1
|
Inhibition of the IFN-α JAK/STAT Pathway by MERS-CoV and SARS-CoV-1 Proteins in Human Epithelial Cells. Viruses 2022; 14:v14040667. [PMID: 35458397 PMCID: PMC9032603 DOI: 10.3390/v14040667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/04/2022] [Accepted: 03/17/2022] [Indexed: 12/10/2022] Open
Abstract
Coronaviruses (CoVs) have caused several global outbreaks with relatively high mortality rates, including Middle East Respiratory Syndrome coronavirus (MERS)-CoV, which emerged in 2012, and Severe Acute Respiratory Syndrome (SARS)-CoV-1, which appeared in 2002. The recent emergence of SARS-CoV-2 highlights the need for immediate and greater understanding of the immune evasion mechanisms used by CoVs. Interferon (IFN)-α is the body's natural antiviral agent, but its Janus kinase/signal transducer and activators of transcription (JAK/STAT) signalling pathway is often antagonized by viruses, thereby preventing the upregulation of essential IFN stimulated genes (ISGs). Therapeutic IFN-α has disappointingly weak clinical responses in MERS-CoV and SARS-CoV-1 infected patients, indicating that these CoVs inhibit the IFN-α JAK/STAT pathway. Here we show that in lung alveolar A549 epithelial cells expression of MERS-CoV-nsp2 and SARS-CoV-1-nsp14, but not MERS-CoV-nsp5, increased basal levels of total and phosphorylated STAT1 & STAT2 protein, but reduced IFN-α-mediated phosphorylation of STAT1-3 and induction of MxA. While MERS-CoV-nsp2 and SARS-CoV-1-nsp14 similarly increased basal levels of STAT1 and STAT2 in bronchial BEAS-2B epithelial cells, unlike in A549 cells, they did not enhance basal pSTAT1 nor pSTAT2. However, both viral proteins reduced IFN-α-mediated induction of pSTAT1-3 and ISGs (MxA, ISG15 and PKR) in BEAS-2B cells. Furthermore, even though IFN-α-mediated induction of pSTAT1-3 was not affected by MERS-CoV-nsp5 expression in BEAS-2B cells, downstream ISG induction was reduced, revealing that MERS-CoV-nsp5 may use an alternative mechanism to reduce antiviral ISG induction in this cell line. Indeed, we subsequently discovered that all three viral proteins inhibited STAT1 nuclear translocation in BEAS-2B cells, unveiling another layer of inhibition by which these viral proteins suppress responses to Type 1 IFNs. While these observations highlight cell line-specific differences in the immune evasion effects of MERS-CoV and SARS-CoV-1 proteins, they also demonstrate the broad spectrum of immune evasion strategies these deadly coronaviruses use to stunt antiviral responses to Type IFN.
Collapse
|
2
|
Abstract
Viruses commonly antagonize the antiviral type I interferon response by targeting signal transducer and activator of transcription 1 (STAT1) and STAT2, key mediators of interferon signaling. Other STAT family members mediate signaling by diverse cytokines important to infection, but their relationship with viruses is more complex. Importantly, virus-STAT interaction can be antagonistic or stimulatory depending on diverse viral and cellular factors. While STAT antagonism can suppress immune pathways, many viruses promote activation of specific STATs to support viral gene expression and/or produce cellular conditions conducive to infection. It is also becoming increasingly clear that viruses can hijack noncanonical STAT functions to benefit infection. For a number of viruses, STAT function is dynamically modulated through infection as requirements for replication change. Given the critical role of STATs in infection by diverse viruses, the virus-STAT interface is an attractive target for the development of antivirals and live-attenuated viral vaccines. Here, we review current understanding of the complex and dynamic virus-STAT interface and discuss how this relationship might be harnessed for medical applications.
Collapse
|
3
|
Li CW, Jheng BR, Chen BS. Investigating genetic-and-epigenetic networks, and the cellular mechanisms occurring in Epstein-Barr virus-infected human B lymphocytes via big data mining and genome-wide two-sided NGS data identification. PLoS One 2018; 13:e0202537. [PMID: 30133498 PMCID: PMC6105016 DOI: 10.1371/journal.pone.0202537] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 08/03/2018] [Indexed: 12/17/2022] Open
Abstract
Epstein-Barr virus (EBV), also known as human herpesvirus 4, is prevalent in all human populations. EBV mainly infects human B lymphocytes and epithelial cells, and is therefore associated with their various malignancies. To unravel the cellular mechanisms during the infection, we constructed interspecies networks to investigate the molecular cross-talk mechanisms between human B cells and EBV at the first (0-24 hours) and second (8-72 hours) stages of EBV infection. We first constructed a candidate genome-wide interspecies genetic-and-epigenetic network (the candidate GIGEN) by big database mining. We then pruned false positives in the candidate GIGEN to obtain the real GIGENs at the first and second infection stages in the lytic phase by their corresponding next-generation sequencing data through dynamic interaction models, the system identification approach, and the system order detection method. The real GIGENs are very complex and comprise protein-protein interaction networks, gene/microRNA (miRNA)/long non-coding RNA regulation networks, and host-virus cross-talk networks. To understand the molecular cross-talk mechanisms underlying EBV infection, we extracted the core GIGENs including host-virus core networks and host-virus core pathways from the real GIGENs using the principal network projection method. According to the results, we found that the activities of epigenetics-associated human proteins or genes were initially inhibited by viral proteins and miRNAs, and human immune responses were then dysregulated by epigenetic modification. We suggested that EBV exploits viral proteins and miRNAs, such as EBNA1, BPLF1, BALF3, BVRF1 and miR-BART14, to develop its defensive mechanism to defeat multiple immune attacks by the human immune system, promotes virion production, and facilitates the transportation of viral particles by activating the human genes NRP1 and CLIC5. Ultimately, we propose a therapeutic intervention comprising thymoquinone, valpromide, and zebularine to act as inhibitors of EBV-associated malignancies.
Collapse
Affiliation(s)
- Cheng-Wei Li
- Laboratory of Control and Systems Biology, National Tsing Hua University, Hsinchu, Taiwan
| | - Bo-Ren Jheng
- Laboratory of Control and Systems Biology, National Tsing Hua University, Hsinchu, Taiwan
| | - Bor-Sen Chen
- Laboratory of Control and Systems Biology, National Tsing Hua University, Hsinchu, Taiwan
- * E-mail:
| |
Collapse
|
4
|
Nan Y, Wu C, Zhang YJ. Interferon Independent Non-Canonical STAT Activation and Virus Induced Inflammation. Viruses 2018; 10:v10040196. [PMID: 29662014 PMCID: PMC5923490 DOI: 10.3390/v10040196] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 04/07/2018] [Accepted: 04/11/2018] [Indexed: 02/06/2023] Open
Abstract
Interferons (IFNs) are a group of secreted proteins that play critical roles in antiviral immunity, antitumor activity, activation of cytotoxic T cells, and modulation of host immune responses. IFNs are cytokines, and bind receptors on cell surfaces to trigger signal transduction. The major signaling pathway activated by IFNs is the JAK/STAT (Janus kinase/signal transducer and activator of transcription) pathway, a complex pathway involved in both viral and host survival strategies. On the one hand, viruses have evolved strategies to escape from antiviral host defenses evoked by IFN-activated JAK/STAT signaling. On the other hand, viruses have also evolved to exploit the JAK/STAT pathway to evoke activation of certain STATs that somehow promote viral pathogenesis. In this review, recent progress in our understanding of the virus-induced IFN-independent STAT signaling and its potential roles in viral induced inflammation and pathogenesis are summarized in detail, and perspectives are provided.
Collapse
Affiliation(s)
- Yuchen Nan
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China.
- Molecular Virology Laboratory, VA-MD College of Veterinary Medicine and Maryland Pathogen Research Institute, University of Maryland, College Park, MD 20742, USA.
| | - Chunyan Wu
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Yan-Jin Zhang
- Molecular Virology Laboratory, VA-MD College of Veterinary Medicine and Maryland Pathogen Research Institute, University of Maryland, College Park, MD 20742, USA.
| |
Collapse
|
5
|
Nan Y, Wu C, Zhang YJ. Interplay between Janus Kinase/Signal Transducer and Activator of Transcription Signaling Activated by Type I Interferons and Viral Antagonism. Front Immunol 2017; 8:1758. [PMID: 29312301 PMCID: PMC5732261 DOI: 10.3389/fimmu.2017.01758] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 11/27/2017] [Indexed: 12/13/2022] Open
Abstract
Interferons (IFNs), which were discovered a half century ago, are a group of secreted proteins that play key roles in innate immunity against viral infection. The major signaling pathway activated by IFNs is the Janus kinase/signal transducer and activator of transcription (JAK/STAT) pathway, which leads to the expression of IFN-stimulated genes (ISGs), including many antiviral effectors. Viruses have evolved various strategies with which to antagonize the JAK/STAT pathway to influence viral virulence and pathogenesis. In recent years, notable progress has been made to better understand the JAK/STAT pathway activated by IFNs and antagonized by viruses. In this review, recent progress in research of the JAK/STAT pathway activated by type I IFNs, non-canonical STAT activation, viral antagonism of the JAK/STAT pathway, removing of the JAK/STAT antagonist from viral genome for attenuation, and the potential pathogenesis roles of tyrosine phosphorylation-independent non-canonical STATs activation during virus infection are discussed in detail. We expect that this review will provide new insight into the understanding the complexity of the interplay between JAK/STAT signaling and viral antagonism.
Collapse
Affiliation(s)
- Yuchen Nan
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, China.,Molecular Virology Laboratory, VA-MD Regional College of Veterinary Medicine, Maryland Pathogen Research Institute, University of Maryland, College Park, MD, United States
| | - Chunyan Wu
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Yan-Jin Zhang
- Molecular Virology Laboratory, VA-MD Regional College of Veterinary Medicine, Maryland Pathogen Research Institute, University of Maryland, College Park, MD, United States
| |
Collapse
|
6
|
Harwardt T, Lukas S, Zenger M, Reitberger T, Danzer D, Übner T, Munday DC, Nevels M, Paulus C. Human Cytomegalovirus Immediate-Early 1 Protein Rewires Upstream STAT3 to Downstream STAT1 Signaling Switching an IL6-Type to an IFNγ-Like Response. PLoS Pathog 2016; 12:e1005748. [PMID: 27387064 PMCID: PMC4936752 DOI: 10.1371/journal.ppat.1005748] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 06/16/2016] [Indexed: 12/24/2022] Open
Abstract
The human cytomegalovirus (hCMV) major immediate-early 1 protein (IE1) is best known for activating transcription to facilitate viral replication. Here we present transcriptome data indicating that IE1 is as significant a repressor as it is an activator of host gene expression. Human cells induced to express IE1 exhibit global repression of IL6- and oncostatin M-responsive STAT3 target genes. This repression is followed by STAT1 phosphorylation and activation of STAT1 target genes normally induced by IFNγ. The observed repression and subsequent activation are both mediated through the same region (amino acids 410 to 445) in the C-terminal domain of IE1, and this region serves as a binding site for STAT3. Depletion of STAT3 phenocopies the STAT1-dependent IFNγ-like response to IE1. In contrast, depletion of the IL6 receptor (IL6ST) or the STAT kinase JAK1 prevents this response. Accordingly, treatment with IL6 leads to prolonged STAT1 instead of STAT3 activation in wild-type IE1 expressing cells, but not in cells expressing a mutant protein (IE1dl410-420) deficient for STAT3 binding. A very similar STAT1-directed response to IL6 is also present in cells infected with a wild-type or revertant hCMV, but not an IE1dl410-420 mutant virus, and this response results in restricted viral replication. We conclude that IE1 is sufficient and necessary to rewire upstream IL6-type to downstream IFNγ-like signaling, two pathways linked to opposing actions, resulting in repressed STAT3- and activated STAT1-responsive genes. These findings relate transcriptional repressor and activator functions of IE1 and suggest unexpected outcomes relevant to viral pathogenesis in response to cytokines or growth factors that signal through the IL6ST-JAK1-STAT3 axis in hCMV-infected cells. Our results also reveal that IE1, a protein considered to be a key activator of the hCMV productive cycle, has an unanticipated role in tempering viral replication. Our previous work has shown that the human cytomegalovirus (hCMV) major immediate-early 1 protein (IE1) modulates host cell signaling pathways involving proteins of the signal transducer and activator of transcription (STAT) family. IE1 has also long been known to facilitate viral replication by activating transcription. In this report we demonstrate that IE1 is as significant a repressor as it is an activator of host gene expression. Many genes repressed by IE1 are normally induced via STAT3 signaling triggered by interleukin 6 (IL6) or related cytokines, whereas many genes activated by IE1 are normally induced via STAT1 signaling triggered by interferon gamma (IFNγ). Our results suggest that the repression of STAT3- and the activation of STAT1-responsive genes by IE1 are coupled. By targeting STAT3, IE1 rewires upstream STAT3 to downstream STAT1 signaling. Consequently, genes normally induced by IL6 are repressed while genes normally induced by IFNγ become responsive to IL6 in the presence of IE1. We also demonstrate that, by switching an IL6 to an IFNγ-like response, IE1 tempers viral replication. These results suggest an unanticipated dual role for IE1 in either promoting or limiting hCMV propagation and demonstrate how a key viral regulatory protein merges two central cellular signaling pathways to divert cytokine responses relevant to hCMV pathogenesis.
Collapse
Affiliation(s)
- Thomas Harwardt
- Institute for Medical Microbiology and Hygiene, University of Regensburg, Regensburg, Germany
| | - Simone Lukas
- Institute for Medical Microbiology and Hygiene, University of Regensburg, Regensburg, Germany
| | - Marion Zenger
- Institute for Medical Microbiology and Hygiene, University of Regensburg, Regensburg, Germany
| | - Tobias Reitberger
- Institute for Medical Microbiology and Hygiene, University of Regensburg, Regensburg, Germany
| | - Daniela Danzer
- Institute for Medical Microbiology and Hygiene, University of Regensburg, Regensburg, Germany
| | - Theresa Übner
- Institute for Medical Microbiology and Hygiene, University of Regensburg, Regensburg, Germany
| | - Diane C. Munday
- Biomedical Sciences Research Complex, University of St Andrews, St Andrews, United Kingdom
| | - Michael Nevels
- Institute for Medical Microbiology and Hygiene, University of Regensburg, Regensburg, Germany
- Biomedical Sciences Research Complex, University of St Andrews, St Andrews, United Kingdom
- * E-mail: (MN); (CP)
| | - Christina Paulus
- Institute for Medical Microbiology and Hygiene, University of Regensburg, Regensburg, Germany
- Biomedical Sciences Research Complex, University of St Andrews, St Andrews, United Kingdom
- * E-mail: (MN); (CP)
| |
Collapse
|
7
|
Deletion of Kaposi's sarcoma-associated herpesvirus FLICE inhibitory protein, vFLIP, from the viral genome compromises the activation of STAT1-responsive cellular genes and spindle cell formation in endothelial cells. J Virol 2011; 85:10375-88. [PMID: 21795355 DOI: 10.1128/jvi.00226-11] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Kaposi's sarcoma herpesvirus (KSHV) Fas-associated death domain (FADD)-like interleukin-1 beta-converting enzyme (FLICE)-inhibitory protein, vFLIP, has antiapoptotic properties, is a potent activator of the NF-κB pathway, and induces the formation of endothelial spindle cells, the hallmark of Kaposi's sarcoma, when overexpressed in primary endothelial cells. We used a reverse genetics approach to study several functions of KSHV vFLIP in the context of the whole viral genome. Deletion of the gene encoding vFLIP from a KSHV genome cloned in a bacterial artificial chromosome (BAC) reduced the ability of the virus to persist and induce spindle cell formation in primary human umbilical vein endothelial cells (HUVECs). Only a few, mainly interferon (IFN)-responsive, genes were expressed in wild-type KSHV (KSHV-wt)-infected endothelial cells at levels higher than those in KSHV-ΔFLIP-infected endothelial cells, in contrast to the plethora of cellular genes induced by overexpressed vFLIP. In keeping with this observation, vFLIP induces the phosphorylation of STAT1 and STAT2 in an NF-κB-dependent manner in endothelial cells. vFLIP-dependent phosphorylation of STAT1 and STAT2 could be demonstrated after endothelial cells were infected with KSHV-wt, KSHV-ΔFLIP, and a KSHV-vFLIP revertant virus. These findings document the impact of KSHV vFLIP on the transcriptome of primary endothelial cells during viral persistence and highlight the role of vFLIP in the activation of STAT1/STAT2 and STAT-responsive cellular genes by KSHV.
Collapse
|
8
|
Abstract
The treatment of cells with histone deacetylase inhibitors (HDACi) was reported to reveal the acetylation of STAT1 at lysine 410 and lysine 413 (O. H. Krämer et al., Genes Dev. 20:473-485, 2006). STAT1 acetylation was proposed to regulate apoptosis by facilitating binding to NF-κB and to control immune responses by suppressing STAT1 tyrosine phosphorylation, suggesting that STAT1 acetylation is a central mechanism by which histone deacetylase inhibitors ameliorate inflammatory diseases (O. H. Krämer et al., Genes Dev. 23:223-235, 2009). Here, we show that the inhibition of deacetylases had no bearing on STAT1 acetylation and did not diminish STAT1 tyrosine phosphorylation. The glutamine mutation of the alleged acetylation sites, claimed to mimic acetylated STAT1, similarly did not diminish the tyrosine phosphorylation of STAT1 but precluded its DNA binding and nuclear import. The defective transcription activity of this mutant therefore cannot be attributed to STAT1 acetylation but rather to the inactivation of the STAT1 DNA binding domain and its nuclear import signal. Experiments with respective cDNAs provided by the authors of the studies mentioned above confirmed the results reported here, further questioning the validity of the previous data. We conclude that the effects and potential clinical benefits associated with histone deacetylase inhibition cannot be explained by promoting the acetylation of STAT1 at lysines 410 and 413.
Collapse
|
9
|
McLaren JE, Michael DR, Salter RC, Ashlin TG, Calder CJ, Miller AM, Liew FY, Ramji DP. IL-33 Reduces Macrophage Foam Cell Formation. THE JOURNAL OF IMMUNOLOGY 2010; 185:1222-9. [DOI: 10.4049/jimmunol.1000520] [Citation(s) in RCA: 132] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
10
|
McLaren JE, Calder CJ, McSharry BP, Sexton K, Salter RC, Singh NN, Wilkinson GWG, Wang ECY, Ramji DP. The TNF-like protein 1A-death receptor 3 pathway promotes macrophage foam cell formation in vitro. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2010; 184:5827-34. [PMID: 20410491 PMCID: PMC2874519 DOI: 10.4049/jimmunol.0903782] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
TNF-like protein 1A (TL1A), a TNF superfamily cytokine that binds to death receptor 3 (DR3), is highly expressed in macrophage foam cell-rich regions of atherosclerotic plaques, although its role in foam cell formation has yet to be elucidated. We investigated whether TL1A can directly stimulate macrophage foam cell formation in both THP-1 and primary human monocyte-derived macrophages with the underlying mechanisms involved. We demonstrated that TL1A promotes foam cell formation in human macrophages in vitro by increasing both acetylated and oxidized low-density lipoprotein uptake, by enhancing intracellular total and esterified cholesterol levels and reducing cholesterol efflux. This imbalance in cholesterol homeostasis is orchestrated by TL1A-mediated changes in the mRNA and protein expression of several genes implicated in the uptake and efflux of cholesterol, such as scavenger receptor A and ATP-binding cassette transporter A1. Furthermore, through the use of virally delivered DR3 short-hairpin RNA and bone marrow-derived macrophages from DR3 knockout mice, we demonstrate that DR3 can regulate foam cell formation and contributes significantly to the action of TL1A in this process in vitro. We show, for the first time, a novel proatherogenic role for both TL1A and DR3 that implicates this pathway as a target for the therapeutic intervention of atherosclerosis.
Collapse
Affiliation(s)
- James E. McLaren
- Cardiff School of Biosciences Cardiff University, Cardiff, United Kingdom
| | - Claudia J. Calder
- Department of Infection, Immunity and Biochemistry, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Brian P. McSharry
- Department of Infection, Immunity and Biochemistry, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Keith Sexton
- Cardiff School of Biosciences Cardiff University, Cardiff, United Kingdom
| | - Rebecca C. Salter
- Cardiff School of Biosciences Cardiff University, Cardiff, United Kingdom
| | - Nishi N. Singh
- Cardiff School of Biosciences Cardiff University, Cardiff, United Kingdom
| | - Gavin W. G. Wilkinson
- Department of Infection, Immunity and Biochemistry, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Eddie C. Y. Wang
- Department of Infection, Immunity and Biochemistry, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Dipak P. Ramji
- Cardiff School of Biosciences Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
11
|
Najjar I, Fagard R. STAT1 and pathogens, not a friendly relationship. Biochimie 2010; 92:425-44. [PMID: 20159032 PMCID: PMC7117016 DOI: 10.1016/j.biochi.2010.02.009] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2009] [Accepted: 02/09/2010] [Indexed: 12/21/2022]
Abstract
STAT1 belongs to the STAT family of transcription factors, which comprises seven factors: STAT1, STAT2, STAT3, STAT4, STAT5A, STAT5B and STAT6. STAT1 is a 91 kDa protein originally identified as the mediator of the cellular response to interferon (IFN) α, and thereafter found to be a major component of the cellular response to IFNγ. STAT1 is, in fact, involved in the response to several cytokines and to growth factors. It is activated by cytokine receptors via kinases of the JAK family. STAT1 becomes phosphorylated and forms a dimer which enters the nucleus and triggers the transcription of its targets. Although not lethal at birth, selective gene deletion of STAT1 in mice leads to rapid death from severe infections, demonstrating its major role in the response to pathogens. Similarly, in humans who do not express STAT1, there is a lack of resistance to pathogens leading to premature death. This indicates a key, non-redundant function of STAT1 in the defence against pathogens. Thus, to successfully infect organisms, bacterial, viral or parasitic pathogens must overcome the activity of STAT1, and almost all the steps of this pathway can be blocked or inhibited by proteins produced in infected cells. Interestingly, some pathogens, like the oncogenic Epstein–Barr virus, have evolved a strategy which uses STAT1 activation.
Collapse
Affiliation(s)
- Imen Najjar
- INSERM Unité 978, SMBH, 74 rue Marcel Cachin, Bobigny-cedex 93017, France.
| | | |
Collapse
|
12
|
STAT1 contributes to the maintenance of the latency III viral programme observed in Epstein-Barr virus-transformed B cells and their recognition by CD8+ T cells. J Gen Virol 2009; 90:2239-50. [DOI: 10.1099/vir.0.011627-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
13
|
Brooks JM, Lee SP, Leese AM, Thomas WA, Rowe M, Rickinson AB. Cyclical expression of EBV latent membrane protein 1 in EBV-transformed B cells underpins heterogeneity of epitope presentation and CD8+ T cell recognition. THE JOURNAL OF IMMUNOLOGY 2009; 182:1919-28. [PMID: 19201845 DOI: 10.4049/jimmunol.0713607] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CD8(+) T cells specific for EBV latent cycle epitopes can be reactivated in vitro by stimulating with the autologous EBV-transformed B lymphoblastoid cell line (LCL). The resultant CD8(+) clones kill epitope peptide-loaded targets, but frequently do not kill or show only low levels of lysis of the unmanipulated LCL in 5-h cytotoxicity assays. However, they reproducibly show clear LCL recognition in cytokine (IFN-gamma) release assays and inhibit LCL outgrowth in long-term coculture assays. We show that this growth inhibition is not mediated by cytokines, but by slow killing detectable in extended cytotoxicity assays. The paradoxical earlier findings reflect the fact that cytokine assays are more sensitive indicators of Ag-specific recognition in situations in which the target population is heterogeneous at the single-cell level in terms of epitope display. Such heterogeneity exists within LCLs with, at any one time, subpopulations showing large differences in sensitivity to T cell detection. These differences are not cell cycle related, but correlate with differing levels of EBV latent membrane protein (LMP)1 expression at the single-cell level. In this study, LMP1 is not itself a CD8(+) T cell target, but its expression enhances Ag-processing capacity and HLA class I expression. We propose that LMP1 levels fluctuate cyclically in individual cells and, over time, all cells within a LCL pass through a LMP1(high) T cell-detectable phase.
Collapse
Affiliation(s)
- Jill M Brooks
- Cancer Research United Kingdom Institute for Cancer Studies, University of Birmingham, Birmingham, United Kingdom
| | | | | | | | | | | |
Collapse
|
14
|
Stephens TA, Nikoopour E, Rider BJ, Leon-Ponte M, Chau TA, Mikolajczak S, Chaturvedi P, Lee-Chan E, Flavell RA, Haeryfar SMM, Madrenas J, Singh B. Dendritic cell differentiation induced by a self-peptide derived from apolipoprotein E. THE JOURNAL OF IMMUNOLOGY 2008; 181:6859-71. [PMID: 18981105 DOI: 10.4049/jimmunol.181.10.6859] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Dendritic cells (DCs) are professional APCs and potent stimulators of naive T cells. Since DCs have the ability to immunize or tolerize T cells they are unique candidates for use in immunotherapy. Our laboratory has discovered that a naturally processed self-peptide from apolipoprotein E, Ep1.B, induces DC-like morphology and surface marker expression in a murine monocytic cell line (PU5-1.8), human monocytic cell line (U937), murine splenocytes, and human peripheral blood monocytes. Microscopy and flow cytometric analysis revealed that Ep1.B-treated cells display decreased adherence to plastic and increased aggregation, dendritic processes, and expression of DC surface markers, including DEC-205, CD11c, B7.1, and B7.2. These effects were observed in both PU5-1.8 cells and splenocytes from various mouse strains including BALB/c, C57BL/6, NOD/Lt, and C3H/HeJ. Coadministration of Ep1.B with OVA antigenic peptide functions in dampening specific immune response to OVA. Ep1.B down-regulates proliferation of T cells and IFN-gamma production and stimulates IL-10 secretion in immunized mice. Ep1.B-induced differentiation resulted in the activation of PI3K and MAPK signaling pathways, including ERK1/2, p38, and JNK. We also found that NF-kappaB, a transcription factor essential for DC differentiation, is critical in mediating the effects of Ep1.B. Ep1.B-induced differentiation is independent of MyD88-dependent pathway of TLR signaling. Cumulatively, these findings suggest that Ep1.B acts by initiating a signal transduction cascade in monocytes leading to their differentiation into DCs.
Collapse
Affiliation(s)
- Tracey A Stephens
- Department of Microbiology and Immunology, University of Western Ontario, London, Ontario, Canada
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|