, Cape Town, South Africa
- Department of Plant Pathology and Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA
- School of Biological Sciences and Biomolecular Interaction Centre, University of Canterbury, Christchurch, 8140, New Zealand
| | - Javier Romero
- Departamento de Protección Vegetal, Instituto Nacional de Investigación y Tecnología Agraria (INIA), Carretera de La Coruna Km. 7.0, Madrid 28040, Spain
| | - Alamdar Ch. Mammadov
- Department of Fundamental Problems of Biological Productivity, Institute of Botany, Azerbaijan National Academy of Sciences, 40 Badamdar Highway, Baku AZ 1073, Azerbaijan
| | - Irada M. Huseynova
- Department of Fundamental Problems of Biological Productivity, Institute of Botany, Azerbaijan National Academy of Sciences, 40 Badamdar Highway, Baku AZ 1073, Azerbaijan
| | - Jalal A. Aliyev
- Department of Fundamental Problems of Biological Productivity, Institute of Botany, Azerbaijan National Academy of Sciences, 40 Badamdar Highway, Baku AZ 1073, Azerbaijan
| | | | - Herbert Huss
- Lehr- und Forschungszentrum für Landwirtschaft (LFZ) Raumberg-Gumpenstein, Versuchsstation Lambach/Stadl-Paura, 4651 Stadl-Paura, Austria
| | - Heiko Ziebell
- Julius Kühn Institut, Bundesforschungsinstitut für Kulturpflanzen, Institut für Epidemiologie und Pathogendiagnostik, 38104 Braunschweig, Germany
| | - Tatiana Timchenko
- Institut des Sciences du Végétal, CNRS, 91198 Gif sur Yvette, France
| | - Heinrich-Josef Vetten
- Julius Kühn Institut, Bundesforschungsinstitut für Kulturpflanzen, Institut für Epidemiologie und Pathogendiagnostik, 38104 Braunschweig, Germany
| | - Bruno Gronenborn
- Institut des Sciences du Végétal, CNRS, 91198 Gif sur Yvette, France
| |
Collapse
|
16
|
Gene copy number is differentially regulated in a multipartite virus. Nat Commun 2013; 4:2248. [DOI: 10.1038/ncomms3248] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Accepted: 07/05/2013] [Indexed: 12/14/2022] Open
|
17
|
New Volvovirus Isolates from Acheta domesticus (Japan) and Gryllus assimilis (United States). GENOME ANNOUNCEMENTS 2013; 1:1/3/e00328-13. [PMID: 23792751 PMCID: PMC3675518 DOI: 10.1128/genomea.00328-13] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
A novel circular single-stranded DNA (ssDNA) virus, volvovirus, from the house cricket has been described recently. Here, we report the isolation of volvoviruses from Acheta domesticus in Japan and Gryllus assimilis in the United States. These Acheta domesticus volvovirus (AdVVV) isolates have genomes of 2,517 and 2,516 nucleotides (nt) and 4 large open reading frames (ORFs).
Collapse
|
18
|
Acheta domesticus Volvovirus, a Novel Single-Stranded Circular DNA Virus of the House Cricket. GENOME ANNOUNCEMENTS 2013; 1:e0007913. [PMID: 23516206 PMCID: PMC3623006 DOI: 10.1128/genomea.00079-13] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
The genome of a novel virus of the house cricket consists of a 2,517-nucleotide (nt) circular single-stranded DNA (ssDNA) molecule with 4 open reading frames (ORFs). One ORF had a low identity to circovirus nucleotide sequences (NS). The unique properties of this volvovirus suggested that it belongs to a new virus family or genus.
Collapse
|
19
|
Physical methods for genetic plant transformation. Phys Life Rev 2012; 9:308-45. [DOI: 10.1016/j.plrev.2012.06.002] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2012] [Accepted: 06/04/2012] [Indexed: 01/27/2023]
|
20
|
Stainton D, Kraberger S, Walters M, Wiltshire EJ, Rosario K, Halafihi M, Lolohea S, Katoa I, Faitua TH, Aholelei W, Taufa L, Thomas JE, Collings DA, Martin DP, Varsani A. Evidence of inter-component recombination, intra-component recombination and reassortment in banana bunchy top virus. J Gen Virol 2012; 93:1103-1119. [PMID: 22278830 DOI: 10.1099/vir.0.040337-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Banana bunchy top virus (BBTV; family Nanoviridae, genus Babuvirus) is a multi-component, ssDNA virus, which causes widespread banana crop losses throughout tropical Africa and Australasia. We determined the full genome sequences of 12 BBTV isolates from the Kingdom of Tonga and analysed these together with previously determined BBTV sequences to show that reassortment and both inter- and intra-component recombination have all been relatively frequent occurrences during BBTV evolution. We found that whereas DNA-U3 components display evidence of complex inter- and intra-component recombination, all of the South Pacific DNA-R components have a common intra-component recombinant origin spanning the replication-associated protein gene. Altogether, the DNA-U3 and DNA-M components display a greater degree of inter-component recombination than the DNA-R, -S, -C and -M components. The breakpoint distribution of the inter-component recombination events reveals a primary recombination hotspot around the 5' side of the common region major and, in accordance with recombination hotspots detectable in related ssDNA viruses, a secondary recombination hotspot near the origin of virion-strand replication.
Collapse
Affiliation(s)
- Daisy Stainton
- School of Biological Sciences, University of Canterbury, Christchurch 8140, New Zealand
| | - Simona Kraberger
- School of Biological Sciences, University of Canterbury, Christchurch 8140, New Zealand
| | - Matthew Walters
- School of Biological Sciences, University of Canterbury, Christchurch 8140, New Zealand
| | - Elizabeth J Wiltshire
- School of Biological Sciences, University of Canterbury, Christchurch 8140, New Zealand
| | - Karyna Rosario
- College of Marine Science, University of South Florida, St Petersburg, FL 33701, USA
| | - Mana'ia Halafihi
- Ministry of Agriculture and Food, Forests and Fisheries, Nuku'alofa, Tongatapu, Kingdom of Tonga
| | | | - Ika Katoa
- Ministry of Agriculture and Food, Forests and Fisheries, Nuku'alofa, Tongatapu, Kingdom of Tonga
| | | | - Waikato Aholelei
- Ministry of Agriculture and Food, Forests and Fisheries, Nuku'alofa, Tongatapu, Kingdom of Tonga
| | - Luseane Taufa
- Ministry of Agriculture and Food, Forests and Fisheries, Nuku'alofa, Tongatapu, Kingdom of Tonga
| | - John E Thomas
- The University of Queensland, Centre for Plant Science, Queensland Alliance for Agriculture and Food Innovation, Ecosciences Precinct, PO Box 46, Brisbane QLD 4001, Australia
| | - David A Collings
- Biomolecular Interaction Centre, University of Canterbury, Christchurch 8140, New Zealand.,School of Biological Sciences, University of Canterbury, Christchurch 8140, New Zealand
| | - Darren P Martin
- Computational Biology Group, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Arvind Varsani
- Electron Microscope Unit, University of Cape Town, Rondebosch 7701, Cape Town, South Africa.,Biomolecular Interaction Centre, University of Canterbury, Christchurch 8140, New Zealand.,School of Biological Sciences, University of Canterbury, Christchurch 8140, New Zealand
| |
Collapse
|
21
|
Hyder MZ, Shah SH, Hameed S, Naqvi SMS. Evidence of recombination in the Banana bunchy top virus genome. INFECTION GENETICS AND EVOLUTION 2011; 11:1293-300. [PMID: 21539936 DOI: 10.1016/j.meegid.2011.04.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2010] [Revised: 04/13/2011] [Accepted: 04/16/2011] [Indexed: 10/18/2022]
Abstract
Viruses serve as good model for evolutionary studies, owing to their short generation times and small genomes. Banana bunchy top virus (BBTV) is a significant subject being multicomponent circular single stranded DNA virus. BBTV belongs to family Nanoviridae and contains DNA-R, -U3, -S, -M, -C, and -N as integral genomic components. Evolutionary studies have shown genetic re-assortment of components among its isolates and revealed a concerted type evolution in non-coding regions of its genome. The DNA U3 having been shown as the most diverse component in our previous studies, was subjected to sequencing from some Pakistani isolates for the first time. Sequence analysis revealed intergenomic recombination in DNA-U3 among the isolates of two sub-groups and a very rare intragenomic recombination in Pakistani BBTV population. This indicates that like other evolutionary processes including intergenomic recombination, intragenomic recombination among the genomic components of the same isolate may also have a significant contribution in the evolution of BBTV genome. Intragenomic recombination therefore appears to be a unique way to generate genetic diversity in the multicomponent ssDNA viruses.
Collapse
Affiliation(s)
- Muhammad Zeeshan Hyder
- Department of Biosciences, COMSATS Institute of Information Technology Islamabad, Islamabad 44000, Pakistan
| | | | | | | |
Collapse
|
22
|
Amin I, Ilyas M, Qazi J, Bashir R, Yadav JS, Mansoor S, Fauquet CM, Briddon RW. Identification of a major pathogenicity determinant and suppressors of RNA silencing encoded by a South Pacific isolate of Banana bunchy top virus originating from Pakistan. Virus Genes 2011; 42:272-81. [PMID: 21161359 DOI: 10.1007/s11262-010-0559-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2010] [Accepted: 11/26/2010] [Indexed: 12/11/2022]
Abstract
Five genes encoded by Banana bunchy top virus (BBTV) originating from Pakistan were expressed in Nicotiana benthamiana using a Potato virus X (PVX) vector. Expression of the master replication-associated protein (mRep) and movement protein (MP) resulted in necrotic cell death of inoculated tissues, as well as leaf curling and necrosis along the veins in newly emerging leaves. The systemic necrosis induced by the expression of MP was discolored (dark) in comparison to that induced by mRep. Expression of the cell-cycle link protein (Clink), the coat protein (CP), and the nuclear shuttle protein from the PVX vector induced somewhat milder symptoms, consisting of mild leaf curling and mosaic, although expression of the CP caused a necrotic response in inoculated leaf. The accumulation of viral RNA was enhanced by MP, Clink, and CP. Of the five BBTV-encoded gene products two, the MP and Clink, stabilized GFP-specific mRNA and reduced GFP-specific small interfering RNA in N. benthamiana line 16c when expressed under the control of the 35S promoter and co-inoculated with a construct for the expression of GFP hairpin RNA construct. These results identified MP and Clink as suppressors of RNA silencing. Taken together the ability of MP to induce severe symptoms in plants and suppress RNA silencing implicates this product as a major pathogenicity determinant of BBTV.
Collapse
Affiliation(s)
- Imran Amin
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, P.O. Box 577, Jhang Road, Faisalabad, Pakistan
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Abstract
Nanoviruses are multipartite single-stranded DNA (ssDNA) plant viruses that cause important diseases of leguminous crops and banana. Little has been known about the variability and molecular evolution of these viruses. Here we report on the variability of faba bean necrotic stunt virus (FBNSV), a nanovirus from Ethiopia. We found mutation frequencies of 7.52 x 10(-4) substitutions per nucleotide in a field population of the virus and 5.07 x 10(-4) substitutions per nucleotide in a laboratory-maintained population derived thereof. Based on virus propagation for a period of more than 2 years, we determined a nucleotide substitution rate of 1.78 x 10(-3) substitutions per nucleotide per year. This high molecular evolution rate places FBNSV, as a representative of the family Nanoviridae, among the fastest-evolving ssDNA viruses infecting plants or vertebrates.
Collapse
|
24
|
Mandal B. Advances in Small Isometric Multicomponent ssDNA Viruses Infecting Plants. INDIAN JOURNAL OF VIROLOGY : AN OFFICIAL ORGAN OF INDIAN VIROLOGICAL SOCIETY 2010; 21:18-30. [PMID: 23637475 PMCID: PMC3550773 DOI: 10.1007/s13337-010-0010-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2010] [Accepted: 05/14/2010] [Indexed: 11/26/2022]
Abstract
Multicomponent ssDNA plant viruses were discovered during 1990s. They are associated with bunchy top, yellowing and dwarfing diseases of several economic plants under family Musaceae, Leguminosae and Zingiberaceae. In the current plant virus taxonomy, these viruses are classified under the family Nanoviridae containing two genera, Nanovirus and Babuvirus. The family Nanoviridae was created with five members in 2005 and by 2010, it has expanded with four additional members. The viruses are distributed in the tropical and subtropical regions of Asia, Australia, Europe and Africa. The viruses are not sap or seed transmissible and are naturally transmitted by aphid vector in a persistent manner. The genome is consisted of several circular ssDNAs of about 1 kb each. Up to 12 DNA components have been isolated from the diseased plant. The major viral proteins encoded by these components are replication initiator protein (Rep), coat protein, cell-cycle link protein, movement protein and a nuclear shuttle protein. Each ssDNA contains a single gene and a noncoding region with a stable stem and loop structure. Several Rep encoding components have been reported from each virus, only one of them designated as master Rep has ability to control replication of the other genomic components. Infectivity of the genomic DNAs was demonstrated only for two nanoviruses, Faba bean necrotic yellows virus and Faba bean necrotic stunt virus (FBNSV). A group of eight ssDNA components of FBNSV were necessary for producing disease and biologically active progeny viruses. So far, infectivity of genomic components of Babuvirus has not been demonstrated.
Collapse
Affiliation(s)
- Bikash Mandal
- Plant Virology Unit, Division of Plant Pathology, Indian Agricultural Research Institute, New Delhi, 110012 India
| |
Collapse
|
25
|
Abraham AD, Bencharki B, Torok V, Katul L, Varrelmann M, Josef Vetten H. Two distinct nanovirus species infecting faba bean in Morocco. Arch Virol 2009; 155:37-46. [PMID: 20069400 PMCID: PMC3128733 DOI: 10.1007/s00705-009-0548-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2009] [Accepted: 10/14/2009] [Indexed: 11/27/2022]
Abstract
Using monoclonal antibodies raised against a Faba bean necrotic yellows virus (FBNYV) isolate from Egypt and a Faba bean necrotic stunt virus (FBNSV) isolate from Ethiopia, a striking serological variability among nanovirus isolates from faba bean in Morocco was revealed. To obtain a better understanding of this nanovirus variability in Morocco, the entire genomes of two serologically contrasting isolates referred to as Mor5 and Mor23 were sequenced. The eight circular ssDNA components, each identified from Mor5- and Mor23-infected tissues and thought to form the complete nanovirus genome, ranged in size from 952 to 1,005 nt for Mor5 and from 980 to 1,004 nt for Mor23 and were structurally similar to previously described nanovirus DNAs. However, Mor5 and Mor23 differed from each other in overall nucleotide and amino acid sequences by 25 and 26%, respectively. Mor23 was most closely related to typical FBNYV isolates described earlier from Egypt and Syria, with which it shared a mean amino acid sequence identity of about 94%. On the other hand, Mor5 most closely resembled a FBNSV isolate from Ethiopia, with which it shared a mean amino acid sequence identity of approximately 89%. The serological and genetic differences observed for Mor5 and Mor23 were comparable to those observed earlier for FBNYV, FBNSV, and Milk vetch dwarf virus. Following the guidelines on nanovirus species demarcation, this suggests that Mor23 and Mor5 represent isolates of FBNYV and FBNSV, respectively. This is the first report not only on the presence of FBNSV in a country other than Ethiopia but also on the occurrence and complete genome sequences of members of two nanovirus species in the same country, thus providing evidence for faba bean crops being infected by members of two distinct nanovirus species in a restricted geographic area.
Collapse
Affiliation(s)
- Adane D. Abraham
- Julius Kühn Institute (JKI), Bundesforschungsinstitut für Kulturpflanzen, Institut für Epidemiologie und Pathogendiagnostik, Messeweg 11-12, 38104 Braunschweig, Germany
- Department of Crop Sciences, Section Plant Virology, University of Göttingen, Grisebachstr. 6, 37077 Göttingen, Germany
- Biotechnology Program, Ethiopian Institute of Agricultural Research, P.O. Box 2003, Addis Ababa, Ethiopia
| | - Bouchaib Bencharki
- Faculté des Sciences et Techniques, Université Hassan 1er, P.O. Box 577, Settat, Morocco
| | - Valeria Torok
- Julius Kühn Institute (JKI), Bundesforschungsinstitut für Kulturpflanzen, Institut für Epidemiologie und Pathogendiagnostik, Messeweg 11-12, 38104 Braunschweig, Germany
| | - Lina Katul
- Julius Kühn Institute (JKI), Bundesforschungsinstitut für Kulturpflanzen, Institut für Epidemiologie und Pathogendiagnostik, Messeweg 11-12, 38104 Braunschweig, Germany
| | - Mark Varrelmann
- Department of Crop Sciences, Section Plant Virology, University of Göttingen, Grisebachstr. 6, 37077 Göttingen, Germany
| | - H. Josef Vetten
- Julius Kühn Institute (JKI), Bundesforschungsinstitut für Kulturpflanzen, Institut für Epidemiologie und Pathogendiagnostik, Messeweg 11-12, 38104 Braunschweig, Germany
- Julius Kühn Institute, Federal Research Center for Cultivated Plants (JKI), Messeweg 11/12, 38104 Braunschweig, Germany
| |
Collapse
|
26
|
Grigoras I, Timchenko T, Katul L, Grande-Pérez A, Vetten HJ, Gronenborn B. Reconstitution of authentic nanovirus from multiple cloned DNAs. J Virol 2009; 83:10778-87. [PMID: 19656882 PMCID: PMC2753110 DOI: 10.1128/jvi.01212-09] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2009] [Accepted: 07/30/2009] [Indexed: 11/20/2022] Open
Abstract
We describe a new plant single-stranded DNA (ssDNA) virus, a nanovirus isolate originating from the faba bean in Ethiopia. We applied rolling circle amplification (RCA) to extensively copy the individual circular DNAs of the nanovirus genome. By sequence analyses of more than 208 individually cloned genome components, we obtained a representative sample of eight polymorphic swarms of circular DNAs, each about 1 kb in size. From these heterogeneous DNA populations after RCA, we inferred consensus sequences of the eight DNA components of the virus genome. Based on the distinctive molecular and biological properties of the virus, we propose to consider it a new species of the genus Nanovirus and to name it faba bean necrotic stunt virus (FBNSV). Selecting a representative clone of each of the eight DNAs for transfer by T-DNA plasmids of Agrobacterium tumefaciens into Vicia faba plants, we elicited the development of the typical FBNSV disease symptoms. Moreover, we showed that the virus thus produced was readily transmitted by two different aphid vector species, Aphis craccivora and Acyrthosiphon pisum. This represents the first reconstitution of a fully infectious and sustainably insect-transmissible nanovirus from its cloned DNAs and provides compelling evidence that the genome of a legume-infecting nanovirus is typically comprised of eight distinct DNA components.
Collapse
Affiliation(s)
- Ioana Grigoras
- Institut des Sciences du Végétal, CNRS, 91198 Gif sur Yvette, France
| | | | | | | | | | | |
Collapse
|
27
|
Fu HC, Hu JM, Hung TH, Su HJ, Yeh HH. Unusual events involved in Banana bunchy top virus strain evolution. PHYTOPATHOLOGY 2009; 99:812-822. [PMID: 19522579 DOI: 10.1094/phyto-99-7-0812] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Banana bunchy top virus (BBTV) can be transmitted by aphids and consists of at least six integral components (DNA-R, -U3, -S, -M, -C, and -N). Several additional replication-competent components (additional Reps) are associated with some BBTV isolates. A collected BBTV strain (TW3) that causes mild symptoms was selected to study the processes in BBTV evolution. Southern blot hybridization, polymerase chain reaction (PCR), and real-time PCR did not detect DNA-N in TW3. Real-time PCR quantification of BBTV components revealed that, except for the copy number of TW3 DNA-U3, each detected integral component of BBTV TW3 was at least two orders lower than that of the severe strains. No infection was observed in plants inoculated with aphids, which were first given acquisition access to the TW3-infected banana leaves. Recombination analysis revealed recombination between the integral component TW3 DNA-U3 and the additional Rep DNA-Y. All BBTV integral components contain a replication initiation region (stem-loop common region) that share high sequence identity. Sequence alignment revealed that TW3 DNA-R, -S, -M, and -C all have a stem-loop common region containing a characteristic 9-nucleotide deletion found only in all reported DNA-N. Our data suggest that the additional Rep DNAs can serve as sources of additional genetic diversity for integral BBTV components.
Collapse
Affiliation(s)
- Hui-Chuan Fu
- Department of Plant Pathology and Microbiology, College of Agriculture, National Taiwan University, 1 Sec. 4 Roosevelt Road, Taipei, Taiwan
| | | | | | | | | |
Collapse
|
28
|
Grigoras I, Timchenko T, Gronenborn B. Transcripts encoding the nanovirus master replication initiator proteins are terminally redundant. J Gen Virol 2008; 89:583-593. [DOI: 10.1099/vir.0.83352-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The multicomponent single-stranded DNA plant nanoviruses encode unique master replication initiator (Rep) proteins. We have mapped the 5′ and 3′ termini of the corresponding polyadenylated mRNAs from faba bean necrotic yellows virus (FBNYV) and subterranean clover stunt virus and found that these are terminally redundant by up to about 160 nt. Moreover, the origin of viral DNA replication is transcribed into RNA that is capable of folding into extended secondary structures. Other nanovirus genome components, such as the FBNYV DNA encoding the protein Clink or an FBNYV DNA encoding a non-essential para-Rep protein, are not transcribed in such a unique fashion. Thus, terminally redundant mRNAs and the resulting transcription of the replication origin appear to be restricted to nanovirus master Rep DNAs. We speculate that this may be a way to regulate the expression of the essential master Rep protein.
Collapse
Affiliation(s)
- Ioana Grigoras
- Institut des Sciences du Végétal, CNRS, 91198 Gif sur Yvette, France
| | - Tatiana Timchenko
- Institut des Sciences du Végétal, CNRS, 91198 Gif sur Yvette, France
| | - Bruno Gronenborn
- Institut des Sciences du Végétal, CNRS, 91198 Gif sur Yvette, France
| |
Collapse
|
29
|
Vega-Rocha S, Gronenborn B, Gronenborn AM, Campos-Olivas R. Solution structure of the endonuclease domain from the master replication initiator protein of the nanovirus faba bean necrotic yellows virus and comparison with the corresponding geminivirus and circovirus structures. Biochemistry 2007; 46:6201-12. [PMID: 17472345 PMCID: PMC2577285 DOI: 10.1021/bi700159q] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Nanoviruses are a family of plant viruses that possess a genome of multiple circular single-stranded DNA (ssDNA) components and are strikingly similar in their replication mode to the plant geminiviruses and to the circoviruses that infect birds or mammals. These viruses multiply by rolling circle replication using virus-encoded multifunctional replication initiator proteins (Rep proteins) that catalyze the initiation of replication on a double-stranded DNA (dsDNA) intermediate and the resolution of the ssDNA into circles. Here we report the solution NMR three-dimensional structure of the endonuclease domain from the master Rep (M-Rep) protein of faba bean necrotic yellows virus (FBNYV), a representative of the nanoviruses. The domain comprises amino acids 2-95 (M-Rep2-95), and its global fold is similar to those previously described for the gemini- and circovirus Rep endonuclease domains, consisting of a central 5-stranded antiparallel beta-sheet covered on one side by an alpha-helix and irregular loops and on the other, more open side of the domain, by an alpha-helix containing the catalytic tyrosine residue (the catalytic helix). Longer domain constructs extending to amino acids 117 and 124 were also characterized. They contain an additional alpha-helix, are monomeric, and exhibit catalytic activity indistinguishable from that of M-Rep2-95. The binding site for the catalytic metal was identified by paramagnetic broadening and maps to residues on the exposed face of the central beta-sheet. A comparison with the previously determined Rep endonuclease domain structures of tomato yellow leaf curl Sardinia virus (TYLCSV), a geminivirus, and that of porcine circovirus type 2 (PCV2) Rep allows the identification of a positively charged surface that is most likely involved in dsDNA binding, and reveals common features shared by all endonuclease domains of nanovirus, geminivirus, and circovirus Rep proteins.
Collapse
Affiliation(s)
- Susana Vega-Rocha
- Structural and Computational Biology Program. Spanish National Cancer Center (CNIO). Madrid 28029. Spain
| | - Bruno Gronenborn
- Institut des Sciences du Vegetal. Centre National de la Recherche Scientifique. 91198 Gif-sur-Yvette Cedex, France
| | - Angela M. Gronenborn
- Department of Structural Biology. University of Pittsburgh School of Medicine, BST3, 3501 5th Avenue, Pittsburgh, PA 15261. USA
| | - Ramón Campos-Olivas
- Structural and Computational Biology Program. Spanish National Cancer Center (CNIO). Madrid 28029. Spain
- Corresponding author: Ramón Campos-Olivas, Structural and Computational Biology Program., Spanish National Cancer Center (CNIO)., C. Melchor Fernandez Almagro, 3, Madrid 28029. Spain, Tel: +34-912246900, Fax: +34-912246976, E-mail:
| |
Collapse
|
30
|
Hu JM, Fu HC, Lin CH, Su HJ, Yeh HH. Reassortment and concerted evolution in banana bunchy top virus genomes. J Virol 2007; 81:1746-61. [PMID: 17135318 PMCID: PMC1797577 DOI: 10.1128/jvi.01390-06] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2006] [Accepted: 11/16/2006] [Indexed: 12/12/2022] Open
Abstract
The nanovirus Banana bunchy top virus (BBTV) has six standard components in its genome and occasionally contains components encoding additional Rep (replication initiation protein) genes. Phylogenetic network analysis of coding sequences of DNA 1 and 3 confirmed the two major groups of BBTV, a Pacific and an Asian group, but show evidence of web-like phylogenies for some genes. Phylogenetic analysis of 102 major common regions (CR-Ms) from all six components showed a possible concerted evolution within the Pacific group, which is likely due to recombination in this region. The CR-M of additional Rep genes is close to that of DNA 1 and 2. Comparison of tree topologies constructed with DNA 1 and DNA 3 coding sequences of 14 BBTV isolates showed distinct phylogenetic histories based on Kishino-Hasegawa and Shimodaira-Hasegawa tests. The results of principal component analysis of amino acid and codon usages indicate that DNA 1 and 3 have a codon bias different from that of all other genes of nanoviruses, including all currently known additional Rep genes of BBTV, which suggests a possible ancient genome reassortment event between distinctive nanoviruses.
Collapse
Affiliation(s)
- Jer-Ming Hu
- Institute of Ecology and Evolutionary Biology, National Taiwan University, 1, Sec. 4, Roosevelt Road, Taipei 106, Taiwan.
| | | | | | | | | |
Collapse
|
31
|
Lageix S, Catrice O, Deragon JM, Gronenborn B, Pélissier T, Ramírez BC. The nanovirus-encoded Clink protein affects plant cell cycle regulation through interaction with the retinoblastoma-related protein. J Virol 2007; 81:4177-85. [PMID: 17267511 PMCID: PMC1866090 DOI: 10.1128/jvi.02103-06] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Nanoviruses, multicomponent single-stranded DNA plant viruses, encode a unique cell cycle link protein, Clink, that interacts with retinoblastoma-related proteins (RBR). We have established transgenic Arabidopsis thaliana lines that conditionally express Clink or a Clink variant deficient in RBR binding. By controlled induction of Clink expression, we demonstrated the capacity of the Clink protein to alter RBR function in vivo. We showed that transcription of both S-phase-specific and G2/M-phase-specific genes was up-regulated depending on the RBR-binding proficiency of Clink. Concomitantly, ploidy levels increased in a substantial fraction of leaf cell nuclei. Also, leaf epidermis cells of transgenic plants producing Clink were smaller and more numerous, indicating additional cell divisions in this tissue. Furthermore, cytogenetic analyses following induction of Clink expression in mature leaves revealed the presence of metaphasic and anaphasic nuclei, clear evidence that Clink-mediated RBR inactivation is sufficient to induce quiescent cells to reenter cell cycle progression and, for at least a fraction of them, to pass through mitosis. Expression of Clink had no effect on genes transcribed by RNA polymerases I and III, suggesting that, in contrast to its mammalian homologue, A. thaliana RBR is not involved in the repression of polymerase I and polymerase III transcription. The results of these in vivo analyses firmly establish Clink as a member of the diverse class of multifunctional cell cycle modulator proteins encoded by small DNA viruses.
Collapse
Affiliation(s)
- Sébastien Lageix
- CNRS UMR 6547 BIOMOVE, Université Blaise Pascal, 24 Avenue des Landais, 63177 Aubière Cedex, France
| | | | | | | | | | | |
Collapse
|