1
|
Zou H, Niu Z, Cheng P, Wu C, Li W, Luo G, Huang S. Structure, Attachment and Transmembrane Internalisation of Peste Des Petits Ruminants Virus. Vet Med Sci 2025; 11:e70182. [PMID: 39739994 DOI: 10.1002/vms3.70182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 09/19/2024] [Accepted: 12/08/2024] [Indexed: 01/02/2025] Open
Abstract
Peste des petits ruminants virus (PPRV), a single-stranded negative-sense RNA virus with an envelope, belongs to the Morbillivirus in the Paramyxoviridae family and is prevalent worldwide. PPRV infection causes fever, stomatitis, diarrhoea, pneumonia, abortion and other symptoms in small ruminants, with a high mortality rate that poses a significant threat to the sustainability and productivity of the small ruminant livestock sector. The PPRV virus particles have a diameter of approximately 400-500 nm and are composed of six structural proteins: nucleocapsid protein (N), phosphoprotein (P), envelope matrix protein (M), fusion protein (F), haemagglutinin protein (H) and large protein (L). Each protein has a distinct role in the virus's life cycle. Although the life cycle activities of PPRV have been widely reported, they are still limited. Research has demonstrated that PPRV has distinct adhesion factors on various cell surfaces, such as the epithelial cell adhesion factor nectin-4 or the lymphocyte adhesion factor SLAM. After attaching to the cell, the F and H proteins on the PPRV membrane interact with each other, resulting in a conformational change in the F protein. This change allows the F protein to enter the cell through direct fusion with the host cell membrane. The virus enters the host cell via the outer vesicle endocytosis strategy and replicates and proliferates through the role of caveolin, actin, dynein and cholesterol on the host cell membrane. This review summarises the viral structure, attachment mechanism and transmembrane internalisation mechanism of PPRV. The aim of this review is to provide theoretical support for the development of PPRV inhibitors and the prevention and control of PPR.
Collapse
Affiliation(s)
- Hong Zou
- Chongqing Three Gouges Vocational College, College of Animal Science & Technology, Wanzhou, China
| | - Zheng Niu
- College of Veterinary Medicine, Northwest A & F University, Yangling, China
| | - Peng Cheng
- Wanzhou Center for Animal Husbandry Industry Development of Chongqing, Wanzhou, China
| | - Chunxia Wu
- Wanzhou Center for Animal Husbandry Industry Development of Chongqing, Wanzhou, China
| | - Wenjie Li
- Wanzhou Center for Animal Husbandry Industry Development of Chongqing, Wanzhou, China
| | - Gan Luo
- Wanzhou Center for Animal Husbandry Industry Development of Chongqing, Wanzhou, China
| | - Shilei Huang
- Chongqing Three Gouges Vocational College, College of Animal Science & Technology, Wanzhou, China
| |
Collapse
|
2
|
de Carvalho OV, Rebouças Santos M, Lopes Rangel Fietto J, Pires Moraes M, de Almeida MR, Costa Bressan G, José Pena L, Silva-Júnior A. Multi-targeted gene silencing strategies inhibit replication of Canine morbillivirus. BMC Vet Res 2020; 16:448. [PMID: 33213424 PMCID: PMC7676405 DOI: 10.1186/s12917-020-02671-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 11/06/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Canine morbilivirus (canine distemper virus, CDV) is a highly contagious pathogen associated with high morbidity and mortality in susceptible carnivores. Although there are CDV vaccines available, the disease poses a huge threat to dogs and wildlife hosts due to vaccine failures and lack of effective treatment. Thus, the development of therapeutics is an urgent need to achieve rapid outbreak control and reduce mortality in target species. Gene silencing by RNA interference has emerged as a promising therapeutic approach against different human and animal viruses. In this study, plasmid-based short hairpin RNAs (shRNAs) against three different regions in either CDV nucleoprotein (N), or large polymerase (L) genes and recombinant adenovirus-expressing N-specific multi-shRNAs were generated. Viral cytopathic effect, virus titration, plaque-forming unit reduction, and real-time quantitative RT-PCR analysis were used to check the efficiency of constructs against CDV. RESULTS In CDV-infected VerodogSLAM cells, shRNA-expressing plasmids targeting the N gene markedly inhibited the CDV replication in a dose-dependent manner, with viral genomes and titers being decreased by over 99%. Transfection of plasmid-based shRNAs against the L gene displayed weaker inhibition of viral RNA level and virus yield as compared to CDV N shRNAs. A combination of shRNAs targeting three sites in the N gene considerably reduced CDV RNA and viral titers, but their effect was not synergistic. Recombinant adenovirus-expressing multiple shRNAs against CDV N gene achieved a highly efficient knockdown of CDV N mRNAs and successful inhibition of CDV replication. CONCLUSIONS We found that this strategy had strong silencing effects on CDV replication in vitro. Our findings indicate that the delivery of shRNAs using plasmid or adenovirus vectors potently inhibits CDV replication and provides a basis for the development of therapeutic strategies for clinical trials.
Collapse
Affiliation(s)
- Otávio Valério de Carvalho
- Laboratory of Immunobiological and Animal Virology, Department of Veterinary Medicine, Federal University of Viçosa, Av. Peter Henry Rolfs, s/n, Viçosa, MG, 36570-000, Brazil
- Department of Virology and Experimental Therapy, Oswaldo Cruz Foundation (FIOCRUZ), Aggeu Magalhães Research Center, Av. Moraes Rego, s/n, Campus UFPE, Cidade Universitária, Recife, PE, 50670-420, Brazil
| | - Marcus Rebouças Santos
- Laboratory of Immunobiological and Animal Virology, Department of Veterinary Medicine, Federal University of Viçosa, Av. Peter Henry Rolfs, s/n, Viçosa, MG, 36570-000, Brazil
| | - Juliana Lopes Rangel Fietto
- Department of Biochemistry and Molecular Biology, Federal University of Viçosa, Av. Peter Henry Rolfs, s/n, Viçosa, MG, 36570-000, Brazil
| | - Mauro Pires Moraes
- Laboratory of Immunobiological and Animal Virology, Department of Veterinary Medicine, Federal University of Viçosa, Av. Peter Henry Rolfs, s/n, Viçosa, MG, 36570-000, Brazil
| | - Márcia Rogéria de Almeida
- Department of Biochemistry and Molecular Biology, Federal University of Viçosa, Av. Peter Henry Rolfs, s/n, Viçosa, MG, 36570-000, Brazil
| | - Gustavo Costa Bressan
- Department of Biochemistry and Molecular Biology, Federal University of Viçosa, Av. Peter Henry Rolfs, s/n, Viçosa, MG, 36570-000, Brazil
| | - Lindomar José Pena
- Department of Virology and Experimental Therapy, Oswaldo Cruz Foundation (FIOCRUZ), Aggeu Magalhães Research Center, Av. Moraes Rego, s/n, Campus UFPE, Cidade Universitária, Recife, PE, 50670-420, Brazil.
| | - Abelardo Silva-Júnior
- Department of Virology and Experimental Therapy, Oswaldo Cruz Foundation (FIOCRUZ), Aggeu Magalhães Research Center, Av. Moraes Rego, s/n, Campus UFPE, Cidade Universitária, Recife, PE, 50670-420, Brazil.
| |
Collapse
|
3
|
Dong D, Zhu S, Miao Q, Zhu J, Tang A, Qi R, Liu T, Yin D, Liu G. Nucleolin (NCL) inhibits the growth of peste des petits ruminants virus. J Gen Virol 2020; 101:33-43. [PMID: 31794379 PMCID: PMC7414435 DOI: 10.1099/jgv.0.001358] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 11/06/2019] [Indexed: 01/05/2023] Open
Abstract
Peste des petits ruminants (PPR) is a highly contagious disease of small ruminants that is caused by peste des petits ruminants virus (PPRV). To date, the molecular mechanism of PPRV infection is still unclear. It is well known that host proteins might be involved in the pathogenesis process for many viruses. In this study, we first proved that nucleolin (NCL), a highly conserved host factor, interacts with the core domain of PPRV N protein through its C terminus and co-locates with the N protein in the nucleus of cells. To investigate the role of NCL in PPRV infection, the expression level of NCL was inhibited with small interfering RNAs of NCL, and the results showed that PPRV growth was improved. However, the proliferation of PPRV was inhibited when the expression level of NCL was improved. Further analysis indicated that the inhibitory effect of NCL on the PPRV was caused by stimulating the interferon (IFN) pathways in host cells. In summary, our results will help us to understand the mechanism of PPRV infection.
Collapse
Affiliation(s)
- Dandan Dong
- Innovation Team of Small Animal Infectious Disease, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, PR China
| | - Shiqiang Zhu
- Innovation Team of Small Animal Infectious Disease, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, PR China
| | - Qiuhong Miao
- Innovation Team of Small Animal Infectious Disease, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, PR China
| | - Jie Zhu
- Innovation Team of Small Animal Infectious Disease, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, PR China
| | - Aoxing Tang
- Innovation Team of Small Animal Infectious Disease, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, PR China
| | - Ruibin Qi
- Innovation Team of Small Animal Infectious Disease, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, PR China
| | - Teng Liu
- Innovation Team of Small Animal Infectious Disease, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, PR China
| | - Dongdong Yin
- Innovation Team of Small Animal Infectious Disease, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, PR China
| | - Guangqing Liu
- Innovation Team of Small Animal Infectious Disease, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, PR China
| |
Collapse
|
4
|
Freitas FB, Frouco G, Martins C, Leitão A, Ferreira F. In vitro inhibition of African swine fever virus-topoisomerase II disrupts viral replication. Antiviral Res 2016; 134:34-41. [PMID: 27568922 DOI: 10.1016/j.antiviral.2016.08.021] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 08/23/2016] [Accepted: 08/24/2016] [Indexed: 11/18/2022]
Abstract
African swine fever virus (ASFV) is the etiological agent of a highly-contagious and fatal disease of domestic pigs, leading to serious socio-economic impact in affected countries. To date, neither a vaccine nor a selective anti-viral drug are available for prevention or treatment of African swine fever (ASF), emphasizing the need for more detailed studies at the role of ASFV proteins involved in viral DNA replication and transcription. Notably, ASFV encodes for a functional type II topoisomerase (ASFV-Topo II) and we recently showed that several fluoroquinolones (bacterial DNA topoisomerase inhibitors) fully abrogate ASFV replication in vitro. Here, we report that ASFV-Topo II gene is actively transcribed throughout infection, with transcripts being detected as early as 2 hpi and reaching a maximum peak concentration around 16 hpi, when viral DNA synthesis, transcription and translation are more active. siRNA knockdown experiments showed that ASFV-Topo II plays a critical role in viral DNA replication and gene expression, with transfected cells presenting lower viral transcripts (up to 89% decrease) and reduced cytopathic effect (-66%) when compared to the control group. Further, a significant decrease in the number of both infected cells (75.5%) and viral factories per cell and in virus yields (up to 99.7%, 2.5 log) was found only in cells transfected with siRNA targeting ASFV-Topo II. We also demonstrate that a short exposure to enrofloxacin during the late phase of infection (from 15 to 1 hpi) induces fragmentation of viral genomes, whereas no viral genomes were detected when enrofloxacin was added from the early phase of infection (from 2 to 16 hpi), suggesting that fluoroquinolones are ASFV-Topo II poisons. Altogether, our results demonstrate that ASFV-Topo II enzyme has an essential role during viral genome replication and transcription, emphasizing the idea that this enzyme can be a potential target for drug and vaccine development against ASF.
Collapse
Affiliation(s)
- Ferdinando B Freitas
- CIISA, Faculdade de Medicina Veterinária, Universidade de Lisboa, Av. da Universidade Técnica, 1300-477, Lisboa, Portugal
| | - Gonçalo Frouco
- CIISA, Faculdade de Medicina Veterinária, Universidade de Lisboa, Av. da Universidade Técnica, 1300-477, Lisboa, Portugal
| | - Carlos Martins
- CIISA, Faculdade de Medicina Veterinária, Universidade de Lisboa, Av. da Universidade Técnica, 1300-477, Lisboa, Portugal
| | - Alexandre Leitão
- CIISA, Faculdade de Medicina Veterinária, Universidade de Lisboa, Av. da Universidade Técnica, 1300-477, Lisboa, Portugal
| | - Fernando Ferreira
- CIISA, Faculdade de Medicina Veterinária, Universidade de Lisboa, Av. da Universidade Técnica, 1300-477, Lisboa, Portugal.
| |
Collapse
|
5
|
Liu F, Wu X, Zou Y, Li L, Liu S, Chi T, Wang Z. Small interfering RNAs targeting peste des petits ruminants virus M mRNA increase virus-mediated fusogenicity and inhibit viral replication in vitro. Antiviral Res 2015; 123:22-6. [PMID: 26318517 DOI: 10.1016/j.antiviral.2015.08.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2015] [Revised: 07/06/2015] [Accepted: 08/20/2015] [Indexed: 01/06/2023]
Abstract
Peste des petits ruminants (PPR), caused by peste des petits ruminants virus (PPRV), is an acute or subacute, highly contagious and economically important disease of small ruminants. The PPRV is classified into the genus Morbillivirus in the family Paramyxoviridae. The PPRV matrix (M) protein possesses an intrinsic ability to bind to lipid membranes, and plays a crucial role in viral assembly and further budding. In this study, three different small interfering RNAs (siRNA) were designed on the basis of translated region for PPRV Nigeria 75/1M mRNA, and were subsequently synthesized for their transfection into Vero-SLAM cells, followed by infection with PPRVs. The results showed that two out of three siRNAs robustly induced cell-to-cell fusion as early as 36h post-infection with PPRVs, effectively suppressed expression of the M protein by interference for the M mRNA, and eventually inhibited viral replication in vitro. These findings led us to speculate that siRNA-mediated knockdown of the M protein would alter its interaction with viral glycoproteins, thus exacerbating intercellular fusion but hampering virus release.
Collapse
Affiliation(s)
- Fuxiao Liu
- OIE Reference Laboratory for Peste des Petits Ruminants, National Research Center for Exotic Animal Diseases, China Animal Health and Epidemiology Center, No. 369 Nanjing Road, Qingdao, Shandong 266032, China
| | - Xiaodong Wu
- OIE Reference Laboratory for Peste des Petits Ruminants, National Research Center for Exotic Animal Diseases, China Animal Health and Epidemiology Center, No. 369 Nanjing Road, Qingdao, Shandong 266032, China
| | - Yanli Zou
- OIE Reference Laboratory for Peste des Petits Ruminants, National Research Center for Exotic Animal Diseases, China Animal Health and Epidemiology Center, No. 369 Nanjing Road, Qingdao, Shandong 266032, China
| | - Lin Li
- OIE Reference Laboratory for Peste des Petits Ruminants, National Research Center for Exotic Animal Diseases, China Animal Health and Epidemiology Center, No. 369 Nanjing Road, Qingdao, Shandong 266032, China
| | - Shan Liu
- OIE Reference Laboratory for Peste des Petits Ruminants, National Research Center for Exotic Animal Diseases, China Animal Health and Epidemiology Center, No. 369 Nanjing Road, Qingdao, Shandong 266032, China
| | - Tianying Chi
- OIE Reference Laboratory for Peste des Petits Ruminants, National Research Center for Exotic Animal Diseases, China Animal Health and Epidemiology Center, No. 369 Nanjing Road, Qingdao, Shandong 266032, China
| | - Zhiliang Wang
- OIE Reference Laboratory for Peste des Petits Ruminants, National Research Center for Exotic Animal Diseases, China Animal Health and Epidemiology Center, No. 369 Nanjing Road, Qingdao, Shandong 266032, China.
| |
Collapse
|
6
|
|
7
|
Identification and characterization of buffalo 7SK and U6 pol III promoters and application for expression of short hairpin RNAs. Int J Mol Sci 2014; 15:2596-607. [PMID: 24534805 PMCID: PMC3958870 DOI: 10.3390/ijms15022596] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 01/28/2014] [Accepted: 02/11/2014] [Indexed: 12/02/2022] Open
Abstract
RNA polymerase III (pol III) type 3 promoters, such as 7SK and U6, are routinely used to induce short hairpin RNAs (shRNAs) to knockdown gene expression by RNA interference (RNAi). To extend the application of RNAi to studies of buffalo, an shRNAs expressing system using the buffalo pol III promoters was developed. Buffalo 7SK promoter (bu7SK) and U6 promoter (buU6) sequences upstream of the full-length 7SK and U6 small nuclear RNA sequence in the buffalo genome were identified and characterized, respectively. To determine the functionality of these promoters in constructs driving shRNA expression, anti-EGFP shRNAs (shEGFP) cassettes under the direction of bu7SK and buU6 were constructed. We further compared the EGFP knockdown efficiency of constructs using bu7SK and buU6 with that of promoters of human and bovine origins in BFF cells and mouse PT67 cells by flow cytometry and quantitative real-time PCR assays. We found that the bu7SK and buU6 promoters induced the greatest level of suppression in homologous and heterologous cells relative to promoters derived from other species. Taken together, functional bu7SK and buU6 promoters were identified and characterized, thus laying the groundwork for future development of RNAi therapeutics and gene modification in buffalo species.
Collapse
|
8
|
Albina E, Kwiatek O, Minet C, Lancelot R, Servan de Almeida R, Libeau G. Peste des Petits Ruminants, the next eradicated animal disease? Vet Microbiol 2012; 165:38-44. [PMID: 23313537 DOI: 10.1016/j.vetmic.2012.12.013] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2012] [Revised: 12/03/2012] [Accepted: 12/17/2012] [Indexed: 10/27/2022]
Abstract
Peste des Petits Ruminants (PPR) is a widespread viral disease caused by a Morbillivirus (Paramyxoviridae). There is a single serotype of PPR virus, but four distinct genetic lineages. Morbidity and mortality are high when occurring in naive sheep and goats populations. Cattle and African buffaloes (Syncerus caffer) are asymptomatically infected. Other wild ruminants and camels may express clinical signs and mortality. PPR has recently spread in southern and northern Africa, and in central and far-east Asia. More than one billion sheep and goats worldwide are at risk. PPR is also present in Europe through western Turkey. Because of its clinical incidence and the restrictions on animal movements, PPR is a disease of major economic importance. A live attenuated vaccine was developed in the 1980s, and has been widely used in sheep and goats. Current researches aim (i) to make it more thermotolerant for use in countries with limited cold chain, and (ii) to add a DIVA mark to shorten and reduce the cost of final eradication. Rinderpest virus-another Morbillivirus-was the first animal virus to be eradicated from Earth. PPRV has been proposed as the next candidate. Considering its wide distribution and its multiple target host species which have an intense mobility, it will be a long process that cannot exclusively rely on mass vaccination. PPR specific epidemiological features and socio-economic considerations will also have to be taken into account, and sustained international, coordinated, and funded strategy based on a regional approach of PPR control will be the guarantee toward success.
Collapse
|
9
|
Effect of immunosuppression on pathogenesis of peste des petits ruminants (PPR) virus infection in goats. Microb Pathog 2012; 52:217-26. [DOI: 10.1016/j.micpath.2012.01.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Accepted: 01/03/2012] [Indexed: 11/18/2022]
|
10
|
Holz CL, Albina E, Minet C, Lancelot R, Kwiatek O, Libeau G, Servan de Almeida R. RNA interference against animal viruses: how morbilliviruses generate extended diversity to escape small interfering RNA control. J Virol 2012; 86:786-95. [PMID: 22072768 PMCID: PMC3255857 DOI: 10.1128/jvi.06210-11] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Accepted: 10/26/2011] [Indexed: 11/20/2022] Open
Abstract
Viruses are serious threats to human and animal health. Vaccines can prevent viral diseases, but few antiviral treatments are available to control evolving infections. Among new antiviral therapies, RNA interference (RNAi) has been the focus of intensive research. However, along with the development of efficient RNAi-based therapeutics comes the risk of emergence of resistant viruses. In this study, we challenged the in vitro propensity of a morbillivirus (peste des petits ruminants virus), a stable RNA virus, to escape the inhibition conferred by single or multiple small interfering RNAs (siRNAs) against conserved regions of the N gene. Except with the combination of three different siRNAs, the virus systematically escaped RNAi after 3 to 20 consecutive passages. The genetic modifications involved consisted of single or multiple point nucleotide mutations and a deletion of a stretch of six nucleotides, illustrating that this virus has an unusual genomic malleability.
Collapse
|
11
|
Luka PD, Erume J, Mwiine FN, Ayebazibwe C. Molecular characterization of peste des petits ruminants virus from the Karamoja region of Uganda (2007-2008). Arch Virol 2011; 157:29-35. [PMID: 21979248 DOI: 10.1007/s00705-011-1135-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2011] [Accepted: 09/22/2011] [Indexed: 11/26/2022]
Abstract
Antibodies against peste des petits ruminants virus (PPRV) were first detected in goats in East Africa in 1995 without any clinical disease. It was not until during the years 2006 and 2007 that the disease outbreaks were first reported in Kenya and Uganda, respectively. This study was carried out to detect and characterize PPRV from a suspected outbreak in sheep and goats in the Karamoja region in 2007-2008. Oculo-nasal and blood samples were tested using F-gene-based primers, and their genetic relationships to other sequences in the GenBank database were investigated. A total of 383 samples suspected to contain PPRV were randomly collected and tested. Sixty-seven (17.5%) were positive when F protein gene primers were used. During the years 2007 and 2008, 38.1% (26/67) and 13.0% (41/316) of samples were positive by PCR, respectively. The 2007 sequences clustered with Asian sequences in lineage 4 and Cote d'Ivoire 86 (ICV 86) in lineage 2, while all of the 2008 samples clustered in lineage 1. Over the years, the implicated strains were genetically close (88%-91%) to the vaccine strain (Nig 75/1). Based on this study, the circulating PPR strains in Uganda are heterogeneous, and therefore, the disease may have been introduced from different sources.
Collapse
Affiliation(s)
- Pam D Luka
- Department of Parasitology and Microbiology, School of Veterinary Medicine, Makerere University, Kampala, Uganda.
| | | | | | | |
Collapse
|
12
|
Nizamani ZA, Keil GM, Albina E, Holz C, Minet C, Kwiatek O, Libeau G, Servan de Almeida R. Potential of adenovirus and baculovirus vectors for the delivery of shRNA against morbilliviruses. Antiviral Res 2011; 90:98-101. [PMID: 21356246 DOI: 10.1016/j.antiviral.2011.02.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2010] [Revised: 01/17/2011] [Accepted: 02/18/2011] [Indexed: 11/30/2022]
Abstract
Morbilliviruses are important pathogens of humans, ruminants, carnivores and marine mammals. Although good vaccines inducing long-term immunity are available, recurrent outbreaks of measles, canine distemper and peste des petits ruminants (PPR) are observed. In control strategies, antivirals thus could be useful to confine virus spread and application of interfering RNAs is a promising approach, provided they can be delivered efficiently into the host cells. We have constructed recombinant adenovirus and baculovirus vectors expressing short hairpin RNAs (shRNAs) against the PPR virus (PPRV) and compared them in vitro. It was found that both recombinant viruses inhibited PPRV replication with the baculovirus vector, which inhibited generation of infectious progeny by more than 2 log10 and the nucleoprotein expression of PPRV by 73%, being the more efficient. The results show that baculoviral shRNA-expressing vectors have the potential for therapeutic use against morbillivirus infections.
Collapse
|
13
|
Keita D, Heath L, Albina E. Control of African swine fever virus replication by small interfering RNA targeting the A151R and VP72 genes. Antivir Ther 2010; 15:727-36. [PMID: 20710054 DOI: 10.3851/imp1593] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
BACKGROUND African swine fever virus (ASFV) is the unique member of the Asfarviridae family and Asfivirus genus. It is an enveloped double-stranded DNA arbovirus that replicates in the cell cytoplasm, similar to poxviruses. There is no vaccine and no treatment available to control this virus. METHODS We describe the use of small interfering RNA (siRNA) targeting the A151R and VP72 (B646L) genes to control the ASFV replication in vitro. RESULTS Results suggest that siRNA targeting the A151R and VP72 genes can reduce both the virus replication and its levels of messenger RNA transcripts. The reduction was up to 4 log(10) copies on the virus titre and up to 3 log(10) copies on virus RNA transcripts levels. The combination of multiple siRNA did not improve the antiviral effect significantly, compared with use of individual siRNAs. CONCLUSIONS The function of the A151R gene product in the virus replication cycle is yet unclear, but is essential. We also demonstrate that it is possible to inhibit, using small interfering RNA, a virus that replicates exclusively in the cell cytoplasm in specific viral factories.
Collapse
|
14
|
Kwiatek O, Keita D, Gil P, Fernández-Pinero J, Jimenez Clavero MA, Albina E, Libeau G. Quantitative one-step real-time RT-PCR for the fast detection of the four genotypes of PPRV. J Virol Methods 2010; 165:168-77. [DOI: 10.1016/j.jviromet.2010.01.014] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2009] [Revised: 01/14/2010] [Accepted: 01/20/2010] [Indexed: 11/24/2022]
|
15
|
Potential of antiviral therapy and prophylaxis for controlling RNA viral infections of livestock. Antiviral Res 2008; 78:170-8. [DOI: 10.1016/j.antiviral.2007.10.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2007] [Revised: 10/09/2007] [Accepted: 10/10/2007] [Indexed: 11/20/2022]
|
16
|
de Almeida RS, Keita D, Libeau G, Albina E. Structure and sequence motifs of siRNA linked with in vitro down-regulation of morbillivirus gene expression. Antiviral Res 2008; 79:37-48. [PMID: 18394725 DOI: 10.1016/j.antiviral.2008.01.159] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2007] [Revised: 01/11/2008] [Accepted: 01/23/2008] [Indexed: 10/22/2022]
Abstract
The most challenging task in RNA interference is the design of active small interfering RNA (siRNA) sequences. Numerous strategies have been published to select siRNA. They have proved effective in some applications but have failed in many others. Nonetheless, all existing guidelines have been devised to select effective siRNAs targeting human or murine genes. They may not be appropriate to select functional sequences that target genes from other organisms like viruses. In this study, we have analyzed 62 siRNA duplexes of 19 bases targeting three genes of three morbilliviruses. In those duplexes, we have checked which features are associated with siRNA functionality. Our results suggest that the intramolecular secondary structure of the targeted mRNA contributes to siRNA efficiency. We also confirm that the presence of at least the sequence motifs U13, A or U19, as well as the absence of G13, cooperate to increase siRNA knockdown rates. Additionally, we observe that G11 is linked with siRNA efficacy. We believe that an algorithm based on these findings may help in the selection of functional siRNA sequences directed against viral genes.
Collapse
|