1
|
Hinshaw C, López-Uribe MM, Rosa C. Plant Virus Impacts on Yield and Plant-Pollinator Interactions Are Phylogenetically Modulated Independently of Domestication in Cucurbita spp. PHYTOPATHOLOGY 2024; 114:2182-2191. [PMID: 38842916 DOI: 10.1094/phyto-08-23-0270-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
Plant defenses are conserved among closely related species, but domestication can alter host genotypes through artificial selection with potential losses in host defenses. Therefore, both domestication and host phylogenetic structure may influence plant virus infection outcomes. Here, we examined the association of phylogeny and domestication with the fitness of infected plants. We inoculated three pairs of domesticated and wild/noncultivated squash (Cucurbita spp.) with a combination of two viruses commonly found to coinfect cucurbits, zucchini yellow mosaic virus and squash mosaic virus, and recorded fitness traits related to flowers, pollination, fruit, and seed viability in the field over 2 separate years. In an additional field experiment, we recorded the relative abundance of both viruses via RT-qPCR. We found a gradient of susceptibility across the six tested lineages, and phylogenetic structure, but not domestication, contributed to differences in infection outcomes and impacts on several fitness traits, including fruit number, fruit weight, and germination. Plant virus infection also impacted the quantity and quality of floral rewards and visitation rates of specialist bee pollinators. There were no detectable differences in viral load between the six host taxa for either virus individually or the ratio of zucchini yellow mosaic virus to squash mosaic virus. Our results highlight the importance of phylogenetic structure in predicting host susceptibility to disease across wild and domesticated plants and the ability of several hosts to maintain fitness in the field despite infection. Broader consequences of plant pathogens for beneficial insects, such as pollinators, should also be considered in future research.
Collapse
Affiliation(s)
- Chauncy Hinshaw
- Department of Plant Pathology and Environmental Microbiology, The Pennsylvania State University, University Park, PA
| | | | - Cristina Rosa
- Department of Plant Pathology and Environmental Microbiology, The Pennsylvania State University, University Park, PA
| |
Collapse
|
2
|
Anikina I, Kamarova A, Issayeva K, Issakhanova S, Mustafayeva N, Insebayeva M, Mukhamedzhanova A, Khan SM, Ahmad Z, Lho LH, Han H, Raposo A. Plant protection from virus: a review of different approaches. FRONTIERS IN PLANT SCIENCE 2023; 14:1163270. [PMID: 37377807 PMCID: PMC10291191 DOI: 10.3389/fpls.2023.1163270] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 05/25/2023] [Indexed: 06/29/2023]
Abstract
This review analyzes methods for controlling plant viral infection. The high harmfulness of viral diseases and the peculiarities of viral pathogenesis impose special requirements regarding developing methods to prevent phytoviruses. The control of viral infection is complicated by the rapid evolution, variability of viruses, and the peculiarities of their pathogenesis. Viral infection in plants is a complex interdependent process. The creation of transgenic varieties has caused much hope in the fight against viral pathogens. The disadvantages of genetically engineered approaches include the fact that the resistance gained is often highly specific and short-lived, and there are bans in many countries on the use of transgenic varieties. Modern prevention methods, diagnosis, and recovery of planting material are at the forefront of the fight against viral infection. The main techniques used for the healing of virus-infected plants include the apical meristem method, which is combined with thermotherapy and chemotherapy. These methods represent a single biotechnological complex method of plant recovery from viruses in vitro culture. It widely uses this method for obtaining non-virus planting material for various crops. The disadvantages of the tissue culture-based method of health improvement include the possibility of self-clonal variations resulting from the long-term cultivation of plants under in vitro conditions. The possibilities of increasing plant resistance by stimulating their immune system have expanded, which results from the in-depth study of the molecular and genetic bases of plant resistance toward viruses and the investigation of the mechanisms of induction of protective reactions in the plant organism. The existing methods of phytovirus control are ambiguous and require additional research. Further study of the genetic, biochemical, and physiological features of viral pathogenesis and the development of a strategy to increase plant resistance to viruses will allow a new level of phytovirus infection control to be reached.
Collapse
Affiliation(s)
- Irina Anikina
- Biotechnology Department, Toraighyrov University, Pavlodar, Kazakhstan
| | - Aidana Kamarova
- Biology and Ecology Department, Toraighyrov University, Pavlodar, Kazakhstan
| | - Kuralay Issayeva
- Biotechnology Department, Toraighyrov University, Pavlodar, Kazakhstan
| | | | | | - Madina Insebayeva
- Biotechnology Department, Toraighyrov University, Pavlodar, Kazakhstan
| | | | - Shujaul Mulk Khan
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Zeeshan Ahmad
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Linda Heejung Lho
- College of Business, Division of Tourism and Hotel Management, Cheongju University, Cheongju-si, Chungcheongbuk-do, Republic of Korea
| | - Heesup Han
- College of Hospitality and Tourism Management, Sejong University, Seoul, Republic of Korea
| | - António Raposo
- CBIOS (Research Center for Biosciences and Health Technologies), Universidade Lusófona de Humanidades e Tecnologias, Lisboa, Portugal
| |
Collapse
|
3
|
Aknadibossian V, Huguet-Tapia JC, Golyaev V, Pooggin MM, Folimonova SY. Transcriptomic alterations in the sweet orange vasculature correlate with growth repression induced by a variant of citrus tristeza virus. Front Microbiol 2023; 14:1162613. [PMID: 37138615 PMCID: PMC10150063 DOI: 10.3389/fmicb.2023.1162613] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 03/29/2023] [Indexed: 05/05/2023] Open
Abstract
Citrus tristeza virus (CTV, family Closteroviridae) is an economically important pathogen of citrus. CTV resides in the phloem of the infected plants and induces a range of disease phenotypes, including stem pitting and quick decline as well as a number of other deleterious syndromes. To uncover the biological processes underlying the poorly understood damaging symptoms of CTV, we profiled the transcriptome of sweet orange (Citrus sinensis) phloem-rich bark tissues of non-infected, mock-inoculated trees and trees singly infected with two distinct variants of CTV, T36 or T68-1. The T36 and T68-1 variants accumulated in the infected plants at similar titers. With that, young trees infected with T68-1 were markedly repressed in growth, while the growth rate of the trees infected with T36 was comparable to the mock-inoculated trees. Only a small number of differentially expressed genes (DEGs) were identified in the nearly asymptomatic T36-infected trees, whereas almost fourfold the number of DEGs were identified with the growth-restricting T68-1 infection. DEGs were validated using quantitative reverse transcription-PCR. While T36 did not induce many noteworthy changes, T68-1 altered the expression of numerous host mRNAs encoding proteins within significant biological pathways, including immunity and stress response proteins, papain-like cysteine proteases (PLCPs), cell-wall modifying enzymes, vascular development proteins and others. The transcriptomic alterations in the T68-1-infected trees, in particular, the strong and persistent increase in the expression levels of PLCPs, appear to contribute to the observed stem growth repression. On the other hand, analysis of the viral small interfering RNAs revealed that the host RNA silencing-based response to the infection by T36 and that by T68-1 was comparable, and thus, the induction of this antiviral mechanism may not contribute to the difference in the observed symptoms. The DEGs identified in this study promote our understanding of the underlying mechanisms of the yet unexplained growth repression induced by severe CTV isolates in sweet orange trees.
Collapse
Affiliation(s)
- Vicken Aknadibossian
- Department of Plant Pathology, University of Florida, Gainesville, FL, United States
| | - Jose C. Huguet-Tapia
- Department of Plant Pathology, University of Florida, Gainesville, FL, United States
| | - Victor Golyaev
- PHIM Plant Health Institute, University Montpellier, CIRAD, INRAE, IRD, Institute Agro, Montpellier, France
| | - Mikhail M. Pooggin
- PHIM Plant Health Institute, University Montpellier, CIRAD, INRAE, IRD, Institute Agro, Montpellier, France
| | - Svetlana Y. Folimonova
- Department of Plant Pathology, University of Florida, Gainesville, FL, United States
- *Correspondence: Svetlana Y. Folimonova,
| |
Collapse
|
4
|
Investigation of the Association between the Energy Metabolism of the Insect Vector Laodelphax striatellus and Rice Stripe Virus (RSV). Viruses 2022; 14:v14102298. [PMID: 36298853 PMCID: PMC9607531 DOI: 10.3390/v14102298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 10/14/2022] [Accepted: 10/18/2022] [Indexed: 11/25/2022] Open
Abstract
Viruses, as intracellular parasites, rely on the host organism to complete their life cycle. Although over 70% of plant viruses are transmitted by insect vectors, the role of vector energy metabolism on the infection process of insect-borne plant viruses is unclear. In this study, full-length cDNAs of three energy metabolism-related genes (LsATPase, LsMIT13 and LsNADP-ME) were obtained from the small brown planthopper (SBPH, Laodelphax striatellus), which transmits the Rice stripe virus (RSV). Expression levels of LsATPase, LsMIT13 and LsNADP-ME increased by 105%, 1120% and 259%, respectively, due to RSV infection. The repression of LsATPase, LsMIT13 or LsNADP-ME by RNAi had no effect on RSV nucleocapsid protein (NP) transcripts or protein levels. The repression of LsATPase caused a significant increase in LsMIT13 and LsNADP-ME transcript levels by 230% and 217%, respectively, and the repression of LsMIT13 caused a significant increase in LsNADP-ME mRNA levels. These results suggested that the silencing of LsATPase induced compensatory upregulation of LsMIT13 and LsNADP-ME, and silencing LsMIT13 induced compensatory upregulation of LsNADP-ME. Further study indicated that the co-silencing of LsATPase, LsMIT13 and LsNADP-ME in viruliferous SBPHs increased ATP production and RSV loads by 182% and 117%, respectively, as compared with nonviruliferous SBPHs. These findings indicate that SBPH energy metabolism is involved in RSV infection and provide insight into the association between plant viruses and energy metabolism in the insect vector.
Collapse
|
5
|
Akbar S, Yao W, Qin L, Yuan Y, Powell CA, Chen B, Zhang M. Comparative Analysis of Sugar Metabolites and Their Transporters in Sugarcane Following Sugarcane mosaic virus (SCMV) Infection. Int J Mol Sci 2021; 22:ijms222413574. [PMID: 34948367 PMCID: PMC8707430 DOI: 10.3390/ijms222413574] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 12/14/2021] [Accepted: 12/15/2021] [Indexed: 11/19/2022] Open
Abstract
Sugarcane mosaic virus (SCMV) is one of the major pathogens of sugarcane. SCMV infection causes dynamic changes in plant cells, including decreased photosynthetic rate, respiration, and sugar metabolism. To understand the basics of pathogenicity mechanism, we performed transcriptome and proteomics analysis in two sugarcane genotypes (Badila: susceptible to SCMV and B-48: SCMV resistant). Using Saccharum spontaneum L. genome as a reference, we identified the differentially expressed genes (DEGs) and differentially expressed proteins (DEPs) that participate in sugar metabolism, transport of their metabolites, and Carbohydrate Activating enZYmes (CAZymes). Sequencing data revealed 287 DEGs directly or indirectly involved in sugar metabolism, transport, and storage, while 323 DEGs are associated with CAZymes. Significant upregulation of glucose, sucrose, fructose, starch, and SWEET-related transcripts was observed in the Badila after infection of SCMV. B-48 showed resistance against SCMV with a limited number of sugar transcripts up-regulation at the post-infection stage. For CAZymes, only glycosyltransferase (GT)1 and glycosyl hydrolase (GH)17 were upregulated in B-48. Regulation of DEGs was analyzed at the proteomics level as well. Starch, fructose, glucose, GT1, and GH17 transcripts were expressed at the post-translational level. We verified our transcriptomic results with proteomics and qPCR data. Comprehensively, this study proved that Badila upregulated sugar metabolizing and transporting transcripts and proteins, which enhance virus multiplication and infectionl.
Collapse
Affiliation(s)
- Sehrish Akbar
- Guangxi Key Laboratory for Sugarcane Biology & State Key Laboratory for Conservation and Utilization of Agro Bioresources, Guangxi University, Nanning 530005, China; (S.A.); (W.Y.); (L.Q.); (Y.Y.); (B.C.)
| | - Wei Yao
- Guangxi Key Laboratory for Sugarcane Biology & State Key Laboratory for Conservation and Utilization of Agro Bioresources, Guangxi University, Nanning 530005, China; (S.A.); (W.Y.); (L.Q.); (Y.Y.); (B.C.)
| | - Lifang Qin
- Guangxi Key Laboratory for Sugarcane Biology & State Key Laboratory for Conservation and Utilization of Agro Bioresources, Guangxi University, Nanning 530005, China; (S.A.); (W.Y.); (L.Q.); (Y.Y.); (B.C.)
| | - Yuan Yuan
- Guangxi Key Laboratory for Sugarcane Biology & State Key Laboratory for Conservation and Utilization of Agro Bioresources, Guangxi University, Nanning 530005, China; (S.A.); (W.Y.); (L.Q.); (Y.Y.); (B.C.)
| | | | - Baoshan Chen
- Guangxi Key Laboratory for Sugarcane Biology & State Key Laboratory for Conservation and Utilization of Agro Bioresources, Guangxi University, Nanning 530005, China; (S.A.); (W.Y.); (L.Q.); (Y.Y.); (B.C.)
| | - Muqing Zhang
- Guangxi Key Laboratory for Sugarcane Biology & State Key Laboratory for Conservation and Utilization of Agro Bioresources, Guangxi University, Nanning 530005, China; (S.A.); (W.Y.); (L.Q.); (Y.Y.); (B.C.)
- IRREC-IFAS, University of Florida, Fort Pierce, FL 34945, USA;
- Correspondence:
| |
Collapse
|
6
|
Rubio B, Fernandez O, Cosson P, Berton T, Caballero M, Lion R, Roux F, Bergelson J, Gibon Y, Schurdi-Levraud V. Metabolic Profile Discriminates and Predicts Arabidopsis Susceptibility to Virus under Field Conditions. Metabolites 2021; 11:metabo11040230. [PMID: 33918649 PMCID: PMC8069729 DOI: 10.3390/metabo11040230] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/27/2021] [Accepted: 04/02/2021] [Indexed: 12/13/2022] Open
Abstract
As obligatory parasites, plant viruses alter host cellular metabolism. There is a lack of information on the variability of virus-induced metabolic responses among genetically diverse plants in a natural context with daily changing conditions. To decipher the metabolic landscape of plant-virus interactions in a natural setting, twenty-six and ten accessions of Arabidopsis thaliana were inoculated with Turnip mosaic virus (TuMV), in two field experiments over 2 years. The accessions were measured for viral accumulation, above-ground biomass, targeted and untargeted metabolic profiles. The phenotypes of the accessions ranged from susceptibility to resistance. Susceptible and resistant accessions were shown to have different metabolic routes after inoculation. Susceptible genotypes accumulate primary and secondary metabolites upon infection, at the cost of hindered growth. Twenty-one metabolic signatures significantly accumulated in resistant accessions whereas they maintained their growth as mock-inoculated plants without biomass penalty. Metabolic content was demonstrated to discriminate and be highly predictive of the susceptibility of inoculated Arabidopsis. This study is the first to describe the metabolic landscape of plant-virus interactions in a natural setting and its predictive link to susceptibility. It provides new insights on plant-virus interactions. In this undomesticated species and in ecologically realistic conditions, growth and resistance are in a permanent conversation.
Collapse
Affiliation(s)
- Bernadette Rubio
- Université de Bordeaux, INRAE, Biologie du Fruit et Pathologie, UMR 1332, F-33140 Villenave d’Ornon, France; (B.R.); (O.F.); (P.C.); (T.B.); (M.C.); (R.L.); (Y.G.)
| | - Olivier Fernandez
- Université de Bordeaux, INRAE, Biologie du Fruit et Pathologie, UMR 1332, F-33140 Villenave d’Ornon, France; (B.R.); (O.F.); (P.C.); (T.B.); (M.C.); (R.L.); (Y.G.)
| | - Patrick Cosson
- Université de Bordeaux, INRAE, Biologie du Fruit et Pathologie, UMR 1332, F-33140 Villenave d’Ornon, France; (B.R.); (O.F.); (P.C.); (T.B.); (M.C.); (R.L.); (Y.G.)
| | - Thierry Berton
- Université de Bordeaux, INRAE, Biologie du Fruit et Pathologie, UMR 1332, F-33140 Villenave d’Ornon, France; (B.R.); (O.F.); (P.C.); (T.B.); (M.C.); (R.L.); (Y.G.)
| | - Mélodie Caballero
- Université de Bordeaux, INRAE, Biologie du Fruit et Pathologie, UMR 1332, F-33140 Villenave d’Ornon, France; (B.R.); (O.F.); (P.C.); (T.B.); (M.C.); (R.L.); (Y.G.)
| | - Roxane Lion
- Université de Bordeaux, INRAE, Biologie du Fruit et Pathologie, UMR 1332, F-33140 Villenave d’Ornon, France; (B.R.); (O.F.); (P.C.); (T.B.); (M.C.); (R.L.); (Y.G.)
| | - Fabrice Roux
- CNRS, INRAE, Université de Toulouse, LIPM, F-31320 Castanet-Tolosan, France;
| | - Joy Bergelson
- Ecology & Evolution, University of Chicago, 1101 E 57th St, Chicago, IL 60637, USA;
| | - Yves Gibon
- Université de Bordeaux, INRAE, Biologie du Fruit et Pathologie, UMR 1332, F-33140 Villenave d’Ornon, France; (B.R.); (O.F.); (P.C.); (T.B.); (M.C.); (R.L.); (Y.G.)
| | - Valérie Schurdi-Levraud
- Université de Bordeaux, INRAE, Biologie du Fruit et Pathologie, UMR 1332, F-33140 Villenave d’Ornon, France; (B.R.); (O.F.); (P.C.); (T.B.); (M.C.); (R.L.); (Y.G.)
- Correspondence:
| |
Collapse
|
7
|
Poon JSY, Le Fevre RE, Carr JP, Hanke DE, Murphy AM. Inositol hexakisphosphate biosynthesis underpins PAMP-triggered immunity to Pseudomonas syringae pv. tomato in Arabidopsis thaliana but is dispensable for establishment of systemic acquired resistance. MOLECULAR PLANT PATHOLOGY 2020; 21:376-387. [PMID: 31876373 PMCID: PMC7036367 DOI: 10.1111/mpp.12902] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 11/26/2019] [Accepted: 11/28/2019] [Indexed: 05/27/2023]
Abstract
Phytic acid (inositol hexakisphosphate, InsP6 ) is an important phosphate store and signal molecule necessary for maintenance of basal resistance to plant pathogens. Arabidopsis thaliana ('arabidopsis') has three genes encoding myo-inositol phosphate synthases (IPS1-3), the enzymes that catalyse conversion of glucose-6-phosphate to InsP, the first step in InsP6 biosynthesis. There is one gene for inositol-(1,3,4,5,6)-pentakisphosphate 2-kinase (IPK1), which catalyses the final step. Previously, we showed that mutation of IPS2 and IPK1 but not IPS1 increased susceptibility to pathogens. Our aim was to better understand the InsP6 biosynthesis pathway in plant defence. Here we found that the susceptibility of arabidopsis (Col-0) to virulent and avirulent Pseudomonas syringae pv. tomato was also increased in ips3 and ips2/3 double mutants. Also, ipk1 plants had compromised expression of local acquired resistance induced by treatment with the pathogen-derived molecular pattern (PAMP) molecule flg22, but were unaffected in other responses to flg22, including Ca2+ influx and the oxidative burst, seedling root growth inhibition, and transcriptional up-regulation of the PAMP-triggered genes MITOGEN-ACTIVATED PROTEIN KINASE (MPK) 3, MPK11, CINNAMYL ALCOHOL DEHYDROGENASE 5, and FLG22-INDUCED RECEPTOR-LIKE KINASE 1. IPK1 mutation did not prevent the induction of systemic acquired resistance by avirulent P. syringae. Also, ips2 and ips2/3 double mutant plants, like ipk1, were hypersusceptible to P. syringae but were not compromised in flg22-induced local acquired resistance. The results support the role of InsP6 biosynthesis enzymes in effective basal resistance and indicate that there is more than one basal resistance mechanism dependent upon InsP6 biosynthesis.
Collapse
Affiliation(s)
| | - Ruth E. Le Fevre
- Department of Plant SciencesUniversity of CambridgeCambridgeUnited Kingdom
| | - John P. Carr
- Department of Plant SciencesUniversity of CambridgeCambridgeUnited Kingdom
| | - David E. Hanke
- Department of Plant SciencesUniversity of CambridgeCambridgeUnited Kingdom
| | - Alex M. Murphy
- Department of Plant SciencesUniversity of CambridgeCambridgeUnited Kingdom
| |
Collapse
|
8
|
Dynamic cross-talk between host primary metabolism and viruses during infections in plants. Curr Opin Virol 2016; 19:50-5. [PMID: 27442236 DOI: 10.1016/j.coviro.2016.06.013] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 06/21/2016] [Accepted: 06/29/2016] [Indexed: 12/23/2022]
Abstract
Upon infection plant viruses modulate cellular functions and resources to survive and reproduce. Plant cells in which the virus is replicating are transformed into strong metabolic sinks. This conversion gives rise to a massive reprogramming of plant primary metabolism. Such a metabolic shift involves perturbations in carbohydrates, amino acids and lipids that eventually lead to increase respiration rates, and/or decrease in photosynthetic activity. By doing so, plants provide metabolic acclimation against cellular stress and meet the increased demand for energy needed to sustain virus multiplication and defense responses against viruses. This review will highlight our current knowledge pertaining to the contribution of primary metabolism to the outcome of viral infections in plants.
Collapse
|
9
|
Velez-Ramirez AI, van Ieperen W, Vreugdenhil D, van Poppel PMJA, Heuvelink E, Millenaar FF. A single locus confers tolerance to continuous light and allows substantial yield increase in tomato. Nat Commun 2014; 5:4549. [PMID: 25093373 DOI: 10.1038/ncomms5549] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 06/25/2014] [Indexed: 12/22/2022] Open
Abstract
An important constraint for plant biomass production is the natural day length. Artificial light allows for longer photoperiods, but tomato plants develop a detrimental leaf injury when grown under continuous light--a still poorly understood phenomenon discovered in the 1920s. Here, we report a dominant locus on chromosome 7 of wild tomato species that confers continuous light tolerance. Genetic evidence, RNAseq data, silencing experiments and sequence analysis all point to the type III light harvesting chlorophyll a/b binding protein 13 (CAB-13) gene as a major factor responsible for the tolerance. In Arabidopsis thaliana, this protein is thought to have a regulatory role balancing light harvesting by photosystems I and II. Introgressing the tolerance into modern tomato hybrid lines, results in up to 20% yield increase, showing that limitations for crop productivity, caused by the adaptation of plants to the terrestrial 24-h day/night cycle, can be overcome.
Collapse
Affiliation(s)
- Aaron I Velez-Ramirez
- 1] Horticulture and Product Physiology, Wageningen University, PO Box 630, 6700 AP Wageningen, The Netherlands [2] Laboratory of Plant Physiology, Wageningen University, PO Box 658, 6700 AR Wageningen, The Netherlands
| | - Wim van Ieperen
- Horticulture and Product Physiology, Wageningen University, PO Box 630, 6700 AP Wageningen, The Netherlands
| | - Dick Vreugdenhil
- 1] Laboratory of Plant Physiology, Wageningen University, PO Box 658, 6700 AR Wageningen, The Netherlands [2] Centre for BioSystems Genomics, PO Box 98, 6700 AB Wageningen, The Netherlands
| | | | - Ep Heuvelink
- Horticulture and Product Physiology, Wageningen University, PO Box 630, 6700 AP Wageningen, The Netherlands
| | - Frank F Millenaar
- 1] Monsanto Holland B.V., PO Box 1050, 2660 BB Bergschenhoek, The Netherlands [2]
| |
Collapse
|
10
|
Andolfo G, Ferriello F, Tardella L, Ferrarini A, Sigillo L, Frusciante L, Ercolano MR. Tomato genome-wide transcriptional responses to Fusarium wilt and Tomato Mosaic Virus. PLoS One 2014; 9:e94963. [PMID: 24804963 PMCID: PMC4012952 DOI: 10.1371/journal.pone.0094963] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Accepted: 03/21/2014] [Indexed: 11/26/2022] Open
Abstract
Since gene expression approaches constitute a starting point for investigating plant–pathogen systems, we performed a transcriptional analysis to identify a set of genes of interest in tomato plants infected with F. oxysporum f. sp. lycopersici (Fol) and Tomato Mosaic Virus (ToMV). Differentially expressed tomato genes upon inoculation with Fol and ToMV were identified at two days post-inoculation. A large overlap was found in differentially expressed genes throughout the two incompatible interactions. However, Gene Ontology enrichment analysis evidenced specific categories in both interactions. Response to ToMV seems more multifaceted, since more than 70 specific categories were enriched versus the 30 detected in Fol interaction. In particular, the virus stimulated the production of an invertase enzyme that is able to redirect the flux of carbohydrates, whereas Fol induced a homeostatic response to prevent the fungus from killing cells. Genomic mapping of transcripts suggested that specific genomic regions are involved in resistance response to pathogen. Coordinated machinery could play an important role in prompting the response, since 60% of pathogen receptor genes (NB-ARC-LRR, RLP, RLK) were differentially regulated during both interactions. Assessment of genomic gene expression patterns could help in building up models of mediated resistance responses.
Collapse
Affiliation(s)
- Giuseppe Andolfo
- Department of Agriculture Sciences, University of Naples ‘Federico II’, Portici, Italy
| | - Francesca Ferriello
- Department of Agriculture Sciences, University of Naples ‘Federico II’, Portici, Italy
| | - Luca Tardella
- Department of Statistical Sciences, University of Rome ‘La Sapienza’, Rome, Italy
| | - Alberto Ferrarini
- Dipartimento di Biotecnologie - Università degli Studi di Verona, Strada le Grazie, Verona, Italy
| | - Loredana Sigillo
- Consiglio per la Ricerca e Sperimentazione in Agricoltura - Centro di sperimentazione e certificazione delle sementi (CRA-SCS) S.S., Battipaglia (SA), Roma, Italy
| | - Luigi Frusciante
- Department of Agriculture Sciences, University of Naples ‘Federico II’, Portici, Italy
| | | |
Collapse
|
11
|
Ouibrahim L, Caranta C. Exploitation of natural genetic diversity to study plant-virus interactions: what can we learn from Arabidopsis thaliana? MOLECULAR PLANT PATHOLOGY 2013; 14:844-54. [PMID: 23790151 PMCID: PMC6638744 DOI: 10.1111/mpp.12052] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The development and use of cultivars that are genetically resistant to viruses is an efficient strategy to tackle the problems of virus diseases. Over the past two decades, the model plant Arabidopsis thaliana has been documented as a host for a broad range of viral species, providing access to a large panel of resources and tools for the study of viral infection processes and resistance mechanisms. Exploration of its natural genetic diversity has revealed a wide range of genes conferring virus resistance. The molecular characterization of some of these genes has unveiled resistance mechanisms distinct from those described in crops. In these respects, Arabidopsis represents a rich and largely untapped source of new genes and mechanisms involved in virus resistance. Here, we review the current status of our knowledge concerning natural virus resistance in Arabidopsis. We also address the impact of environmental conditions on Arabidopsis-virus interactions and resistance mechanisms, and discuss the potential of applying the knowledge gained from the study of Arabidopsis natural diversity for crop improvement.
Collapse
Affiliation(s)
- Laurence Ouibrahim
- Laboratoire de Génétique et Biophysique des Plantes, UMR 7265, CEA/CNRS, Aix Marseille Université, Faculté des Sciences de Luminy, 163 Avenue de Luminy, Marseille, France
| | | |
Collapse
|
12
|
Rodrigo G, Carrera J, Ruiz-Ferrer V, del Toro FJ, Llave C, Voinnet O, Elena SF. A meta-analysis reveals the commonalities and differences in Arabidopsis thaliana response to different viral pathogens. PLoS One 2012; 7:e40526. [PMID: 22808182 PMCID: PMC3395709 DOI: 10.1371/journal.pone.0040526] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Accepted: 06/12/2012] [Indexed: 11/19/2022] Open
Abstract
Understanding the mechanisms by which plants trigger host defenses in response to viruses has been a challenging problem owing to the multiplicity of factors and complexity of interactions involved. The advent of genomic techniques, however, has opened the possibility to grasp a global picture of the interaction. Here, we used Arabidopsis thaliana to identify and compare genes that are differentially regulated upon infection with seven distinct (+)ssRNA and one ssDNA plant viruses. In the first approach, we established lists of genes differentially affected by each virus and compared their involvement in biological functions and metabolic processes. We found that phylogenetically related viruses significantly alter the expression of similar genes and that viruses naturally infecting Brassicaceae display a greater overlap in the plant response. In the second approach, virus-regulated genes were contextualized using models of transcriptional and protein-protein interaction networks of A. thaliana. Our results confirm that host cells undergo significant reprogramming of their transcriptome during infection, which is possibly a central requirement for the mounting of host defenses. We uncovered a general mode of action in which perturbations preferentially affect genes that are highly connected, central and organized in modules.
Collapse
Affiliation(s)
- Guillermo Rodrigo
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas - Universidad Politécnica de Valencia, València, Spain
| | - Javier Carrera
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas - Universidad Politécnica de Valencia, València, Spain
- Instituto ITACA, Universidad Politécnica de Valencia, València, Spain
| | | | | | - César Llave
- Centro de Investigaciones Biológicas, CSIC, Madrid, Spain
| | - Olivier Voinnet
- Institut de Biologie Moléculaire des Plantes, CNRS, Strasbourg, France
| | - Santiago F. Elena
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas - Universidad Politécnica de Valencia, València, Spain
- Santa Fe Institute, Santa Fe, New Mexico, United States of America
- * E-mail:
| |
Collapse
|
13
|
Mandal R, Kathiria P, Psychogios N, Bouatra S, Krishnamurthy R, Wishart D, Kovalchuk I. Progeny of tobacco mosaic virus-infected Nicotiana tabacum plants exhibit trans-generational changes in metabolic profiles. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2012. [DOI: 10.1016/j.bcab.2012.01.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
14
|
Baebler Š, Stare K, Kovač M, Blejec A, Prezelj N, Stare T, Kogovšek P, Pompe-Novak M, Rosahl S, Ravnikar M, Gruden K. Dynamics of responses in compatible potato-Potato virus Y interaction are modulated by salicylic acid. PLoS One 2011; 6:e29009. [PMID: 22194976 PMCID: PMC3237580 DOI: 10.1371/journal.pone.0029009] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2011] [Accepted: 11/18/2011] [Indexed: 12/21/2022] Open
Abstract
To investigate the dynamics of the potato – Potato virus Y (PVY) compatible interaction in relation to salicylic acid - controlled pathways we performed experiments using non-transgenic potato cv. Désirée, transgenic NahG-Désirée, cv. Igor and PVYNTN, the most aggressive strain of PVY. The importance of salicylic acid in viral multiplication and symptom development was confirmed by pronounced symptom development in NahG-Désirée, depleted in salicylic acid, and reversion of the effect after spraying with 2,6-dichloroisonicotinic acid (a salicylic acid - analogue). We have employed quantitative PCR for monitoring virus multiplication, as well as plant responses through expression of selected marker genes of photosynthetic activity, carbohydrate metabolism and the defence response. Viral multiplication was the slowest in inoculated potato of cv. Désirée, the only asymptomatic genotype in the study. The intensity of defence-related gene expression was much stronger in both sensitive genotypes (NahG-Désirée and cv. Igor) at the site of inoculation than in asymptomatic plants (cv. Désirée). Photosynthesis and carbohydrate metabolism gene expression differed between the symptomatic and asymptomatic phenotypes. The differential gene expression pattern of the two sensitive genotypes indicates that the outcome of the interaction does not rely simply on one regulatory component, but similar phenotypical features can result from distinct responses at the molecular level.
Collapse
Affiliation(s)
- Špela Baebler
- Department for Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Velez-Ramirez AI, van Ieperen W, Vreugdenhil D, Millenaar FF. Plants under continuous light. TRENDS IN PLANT SCIENCE 2011; 16:310-8. [PMID: 21396878 DOI: 10.1016/j.tplants.2011.02.003] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2010] [Revised: 01/31/2011] [Accepted: 02/05/2011] [Indexed: 05/05/2023]
Abstract
Continuous light is an essential tool for understanding the plant circadian clock. Additionally, continuous light might increase greenhouse food production. However, using continuous light in research and practice has its challenges. For instance, most of the circadian clock-oriented experiments were performed under continuous light; consequently, interactions between the circadian clock and the light signaling pathway were overlooked. Furthermore, in some plant species continuous light induces severe injury, which is only poorly understood so far. In this review paper, we aim to combine the current knowledge with a modern conceptual framework. Modern genomic tools and rediscovered continuous light-tolerant tomato species (Solanum spp.) could boost the understanding of the physiology of plants under continuous light.
Collapse
Affiliation(s)
- Aaron I Velez-Ramirez
- Horticultural Supply Chains Group, Wageningen University, P.O. Box 630, 6700 AP Wageningen, The Netherlands.
| | | | | | | |
Collapse
|
16
|
Sinha A, Srivastava M. Biochemical Changes in Mungbean Plants Infected by Mungbean yellow mosaic virus. ACTA ACUST UNITED AC 2010. [DOI: 10.3923/ijv.2010.150.157] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
17
|
Murphy AM, Otto B, Brearley CA, Carr JP, Hanke DE. A role for inositol hexakisphosphate in the maintenance of basal resistance to plant pathogens. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2008; 56:638-52. [PMID: 18643983 DOI: 10.1111/j.1365-313x.2008.03629.x] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Phytic acid (myo-inositol hexakisphosphate, InsP6) is an important phosphate store and signal molecule in plants. However, low-phytate plants are being developed to minimize the negative health effects of dietary InsP6 and pollution caused by undigested InsP6 in animal waste. InsP6 levels were diminished in transgenic potato plants constitutively expressing an antisense gene sequence for myo-inositol 3-phosphate synthase (IPS, catalysing the first step in InsP6 biosynthesis) or Escherichia coli polyphosphate kinase. These plants were less resistant to the avirulent pathogen potato virus Y and the virulent pathogen tobacco mosaic virus (TMV). In Arabidopsis thaliana, mutation of the gene for the enzyme catalysing the final step of InsP6 biosynthesis (InsP5 2-kinase) also diminished InsP6 levels and enhanced susceptibility to TMV and to virulent and avirulent strains of the bacterial pathogen Pseudomonas syringae. Arabidopsis thaliana has three IPS genes (AtIPS1-3). Mutant atips2 plants were depleted in InsP6 and were hypersusceptible to TMV, turnip mosaic virus, cucumber mosaic virus and cauliflower mosaic virus as well as to the fungus Botrytis cinerea and to P. syringae. Mutant atips2 and atipk1 plants were as hypersusceptible to infection as plants unable to accumulate salicylic acid (SA) but their increased susceptibility was not due to reduced levels of SA. In contrast, mutant atips1 plants, which were also depleted in InsP6, were not compromised in resistance to pathogens, suggesting that a specific pool of InsP6 regulates defence against phytopathogens.
Collapse
MESH Headings
- Arabidopsis/genetics
- Arabidopsis/metabolism
- Arabidopsis/microbiology
- Arabidopsis/virology
- Arabidopsis Proteins/genetics
- Arabidopsis Proteins/metabolism
- Botrytis/pathogenicity
- Caulimovirus/pathogenicity
- Cucumovirus/pathogenicity
- DNA, Bacterial/genetics
- Disease Susceptibility/microbiology
- Disease Susceptibility/virology
- Gene Expression Regulation, Plant
- Genes, Plant
- Immunity, Innate/genetics
- Mutagenesis, Insertional
- Mutation
- Myo-Inositol-1-Phosphate Synthase/genetics
- Myo-Inositol-1-Phosphate Synthase/metabolism
- Phosphotransferases (Alcohol Group Acceptor)/genetics
- Phosphotransferases (Alcohol Group Acceptor)/metabolism
- Phytic Acid/biosynthesis
- Plant Diseases/genetics
- Plant Diseases/microbiology
- Plant Proteins/genetics
- Plant Proteins/metabolism
- Plants, Genetically Modified/genetics
- Plants, Genetically Modified/metabolism
- Plants, Genetically Modified/microbiology
- Plants, Genetically Modified/virology
- Potyvirus/pathogenicity
- Pseudomonas syringae/pathogenicity
- RNA, Plant/genetics
- Salicylic Acid/metabolism
- Signal Transduction
- Solanum tuberosum/genetics
- Solanum tuberosum/metabolism
- Solanum tuberosum/virology
- Tobacco Mosaic Virus/pathogenicity
- Tymovirus/pathogenicity
Collapse
Affiliation(s)
- Alex M Murphy
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK.
| | | | | | | | | |
Collapse
|
18
|
Cakmak I, Kirkby EA. Role of magnesium in carbon partitioning and alleviating photooxidative damage. PHYSIOLOGIA PLANTARUM 2008; 133:692-704. [PMID: 18724409 DOI: 10.1111/j.1399-3054.2007.01042.x] [Citation(s) in RCA: 171] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Magnesium (Mg) deficiency exerts a major influence on the partitioning of dry matter and carbohydrates between shoots and roots. One of the very early reactions of plants to Mg deficiency stress is the marked increase in the shoot-to-root dry weight ratio, which is associated with a massive accumulation of carbohydrates in source leaves, especially of sucrose and starch. These higher concentrations of carbohydrates in Mg-deficient leaves together with the accompanying increase in shoot-to-root dry weight ratio are indicative of a severe impairment in phloem export of photoassimilates from source leaves. Studies with common bean and sugar beet plants have shown that Mg plays a fundamental role in phloem loading of sucrose. At a very early stage of Mg deficiency, phloem export of sucrose is severely impaired, an effect that occurs before any noticeable changes in shoot growth, Chl concentration or photosynthetic activity. These findings suggest that accumulation of carbohydrates in Mg-deficient leaves is caused directly by Mg deficiency stress and not as a consequence of reduced sink activity. The role of Mg in the phloem-loading process seems to be specific; resupplying Mg for 12 or 24 h to Mg-deficient plants resulted in a very rapid recovery of sucrose export. It appears that the massive accumulation of carbohydrates and related impairment in photosynthetic CO2 fixation in Mg-deficient leaves cause an over-reduction in the photosynthetic electron transport chain that potentiates the generation of highly reactive O2 species (ROS). Plants respond to Mg deficiency stress by marked increases in antioxidative capacity of leaves, especially under high light intensity, suggesting that ROS generation is stimulated by Mg deficiency in chloroplasts. Accordingly, it has been found that Mg-deficient plants are very susceptible to high light intensity. Exposure of Mg-deficient plants to high light intensity rapidly induced leaf chlorosis and necrosis, an outcome that was effectively delayed by partial shading of the leaf blade, although the Mg concentrations in different parts of the leaf blade were unaffected by shading. The results indicate that photooxidative damage contributes to development of leaf chlorosis under Mg deficiency, suggesting that plants under high-light conditions have a higher physiological requirement for Mg. Maintenance of a high Mg nutritional status of plants is, thus, essential in the avoidance of ROS generation, which occurs at the expense of inhibited phloem export of sugars and impairment of CO2 fixation, particularly under high-light conditions.
Collapse
Affiliation(s)
- Ismail Cakmak
- Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul 34956, Turkey.
| | | |
Collapse
|
19
|
Altered gene expression changes in Arabidopsis leaf tissues and protoplasts in response to Plum pox virus infection. BMC Genomics 2008; 9:325. [PMID: 18613973 PMCID: PMC2478689 DOI: 10.1186/1471-2164-9-325] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2007] [Accepted: 07/09/2008] [Indexed: 11/10/2022] Open
Abstract
Background Virus infection induces the activation and suppression of global gene expression in the host. Profiling gene expression changes in the host may provide insights into the molecular mechanisms that underlie host physiological and phenotypic responses to virus infection. In this study, the Arabidopsis Affymetrix ATH1 array was used to assess global gene expression changes in Arabidopsis thaliana plants infected with Plum pox virus (PPV). To identify early genes in response to PPV infection, an Arabidopsis synchronized single-cell transformation system was developed. Arabidopsis protoplasts were transfected with a PPV infectious clone and global gene expression changes in the transfected protoplasts were profiled. Results Microarray analysis of PPV-infected Arabidopsis leaf tissues identified 2013 and 1457 genes that were significantly (Q ≤ 0.05) up- (≥ 2.5 fold) and downregulated (≤ -2.5 fold), respectively. Genes associated with soluble sugar, starch and amino acid, intracellular membrane/membrane-bound organelles, chloroplast, and protein fate were upregulated, while genes related to development/storage proteins, protein synthesis and translation, and cell wall-associated components were downregulated. These gene expression changes were associated with PPV infection and symptom development. Further transcriptional profiling of protoplasts transfected with a PPV infectious clone revealed the upregulation of defence and cellular signalling genes as early as 6 hours post transfection. A cross sequence comparison analysis of genes differentially regulated by PPV-infected Arabidopsis leaves against uniEST sequences derived from PPV-infected leaves of Prunus persica, a natural host of PPV, identified orthologs related to defence, metabolism and protein synthesis. The cross comparison of genes differentially regulated by PPV infection and by the infections of other positive sense RNA viruses revealed a common set of 416 genes. These identified genes, particularly the early responsive genes, may be critical in virus infection. Conclusion Gene expression changes in PPV-infected Arabidopsis are the molecular basis of stress and defence-like responses, PPV pathogenesis and symptom development. The differentially regulated genes, particularly the early responsive genes, and a common set of genes regulated by infections of PPV and other positive sense RNA viruses identified in this study are candidates suitable for further functional characterization to shed lights on molecular virus-host interactions.
Collapse
|
20
|
Sacristán S, García-Arenal F. The evolution of virulence and pathogenicity in plant pathogen populations. MOLECULAR PLANT PATHOLOGY 2008; 9:369-84. [PMID: 18705877 PMCID: PMC6640236 DOI: 10.1111/j.1364-3703.2007.00460.x] [Citation(s) in RCA: 144] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The term virulence has a conflicting history among plant pathologists. Here we define virulence as the degree of damage caused to a host by parasite infection, assumed to be negatively correlated with host fitness, and pathogenicity the qualitative capacity of a parasite to infect and cause disease on a host. Selection may act on both virulence and pathogenicity, and their change in parasite populations can drive parasite evolution and host-parasite co-evolution. Extensive theoretical analyses of the factors that shape the evolution of pathogenicity and virulence have been reported in last three decades. Experimental work has not followed the path of theoretical analyses. Plant pathologists have shown greater interest in pathogenicity than in virulence, and our understanding of the molecular basis of pathogenicity has increased enormously. However, little is known regarding the molecular basis of virulence. It has been proposed that the mechanisms of recognition of parasites by hosts will have consequences for the evolution of pathogenicity, but much experimental work is still needed to test these hypotheses. Much theoretical work has been based on evidence from cellular plant pathogens. We review here the current experimental and observational evidence on which to test theoretical hypotheses or conjectures. We compare evidence from viruses and cellular pathogens, mostly fungi and oomycetes, which differ widely in genomic complexity and in parasitism. Data on the evolution of pathogenicity and virulence from viruses and fungi show important differences, and their comparison is necessary to establish the generality of hypotheses on pathogenicity and virulence evolution.
Collapse
Affiliation(s)
- Soledad Sacristán
- Depto. de Biotecnología, E.T.S.I. Agrónomos and Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid, 28040 Madrid, Spain
| | | |
Collapse
|
21
|
Jung HW, Lim CW, Lee SC, Choi HW, Hwang CH, Hwang BK. Distinct roles of the pepper hypersensitive induced reaction protein gene CaHIR1 in disease and osmotic stress, as determined by comparative transcriptome and proteome analyses. PLANTA 2008; 227:409-25. [PMID: 17899171 DOI: 10.1007/s00425-007-0628-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2007] [Revised: 09/07/2007] [Accepted: 09/08/2007] [Indexed: 05/06/2023]
Abstract
A Capsicum annuum hypersensitive induced reaction protein1 (CaHIR1) was recently proposed as a positive regulator of hypersensitive cell death in plants. Overexpression of CaHIR1 in transgenic Arabidopsis plants conferred enhanced resistance against the hemi-biotrophic Pseudomonas syringae pv. tomato (Pst) and the biotrophic Hyaloperonospora parasitica. Infection by avirulent Pseudomonas strains carrying avrRpm1 or avrRpt2 caused enhanced resistance responses in transgenic plants, suggesting that CaHIR1 is involved in basal disease resistance in a race-nonspecific manner. H. parasitica exhibited low levels of asexual sporulation on CaHIR1 seedlings. In contrast, transgenic plants were susceptible not only to the necrotrophic fungal pathogen Botrytis cinerea but were also sensitive to osmotic stress caused by high salinity and drought. To identify proteins whose expression was altered by CaHIR1 overexpression in Arabidopsis leaves, a quantitative comparative proteome analysis using two-dimensional gel electrophoresis coupled with mass spectrometry was performed. Of about 400 soluble proteins, 11 proteins involved in several metabolic pathways were up- or down-regulated by CaHIR1 overexpression. Genes encoding glycine decarboxylase (At2g35370) and an unidentified protein (At2g03440), which were strongly upregulated in CaHIR1-overexpressing Arabidopsis, were also differentially induced at the transcriptional level by Pst infection. Arabidopsis carbonic anhydrase (At3g01500), highly similar to tobacco salicylic acid-binding protein 3, was up-regulated by CaHIR1 overexpression. The activity of an anti-oxidant enzyme, cooper/zinc superoxide dismutase (At2g28190), was also attenuated in transgenic Arabidopsis by CaHIR1 overexpression. Together, these results suggest that CaHIR1 overexpression in Arabidopsis mediates plant responses to biotrophic, hemi-biotrophic and necrotrophic pathogens, as well as to osmotic stress in different ways.
Collapse
Affiliation(s)
- Ho Won Jung
- Laboratory of Molecular Plant Pathology, College of Life Sciences and Biotechnology, Korea University, Anam-dong, Sungbuk-ku, Seoul, 136-713, South Korea
| | | | | | | | | | | |
Collapse
|
22
|
Ziebell H, Payne T, Berry JO, Walsh JA, Carr JP. A cucumber mosaic virus mutant lacking the 2b counter-defence protein gene provides protection against wild-type strains. J Gen Virol 2007; 88:2862-2871. [PMID: 17872541 DOI: 10.1099/vir.0.83138-0] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Several plant virus mutants, in which genes encoding silencing suppressor proteins have been deleted, are known to induce systemic or localized RNA silencing against themselves and other RNA molecules containing homologous sequences. Thus, it is thought that many cases of cross-protection, in which infection with a mild or asymptomatic virus mutant protects plants against challenge infection with closely related virulent viruses, can be explained by RNA silencing. We found that a cucumber mosaic virus (CMV) mutant of the subgroup IA strain Fny (Fny-CMVDelta2b), which cannot express the 2b silencing suppressor protein, cross-protects tobacco (Nicotiana tabacum) and Nicotiana benthamiana plants against disease induction by wild-type Fny-CMV. However, protection is most effective only if inoculation with Fny-CMVDelta2b and challenge inoculation with wild-type CMV occurs on the same leaf. Unexpectedly, Fny-CMVDelta2b also protected plants against infection with TC-CMV, a subgroup II strain that is not closely related to Fny-CMV. Additionally, in situ hybridization revealed that Fny-CMVDelta2b and Fny-CMV can co-exist in the same tissues but these tissues contain zones of Fny-CMVDelta2b-infected host cells from which Fny-CMV appears to be excluded. Taken together, it appears unlikely that cross-protection by Fny-CMVDelta2b occurs by induction of systemic RNA silencing against itself and homologous RNA sequences in wild-type CMV. It is more likely that protection occurs through either induction of very highly localized RNA silencing, or by competition between strains for host cells or resources.
Collapse
Affiliation(s)
- Heiko Ziebell
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, UK
| | - Tina Payne
- Warwick HRI, Wellesbourne, Warwick CV35 9EF, UK
| | - James O Berry
- Department of Biological Sciences, State University of New York at Buffalo, NY 14260, USA
| | | | - John P Carr
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, UK
| |
Collapse
|
23
|
Pagán I, Alonso-Blanco C, García-Arenal F. The relationship of within-host multiplication and virulence in a plant-virus system. PLoS One 2007; 2:e786. [PMID: 17726516 PMCID: PMC1950075 DOI: 10.1371/journal.pone.0000786] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2007] [Accepted: 07/30/2007] [Indexed: 11/24/2022] Open
Abstract
Background Virulence does not represent any obvious advantage to parasites. Most models of virulence evolution assume that virulence is an unavoidable consequence of within-host multiplication of parasites, resulting in trade-offs between within-host multiplication and between-host transmission fitness components. Experimental support for the central assumption of this hypothesis, i.e., for a positive correlation between within-host multiplication rates and virulence, is limited for plant-parasite systems. Methodology/Principal Findings We have addressed this issue in the system Arabidopsis thaliana-Cucumber mosaic virus (CMV). Virus multiplication and the effect of infection on plant growth and on viable seed production were quantified for 21 Arabidopsis wild genotypes infected by 3 CMV isolates. The effect of infection on plant growth and seed production depended of plant architecture and length of postembryonic life cycle, two genetically-determined traits, as well as on the time of infection in the plant's life cycle. A relationship between virus multiplication and virulence was not a general feature of this host-parasite system. This could be explained by tolerance mechanisms determined by the host genotype and operating differently on two components of plant fitness, biomass production and resource allocation to seeds. However, a positive relationship between virus multiplication and virulence was detected for some accessions with short life cycle and high seed weight to biomass ratio, which show lower levels of tolerance to infection. Conclusions/Significance These results show that genotype-specific tolerance mechanisms may lead to the absence of a clear relationship between parasite multiplication and virulence. Furthermore, a positive correlation between parasite multiplication and virulence may occur only in some genotypes and/or environmental conditions for a given host-parasite system. Thus, our results challenge the general validity of the trade-off hypothesis for virulence evolution, and stress the need of considering the effect of both the host and parasite genotypes in analyses of host-parasite interactions.
Collapse
Affiliation(s)
- Israel Pagán
- Departamento de Biotecnología and Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid, Madrid, Spain
| | - Carlos Alonso-Blanco
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Universidad Autónoma, Cantoblanco, Madrid, Spain
| | - Fernando García-Arenal
- Departamento de Biotecnología and Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid, Madrid, Spain
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|