1
|
Goz E, Zafrir Z, Tuller T. Universal evolutionary selection for high dimensional silent patterns of information hidden in the redundancy of viral genetic code. Bioinformatics 2019; 34:3241-3248. [PMID: 29718236 PMCID: PMC7109696 DOI: 10.1093/bioinformatics/bty351] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 04/27/2018] [Indexed: 01/09/2023] Open
Abstract
Motivation Understanding how viruses co-evolve with their hosts and adapt various genomic level strategies in order to ensure their fitness may have essential implications in unveiling the secrets of viral evolution, and in developing new vaccines and therapeutic approaches. Here, based on a novel genomic analysis of 2625 different viruses and 439 corresponding host organisms, we provide evidence of universal evolutionary selection for high dimensional ‘silent’ patterns of information hidden in the redundancy of viral genetic code. Results Our model suggests that long substrings of nucleotides in the coding regions of viruses from all classes, often also repeat in the corresponding viral hosts from all domains of life. Selection for these substrings cannot be explained only by such phenomena as codon usage bias, horizontal gene transfer and the encoded proteins. Genes encoding structural proteins responsible for building the core of the viral particles were found to include more host-repeating substrings, and these substrings tend to appear in the middle parts of the viral coding regions. In addition, in human viruses these substrings tend to be enriched with motives related to transcription factors and RNA binding proteins. The host-repeating substrings are possibly related to the evolutionary pressure on the viruses to effectively interact with host's intracellular factors and to efficiently escape from the host's immune system. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Eli Goz
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv, Israel.,SynVaccineLtd, Ramat Hachayal, Tel Aviv, Israel
| | - Zohar Zafrir
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv, Israel.,SynVaccineLtd, Ramat Hachayal, Tel Aviv, Israel
| | - Tamir Tuller
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv, Israel.,SynVaccineLtd, Ramat Hachayal, Tel Aviv, Israel.,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
2
|
Olivier-Gougenheim L, Dijoud F, Traverse-Glehen A, Benezech S, Bertrand Y, Latour S, Frobert E, Domenech C. Aggressive large B-cell lymphoma triggered by a parvovirus B19 infection in a previously healthy child. Hematol Oncol 2019; 37:483-486. [PMID: 31408541 DOI: 10.1002/hon.2665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 07/17/2019] [Accepted: 08/07/2019] [Indexed: 11/07/2022]
Abstract
In absence of red blood cells disease or immune defect, parvovirus B19 (PVB-19) is usually considered as a benign condition. Here, we report the case of a 10-year-old boy, previously healthy, presenting with a PVB-19 infection revealed by a bicytopenia and a voluminous axillary adenopathy. Pathophysiology examination showed reactional lymphoid population. Nine months later and in the absence of remission, a new biopsy of the same adenopathy revealed a Hodgkin lymphoma with area of T-cell rich aggressive large B-cell lymphoma. This case suggests PVB-19 as potential trigger of this malignant childhood hemopathy. Although no definitive conclusion can be drawn, our clinical case questions the role of PVB-19 in lymphomagenesis.
Collapse
Affiliation(s)
- Laura Olivier-Gougenheim
- Institute of Pediatric Hematology and Oncology, Hospices Civils de Lyon, Claude Bernard Lyon I University, Lyon, France
| | - Frederique Dijoud
- Anatomy-Cytology-Pathology Department, Women-Mother and Child Hospital, Hospices Civils de Lyon, Lyon, France
| | - Alexandra Traverse-Glehen
- Anatomy-Pathology Unit, Lyon Sud Hospital, Hospices Civils de Lyon, Claude Bernard Lyon I University, Lyon, France
| | - Sarah Benezech
- Institute of Pediatric Hematology and Oncology, Center Léon Bernard, Lyon, France
| | - Yves Bertrand
- Institute of Pediatric Hematology and Oncology, Hospices Civils de Lyon, Claude Bernard Lyon I University, Lyon, France
| | - Sylvain Latour
- Laboratory of Lymphocyte Activation and Susceptibility to EBV, INSERM UMR 1163-Imagine Institute, Paris, France
| | - Emilie Frobert
- Virology Laboratory, Infectious Agent Institute, Croix-Rousse Hospital, Hospices Civils de Lyon, Claude Bernard Lyon I University, Virpath, CIRI, INSERM U1111, CNRS 5308, ENS Lyon, Lyon, France
| | - Carine Domenech
- Institute of Pediatric Hematology and Oncology, Hospices Civils de Lyon, Claude Bernard Lyon I University, Lyon, France
| |
Collapse
|
3
|
Tang XD, Yue YJ, Wang W, Li N, Shen ZY. A comparison of virus genome sequences with their host silkworm, Bombyx mori. Gene 2016; 576:60-3. [PMID: 26432002 DOI: 10.1016/j.gene.2015.09.073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 08/30/2015] [Accepted: 09/24/2015] [Indexed: 10/23/2022]
Abstract
With the recent availability of the genomes of many viruses and the silkworm, Bombyx mori, as well as a variety of Basic Local Alignment Search Tool (BLAST) programs, a new opportunity to gain insight into the interaction of viruses with the silkworm is possible. This study aims to determine the possible existence of sequence identities between the genomes of viruses and the silkworm and attempts to explain this phenomenon. BLAST searches of the genomes of viruses against the silkworm genome were performed using the resources of the National Center for Biotechnology Information. All studied viruses contained variable numbers of short regions with sequence identity to the genome of the silkworm. The short regions of sequence identity in the genome of the silkworm may be derived from the genomes of viruses in the long history of silkworm-virus interaction. This study is the first to compare these genomes, and may contribute to research on the interaction between viruses and the silkworm.
Collapse
Affiliation(s)
- Xu-Dong Tang
- Jiangsu University of Science and Technology, Zhenjiang 212018, Jiangsu, China; Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212018, Jiangsu, China; Key Laboratory of Genetic Improvement of Silkworm and Mulberry of Agricultural Ministry, Zhenjiang 212003, Jiangsu, China.
| | - Ya-Jie Yue
- Jiangsu University of Science and Technology, Zhenjiang 212018, Jiangsu, China; Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212018, Jiangsu, China; Key Laboratory of Genetic Improvement of Silkworm and Mulberry of Agricultural Ministry, Zhenjiang 212003, Jiangsu, China
| | - Wei Wang
- Jiangsu University of Science and Technology, Zhenjiang 212018, Jiangsu, China; Key Laboratory of Genetic Improvement of Silkworm and Mulberry of Agricultural Ministry, Zhenjiang 212003, Jiangsu, China
| | - Nan Li
- Jiangsu University of Science and Technology, Zhenjiang 212018, Jiangsu, China; Key Laboratory of Genetic Improvement of Silkworm and Mulberry of Agricultural Ministry, Zhenjiang 212003, Jiangsu, China
| | - Zhong-Yuan Shen
- Jiangsu University of Science and Technology, Zhenjiang 212018, Jiangsu, China; Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212018, Jiangsu, China; Key Laboratory of Genetic Improvement of Silkworm and Mulberry of Agricultural Ministry, Zhenjiang 212003, Jiangsu, China
| |
Collapse
|
4
|
Kerr JR. The role of parvovirus B19 in the pathogenesis of autoimmunity and autoimmune disease. J Clin Pathol 2015; 69:279-91. [PMID: 26644521 DOI: 10.1136/jclinpath-2015-203455] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 11/06/2015] [Indexed: 11/03/2022]
Abstract
Human parvovirus B19 is a single-stranded DNA virus which preferentially targets the erythroblasts in the bone marrow. B19 infection commonly causes erythema infectiosum, arthralgia, fetal death, transient aplastic crisis in patients with shortened red cell survival, and persistent infection in people who are immunocompromised. Less common clinical manifestations include atypical skin rashes, neurological syndromes, cardiac syndromes, and various cytopenias. B19 infection has also been associated with development of a variety of different autoimmune diseases, including rheumatological, neurological, neuromuscular, cardiovascular, haematological, nephrological and metabolic. Production of a variety of autoantibodies has been demonstrated to occur during B19 infection and these have been shown to be key to the pathogenesis of the particular disease process in a significant number of cases, for example, production of rheumatoid factor in cases of B19-associated rheumatoid arthritis and production of anti-glutamic acid decarboxylase (GAD) in patients with B19-associated type 1 diabetes mellitus. B19 infection has also been associated with the development of multiple autoimmune diseases in 12 individuals. Documented mechanisms in B19-associated autoimmunity include molecular mimicry (IgG antibody to B19 proteins has been shown to cross react with a variety of recognised human autoantigens, including collagen II, keratin, angiotensin II type 1 receptor, myelin basic protein, cardiolipin, and platelet membrane glycoprotein IIb/IIIa), B19-induced apoptosis with presentation of self-antigens to T lymphocytes, and the phospholipase activity of the B19 unique VP1 protein.
Collapse
|
5
|
Kerr JR, Mattey DL. The role of parvovirus B19 and the immune response in the pathogenesis of acute leukemia. Rev Med Virol 2015; 25:133-55. [DOI: 10.1002/rmv.1830] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Revised: 01/29/2015] [Accepted: 02/04/2015] [Indexed: 12/12/2022]
Affiliation(s)
- Jonathan R. Kerr
- Escuela de Medicina y Ciencias de la Salud; Universidad del Rosario; Bogotá D.C. Colombia
| | - Derek L. Mattey
- Staffordshire Rheumatology Centre and University of Keele; Haywood Hospital; Stoke on Trent United Kingdom
| |
Collapse
|
6
|
Tal S, Mincberg M, Rostovsky I, Rommelaere J, Salome N, Davis C. The Minute Virus of Mice NS2 proteins are not essential for productive infection of embryonic murine cells in utero. Virology 2014; 468-470:631-636. [PMID: 25310499 DOI: 10.1016/j.virol.2014.08.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Revised: 06/05/2014] [Accepted: 08/29/2014] [Indexed: 11/18/2022]
Abstract
The P4 promoter of the autonomous parvovirus Minute Virus of Mice (MVM) drives the production of its non-structural proteins, NS1 and NS2. The NS2 isoforms are without enzymatic activity but interact with cellular proteins. While NS2 is crucial to the viral life cycle in cultured murine cells, NS2-null mutant virus productively infects transformed host cells of other species. In the mouse, sensitivity to MVM infection is age dependent, exhibiting limited subclinical infections in adults, but sustained and potentially lethal infection in embryos. We therefore questioned whether the species-dependent requirement for NS2 function in vitro would be retained in utero. We report here that it is not. NS2-null mutant MVMp is capable of mounting a productive, albeit much reduced, infection of normal embryonic mouse cells in vivo. Based on the data, we hypothesize that NS2 may bear an as-yet undescribed immunosuppressive function.
Collapse
Affiliation(s)
- Saar Tal
- Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben Gurion University of the Negev, Beer Sheva, Israel
| | - Michal Mincberg
- Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben Gurion University of the Negev, Beer Sheva, Israel
| | - Irina Rostovsky
- Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben Gurion University of the Negev, Beer Sheva, Israel
| | - Jean Rommelaere
- Division ofTumor Virology, Deutsches Krebsforschungszentrum, Heidelberg, Germany
| | - Nathali Salome
- Division ofTumor Virology, Deutsches Krebsforschungszentrum, Heidelberg, Germany
| | - Claytus Davis
- Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben Gurion University of the Negev, Beer Sheva, Israel
| |
Collapse
|
7
|
Fan G, Li J. Regions identity between the genome of vertebrates and non-retroviral families of insect viruses. Virol J 2011; 8:511. [PMID: 22073942 PMCID: PMC3226645 DOI: 10.1186/1743-422x-8-511] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2011] [Accepted: 11/10/2011] [Indexed: 01/06/2023] Open
Abstract
Background The scope of our understanding of the evolutionary history between viruses and animals is limited. The fact that the recent availability of many complete insect virus genomes and vertebrate genomes as well as the ability to screen these sequences makes it possible to gain a new perspective insight into the evolutionary interaction between insect viruses and vertebrates. This study is to determine the possibility of existence of sequence identity between the genomes of insect viruses and vertebrates, attempt to explain this phenomenon in term of genetic mobile element, and try to investigate the evolutionary relationship between these short regions of identity among these species. Results Some of studied insect viruses contain variable numbers of short regions of sequence identity to the genomes of vertebrate with nucleotide sequence length from 28 bp to 124 bp. They are found to locate in multiple sites of the vertebrate genomes. The ontology of animal genes with identical regions involves in several processes including chromatin remodeling, regulation of apoptosis, signaling pathway, nerve system development and some enzyme-like catalysis. Phylogenetic analysis reveals that at least some short regions of sequence identity in the genomes of vertebrate are derived the ancestral of insect viruses. Conclusion Short regions of sequence identity were found in the vertebrates and insect viruses. These sequences played an important role not only in the long-term evolution of vertebrates, but also in promotion of insect virus. This typical win-win strategy may come from natural selection.
Collapse
Affiliation(s)
- Gaowei Fan
- National Center for Clinical Laboratories, Beijing Hospital, Beijing, China
| | | |
Collapse
|
8
|
Liu H, Fu Y, Xie J, Cheng J, Ghabrial SA, Li G, Peng Y, Yi X, Jiang D. Widespread endogenization of densoviruses and parvoviruses in animal and human genomes. J Virol 2011; 85:9863-9876. [PMID: 21795360 PMCID: PMC3196449 DOI: 10.1128/jvi.00828-11] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2011] [Accepted: 07/14/2011] [Indexed: 11/20/2022] Open
Abstract
Parvoviruses infect humans and a broad range of animals, from mammals to crustaceans, and generally are associated with a variety of acute and chronic diseases. However, many others cause persistent infections and are not known to be associated with any disease. Viral persistence is likely related to the ability to integrate into the chromosomal DNA and to establish a latent infection. However, there is little evidence for genome integration of parvoviral DNA except for Adeno-associated virus (AAV). Here we performed a systematic search for homologs of parvoviral proteins in publicly available eukaryotic genome databases followed by experimental verification and phylogenetic analysis. We conclude that parvoviruses have frequently invaded the germ lines of diverse animal species, including mammals, fishes, birds, tunicates, arthropods, and flatworms. The identification of orthologous endogenous parvovirus sequences in the genomes of humans and other mammals suggests that parvoviruses have coexisted with mammals for at least 98 million years. Furthermore, some of the endogenized parvoviral genes were expressed in eukaryotic organisms, suggesting that these viral genes are also functional in the host genomes. Our findings may provide novel insights into parvovirus biology, host interactions, and evolution.
Collapse
Affiliation(s)
- Huiquan Liu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, Hubei Province, People's Republic of China
- Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, People's Republic of China
| | - Yanping Fu
- Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, People's Republic of China
| | - Jiatao Xie
- Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, People's Republic of China
| | - Jiasen Cheng
- Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, People's Republic of China
| | - Said A. Ghabrial
- Department of Plant Pathology, University of Kentucky, 201F Plant Science Building, 1405 Veterans Drive, University of Kentucky, Lexington, Kentucky 40546-0312
| | - Guoqing Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, Hubei Province, People's Republic of China
- Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, People's Republic of China
| | - Youliang Peng
- State Key Laboratories for Agrobiotechnology, China Agricultural University, Yuanming-Yuan West Road No. 2, Haidian District, 100193 Beijing, People's Republic of China
| | - Xianhong Yi
- Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, People's Republic of China
| | - Daohong Jiang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, Hubei Province, People's Republic of China
- Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, People's Republic of China
| |
Collapse
|
9
|
Liu Y, Li J. Short regions of sequence identity between the genomes of bacteria and human. Curr Microbiol 2010; 62:770-6. [PMID: 20972791 DOI: 10.1007/s00284-010-9783-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2010] [Accepted: 09/16/2010] [Indexed: 11/26/2022]
Abstract
The interaction between bacteria and human is still incomplete. With the recent availability of many microbial genomes and human genome, as well as the series of basic local alignment search tool (BLAST) programs, a new perspective to gain insight into the interaction between the bacteria and human is possible. This study is to determine the possibility of existence of sequence identity between the genomes of bacteria and human, and try to explain this phenomenon in term of bacteriophages and other genetic mobile elements. BLAST searches of the genomes of bacteria, bacteriophages, and plasmids against human genome were performed using the resources of the National Center for Biotechnology Information (NCBI). All studied bacteria contain variable numbers of short regions of sequence identity to the genome of human, which ranged from 27 to 84 nt. They were found at multiple sites within the human genome. The short regions of sequence identity existed between the genomes of bacteria and human, and a hypothesis that viruses, especially bacteriophages, might play a significant role in shaping the genomes of bacterial and human, and contribute to the short regions of sequence identity is developed.
Collapse
Affiliation(s)
- Yudong Liu
- Graduate School, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, People's Republic of China
| | | |
Collapse
|
10
|
Yu ZG, Chu KH, Li CP, Anh V, Zhou LQ, Wang RW. Whole-proteome phylogeny of large dsDNA viruses and parvoviruses through a composition vector method related to dynamical language model. BMC Evol Biol 2010; 10:192. [PMID: 20565983 PMCID: PMC2898692 DOI: 10.1186/1471-2148-10-192] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2009] [Accepted: 06/22/2010] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND The vast sequence divergence among different virus groups has presented a great challenge to alignment-based analysis of virus phylogeny. Due to the problems caused by the uncertainty in alignment, existing tools for phylogenetic analysis based on multiple alignment could not be directly applied to the whole-genome comparison and phylogenomic studies of viruses. There has been a growing interest in alignment-free methods for phylogenetic analysis using complete genome data. Among the alignment-free methods, a dynamical language (DL) method proposed by our group has successfully been applied to the phylogenetic analysis of bacteria and chloroplast genomes. RESULTS In this paper, the DL method is used to analyze the whole-proteome phylogeny of 124 large dsDNA viruses and 30 parvoviruses, two data sets with large difference in genome size. The trees from our analyses are in good agreement to the latest classification of large dsDNA viruses and parvoviruses by the International Committee on Taxonomy of Viruses (ICTV). CONCLUSIONS The present method provides a new way for recovering the phylogeny of large dsDNA viruses and parvoviruses, and also some insights on the affiliation of a number of unclassified viruses. In comparison, some alignment-free methods such as the CV Tree method can be used for recovering the phylogeny of large dsDNA viruses, but they are not suitable for resolving the phylogeny of parvoviruses with a much smaller genome size.
Collapse
Affiliation(s)
- Zu-Guo Yu
- School of Mathematical Sciences, Queensland University of Technology, GPO Box 2434, Brisbane, Q 4001, Australia
- School of Mathematics and Computational Science, Xiangtan University, Hunan 411105, China
| | - Ka Hou Chu
- Department of Biology, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
| | - Chi Pang Li
- Department of Biology, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
| | - Vo Anh
- School of Mathematical Sciences, Queensland University of Technology, GPO Box 2434, Brisbane, Q 4001, Australia
| | - Li-Qian Zhou
- School of Mathematics and Computational Science, Xiangtan University, Hunan 411105, China
| | - Roger Wei Wang
- Department of Mathematics, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
| |
Collapse
|
11
|
Evolution of the sequence composition of Flaviviruses. INFECTION GENETICS AND EVOLUTION 2010; 10:129-36. [DOI: 10.1016/j.meegid.2009.11.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2009] [Revised: 10/26/2009] [Accepted: 11/03/2009] [Indexed: 11/20/2022]
|
12
|
Wang JH, Zhang WP, Liu HX, Wang D, Li YF, Wang WQ, Wang L, He FR, Wang Z, Yan QG, Chen LW, Huang GS. Detection of human parvovirus B19 in papillary thyroid carcinoma. Br J Cancer 2008; 98:611-8. [PMID: 18212749 PMCID: PMC2243166 DOI: 10.1038/sj.bjc.6604196] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
To evaluate whether parvovirus B19, a common human pathogen, was also involved in papillary thyroid carcinoma (PTC), 112 paraffin-embedded thyroid specimens of benign nodules, papillary, medullary and follicular carcinomas, and normal controls were examined for B19 DNA and capsid protein by nested PCR, in situ hybridisation (ISH) and immunohistochemistry (IHC). The expression of the nuclear factor-κB (NF-κB) was investigated by IHC. The results showed B19 DNA commonly exists in human thyroid tissues; however, there were significant differences between PTC group and normal controls, and between PTC and nonneoplastic adjacent tissues (P<0.001). The presence of viral DNA in PTC neoplastic epithelium was confirmed by laser-capture microdissection and sequencing of nested PCR products. B19 capsid protein in PTC group was significantly higher than that of all the control groups and nonneoplastic adjacent tissues (P⩽0.001). Compared with control groups, the activation of NF-κB in PTC group was significantly increased (P⩽0.02), except for medullary carcinomas, and the activation of NF-κB was correlated with the viral protein presence (P=0.002). Moreover, NF-κB was colocalised with B19 DNA in the neoplastic epithelium of PTC by double staining of IHC and ISH. These results indicate for the first time a possible role of B19 in pathogenesis of PTC.
Collapse
Affiliation(s)
- J H Wang
- State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Hokynar K, Norja P, Hedman K, Söderlund-Venermo M. Tissue persistence and prevalence of B19 virus types 1–3. Future Virol 2007. [DOI: 10.2217/17460794.2.4.377] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Human parvovirus B19 is a minute ssDNA virus that causes a wide variety of diseases, including erythema infectiosum, arthropathy, anemias and fetal death. In addition to the B19 prototype, two new variants (B19 types 2 and 3) have been identified. After primary infection, B19 genomic DNA has been shown to persist in solid tissues of not only symptomatic but also of constitutionally healthy, immunocompetent individuals. The viral DNA persists as an intact molecule without persistence-specific mutations, and via a storage mechanism with life-long capacity. Thus, the mere presence of B19 DNA in tissue cannot be used as a diagnostic criterion, although a possible role in the pathology of diseases, for example through mRNA or protein production, cannot be excluded. The molecular mechanism, host-cell type and possible clinical significance of tissue persistence are yet to be elucidated.
Collapse
Affiliation(s)
- Kati Hokynar
- University of Helsinki, Haartman Institute, Department of Virology, PO Box 21 (Haartmaninkatu 3), FIN-00014, Finland
| | - Päivi Norja
- University of Helsinki, Haartman Institute, Department of Virology, PO Box 21 (Haartmaninkatu 3), FIN-00014, Finland
| | - Klaus Hedman
- University of Helsinki & Helsinki University Central Hospital Laboratory, Haartman Institute, Department of Virology, PO Box 21 (Haartmaninkatu 3), FIN-00014, Finland
| | - Maria Söderlund-Venermo
- University of Helsinki, Haartman Institute, Department of Virology, PO Box 21 (Haartmaninkatu 3), FIN-00014, Finland
| |
Collapse
|
14
|
Kerr JR. Pathogenesis of Parvovirus B19 Infection: Host Gene Variability, and Possible Means and Effects of Virus Persistence. ACTA ACUST UNITED AC 2005; 52:335-9. [PMID: 16316396 DOI: 10.1111/j.1439-0450.2005.00859.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Since conducting follow-up studies of patients with acute symptomatic parvovirus B19 infection which showed that a significant proportion of patients develop prolonged arthritis and chronic fatigue syndrome (CFS), we have become interested in the mechanisms of this phenomenon. We showed that these cases have high levels of pro-inflammatory cytokines in their circulation and that this correlates with the symptoms. However, the underlying mechanisms were not apparent, and we have used various approaches to begin studying this phenomenon. DNA polymorphisms were looked for and several were shown to be more common in these subjects compared with controls; these occur within genes of both the immune response [human leucocyte antigen (HLA)-DRB1, HLA-B, transforming growth factor (TGF)-beta1] and those involved in several other cellular functions (predominantly the cytoskeleton and cell adhesion). Interestingly, one particular single-nucleotide polymorphism (SNP) which is associated with symptomatic B19 infection occurs in the Ku80 gene which has recently been shown to be a B19 co-receptor. B19 persistence is probably the key to this phenomenon, and some new data are presented on short regions of sequence homology (17-26 bp) between human, mouse and rat parvoviruses and their respective hosts which occur in many host genes. This homology may provide a foothold for virus persistence and may also play a role in the genesis of disease through gene disruption. Finally, we used microarrays and TaqMan real-time polymerase chain reaction in 108 normal persons to study human gene expression in persons who are B19-seropositive versus B19-seronegative (age- and sex-matched) to examine the hypothesis that gene regulation may be altered in subjects harbouring the B19 virus DNA. Six genes were found to be differentially expressed with roles in the cytoskeleton (SKIP, MACF1, SPAG7, FLOT1), integrin signalling (FLOT1, RASSF5), HLA class III (c6orf48), and tumour suppression (RASSF5). These results have implications not only for B19 but also for other persistent viruses as well and confirmation is required. In conclusion, these disparate findings contribute to our understanding of the pathogenesis of B19 disease. We are using these studies as a starting point to study the phenomenon of chronic immune activation following B19 infection.
Collapse
Affiliation(s)
- J R Kerr
- Department of Cellular and Molecular Medicine, St George's University of London, Cranmer Terrace, London SW17 0RE, UK.
| |
Collapse
|