1
|
Miyashita A, Miyauchi M, Tabuchi F. The prospects of automation in drug discovery research using silkworms. Drug Discov Ther 2024; 18:130-133. [PMID: 38569832 DOI: 10.5582/ddt.2024.01013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
We have established several models of infectious diseases in silkworms to explore disease-causing mechanisms and identify new antimicrobial substances. These models involve injecting laboratory-cultured pathogens into silkworms and monitoring their survival over a period of days. The use of silkworms is advantageous because they are cost-effective and raise fewer ethical concerns than mammalian subjects, allowing for larger experimental group sizes. To capitalize on these benefits, there is a growing importance in mechanizing and automating the experimental processes that currently require manual labor. This paper discusses the future of laboratory automation, specifically through the mechanization and automation of silkworm-based experimental procedures.
Collapse
Affiliation(s)
| | | | - Fumiaki Tabuchi
- Teikyo University Institute of Medical Mycology, Tokyo, Japan
| |
Collapse
|
2
|
Liu J, Hong W, Li M, Xiao Y, Yi Y, Liu Y, Wu G. Transcriptome analysis reveals immune and metabolic regulation effects of Poria cocos polysaccharides on Bombyx mori larvae. Front Immunol 2022; 13:1014985. [PMID: 36389836 PMCID: PMC9650554 DOI: 10.3389/fimmu.2022.1014985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 09/30/2022] [Indexed: 11/23/2022] Open
Abstract
Poria cocos polysaccharides (PS) have been used as Chinese traditional medicine with various pharmacological effects, including antiviral, anti-oxidative, and immunomodulatory activities. Herein Bombyx mori silkworm was used as a model animal to evaluate the immunomodulatory effects of PS via detecting the changes of innate immune parameters and explore the underlying molecular mechanism of the immunoregulatory effect of PS using Illumina HiSeq Xten platform. The results presented here demonstrated that a hemocoel injection of PS significantly enhanced the cellular immunity of silkworm, including hemocyte phagocytosis, microaggregation, and spreading ability. A total of 335 differentially expressed genes (DEGs) were screened, including 214 upregulated genes and 121 downregulated genes by differential expression analysis. Gene annotation and enrichment analyses showed that many DEGs related to immune signal recognition, detoxification, proPO activation, carbohydrate metabolism, and lipid metabolism were significantly upregulated in the treatment group. The Kyoto Encyclopedia of Genes and Genomes-based Gene Set Enrichment Analysis also revealed that the more highly expressed gene sets in the PS treatment silkworm were mainly related to immune signal transduction pathways and energy metabolism. In addition, the activity of four enzymes related to immunity and energy metabolism—including phenoloxidase, glucose-6-phosphate dehydrogenase, hexokinase, and fatty acid synthetase—were all significantly increased in the larvae injected with PS. We performed qRT-PCR to examine the expression profile of immune and metabolic-related genes, which further verified the reliability of our transcriptome data and suggested that PS can regulate the immunity of silkworm by enhancing the cellular immunity and modulating the expression levels of genes related to immune responses and physiological metabolism. These findings will lay a scientific foundation for the use of PS as an immunomodulator in disease prevention in human beings or animals.
Collapse
Affiliation(s)
- Jiajie Liu
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan, China
| | - Wanyu Hong
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan, China
| | - Mei Li
- Zhongshan Institute, University of Electronic Science and Technology of China, Zhongshan, China
| | - Yang Xiao
- Sericultural and Agri-Food Research Institute, Guangdong Academy of Agricultural Science, Guangzhou, China
| | - Yunhong Yi
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan, China
| | - Yi Liu
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan, China
| | - Gongqing Wu
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan, China
- Guangdong Cosmetics Engineering & Technology Research Center, Zhongshan, China
- *Correspondence: Gongqing Wu,
| |
Collapse
|
3
|
Ma L, Andoh V, Shen Z, Liu H, Li L, Chen K. Subchronic toxicity of magnesium oxide nanoparticles to Bombyx mori silkworm. RSC Adv 2022; 12:17276-17284. [PMID: 35765455 PMCID: PMC9186304 DOI: 10.1039/d2ra01161a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 06/01/2022] [Indexed: 11/21/2022] Open
Abstract
Despite many research efforts devoted to the study of the effects of magnesium oxide nanoparticles (MgO NPs) on cells or animals in recent years, data related to the potential long-term effects of this nanomaterial are still scarce. The aim of this study is to explore the subchronic effects of MgO NPs on Bombyx mori silkworm, a complete metamorphosis insect with four development stages (egg, larva, pupa, month). With this end in view, silkworm larvae were exposed to MgO NPs at different mass concentrations (1%, 2%, 3% and 4%) throughout their fifth instar larva. Their development, survival rate, cell morphology, gene expressions, and especially silk properties were compared with a control. The results demonstrate that MgO NPs have no significant negative impact on the growth or tissues. The cocooning rate and silk quality also display normal results. However, a total of 806 genes are differentially expressed in the silk gland (a vital organ for producing silk). GO (Gene Ontology) results show that the expression of many genes related to transporter activity are significantly changed, revealing that active transport is the main mechanism for the penetration of MgO NPs, which also proves that MgO NPs are adsorbed by cells. KEGG (Kyoto Encyclopedia of Genes and Genomes) analysis demonstrates that the longevity regulating pathway-worm, peroxisome and MAPK signaling pathway are closely involved in the biological effects of MgO NPs. Overall, subchronic exposure to MgO NPs induced no apparent negative impact on silkworm growth or silks but changed the expressions of some genes.
Collapse
Affiliation(s)
- Lin Ma
- College of Biotechnology, Jiangsu University of Science and Technology Zhenjiang Jiangsu 212001 P. R. China
| | - Vivian Andoh
- College of Biotechnology, Jiangsu University of Science and Technology Zhenjiang Jiangsu 212001 P. R. China .,Institute of Life Science, Jiangsu University Zhenjiang Jiangsu 212013 P. R. China
| | - Zhongyuan Shen
- College of Biotechnology, Jiangsu University of Science and Technology Zhenjiang Jiangsu 212001 P. R. China
| | - Haiyan Liu
- Tea and Food Science and Technology Institute, Jiangsu Vocational College of Agriculture and Forestry Jurong 212400 China
| | - Long Li
- College of Biotechnology, Jiangsu University of Science and Technology Zhenjiang Jiangsu 212001 P. R. China
| | - Keping Chen
- Institute of Life Science, Jiangsu University Zhenjiang Jiangsu 212013 P. R. China
| |
Collapse
|
4
|
Miyashita A, Mitsutomi S, Mizushima T, Sekimizu K. Repurposing the PDMA-approved drugs in Japan using an insect model of staphylococcal infection. FEMS MICROBES 2022. [DOI: 10.1093/femsmc/xtac014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Abstract
A thousand and two hundred fifty-three (1253) compounds approved as therapeutic drugs in Japan (PMDA-approved compounds) were screened for their therapeutic effects against Staphylococcus aureus infection using the silkworm infection model. In the first stage of screening with an index of prolonged survival, 80 compounds were identified as hits. Of these, 64 compounds were clinically used as antimicrobial agents, and the remaining 16 compounds were not. The 16 compounds were examined for their dose-dependent therapeutic effects on the silkworm model as a second screening step, and we obtained five compounds as a result. One of the compounds (capecitabine) had no documented in vitro minimum inhibitory concentration (MIC) value against S. aureus. The MIC value of capecitabine against S. aureus strains ranged from 125 to 250 µg/mL Capecitabine was therapeutically effective at a dose of 200 mg/kg in a murine model of S. aureus infection. These results suggest that silkworm-based drug repositioning studies are of potential value. Furthermore, the therapeutic effects of capecitabine demonstrated in this study provide an important scientific rationale for clinical observational studies examining the association between staphylococcal infection events and capecitabine administration in cancer chemotherapy patients.
Collapse
Affiliation(s)
| | | | | | - Kazuhisa Sekimizu
- School of Pharma-Science, Teikyo University, Tokyo, Japan
- Genome Pharmaceuticals Institute, Co., Ltd., Tokyo, Japan
| |
Collapse
|
5
|
Cinnamon and its possible impact on COVID-19: The viewpoint of traditional and conventional medicine. Biomed Pharmacother 2021; 143:112221. [PMID: 34563952 PMCID: PMC8452493 DOI: 10.1016/j.biopha.2021.112221] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 09/14/2021] [Accepted: 09/16/2021] [Indexed: 12/18/2022] Open
Abstract
The COVID-19 global epidemic caused by coronavirus has affected the health and other aspects of life for more than one year. Despite the current pharmacotherapies, there is still no specific treatment, and studies are in progress to find a proper therapy with high efficacy and low side effects. In this way, Traditional Persian Medicine (TPM), due to its holistic view, can provide recommendations for the prevention and treatment of new diseases such as COVID-19. The muco-obstruction of the airway, which occurs in SARS-CoV-2, has similar features in TPM textbooks that can lead us to new treatment approaches. Based on TPM and pharmacological studies, Cinnamomum verum (Darchini)'s potential effective functions can contribute to SARS-CoV-2 infection treatment and has been known to be effective in corona disease in Public beliefs. From the viewpoint of TPM theories, Cinnamon can be effective in SARS-CoV-2 improvement and treatment through its anti-obstructive, diuretic, tonic and antidote effects. In addition, there is pharmacological evidence on anti-viral, anti-inflammatory, antioxidant, organ-o-protective and anti-depression effects of Cinnamon that are in line with the therapeutic functions mentioned in TPM.Overall, Cinnamon and its ingredients can be recommended for SARS-CoV2 management due to multi-targeting therapies. This review provides basic information for future studies on this drug's effectiveness in preventing and treating COVID-19 and similar diseases.
Collapse
|
6
|
Nweke EE, Thimiri Govinda Raj DB. Development of insect cell line using CRISPR technology. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2021; 180:1-20. [PMID: 33934833 DOI: 10.1016/bs.pmbts.2021.01.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
In this chapter, we delineated the methods of CRISPR technology that has been used for the development of engineered insect cell line. We elaborated on how CRISPR/Cas9 genome editing in Drosophila melanogaster, Bombyx mori, Spodoptera frugiperda (Sf9 and Sf21), and Mosquitoes enabled the use of model or non-model insect system in various biological and medical applications. Also, the application of synthetic baculovirus genome along with CRISPR/Cas9 vector system to enable genome editing of insect cell systems for treatment of communicable and non-communicable diseases.
Collapse
Affiliation(s)
| | - Deepak B Thimiri Govinda Raj
- Synthetic Nanobiotechnology and Biomachines Group, ERA Synthetic Biology, Centre for Synthetic Biology and Precision Medicine, CSIR, Pretoria, South Africa.
| |
Collapse
|
7
|
Ma L, Andoh V, Adjei MO, Liu H, Shen Z, Li L, Song J, Zhao W, Wu G. In vivo toxicity evaluation of boron nitride nanosheets in Bombyx mori silkworm model. CHEMOSPHERE 2020; 247:125877. [PMID: 31935578 DOI: 10.1016/j.chemosphere.2020.125877] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 12/28/2019] [Accepted: 01/07/2020] [Indexed: 06/10/2023]
Abstract
Boron nitride nanosheets (BN NSs), a novel material with a structure similar to graphene, have attracted much attention due to their extraordinary properties. A deep in vivo study of the toxicity of BN NSs is indispensable, which can help to understand their potential risk and provide useful information for their safe application. However, so far as we know, the systematic in vivo toxicity evaluation of BN NSs hasn't been reported. In this study, silkworm (Bombyx mori) was used as a model to investigate the toxicity of BN NSs, by continuously feeding silkworm larvae with BN NSs at various mass concentrations (1%, 2%, 3%, 4%). The toxicity was evaluated from the levels of animal entirety (mortality, silkworm growth, cocoons and silk properties), tissues (pathological examination) and genes (transcriptomic profiling). The results show that the exposure to BN NSs causes no obvious adverse effects on the growth, silk properties or tissues of silkworm, but the expressions of genes in midgut concerned with some specific functions and pathways are significantly changed, indicating that BN NSs may have potential danger to lead to dysfunction. This study has performed in vivo toxicity evaluation of BN NSs and provided useful safety information for the application of BN NSs.
Collapse
Affiliation(s)
- Lin Ma
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, 212018, PR China; The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu, 212018, PR China; Laboratory of Risk Assessment for Sericultural Products and Edible Insects, Ministry of Agriculture, Zhenjiang, Jiangsu, 212018, PR China
| | - Vivian Andoh
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, 212018, PR China
| | - Mark Owusu Adjei
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, 212018, PR China
| | - Haiyan Liu
- Department of Tea and Food Technology, Jiangsu Polytechnic College of Agriculture and Forestry, Jurong, Jiangsu, 212400, PR China
| | - Zhongyuan Shen
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, 212018, PR China; The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu, 212018, PR China
| | - Long Li
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, 212018, PR China; The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu, 212018, PR China; Laboratory of Risk Assessment for Sericultural Products and Edible Insects, Ministry of Agriculture, Zhenjiang, Jiangsu, 212018, PR China
| | - Jiangchao Song
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, 212018, PR China; The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu, 212018, PR China; Laboratory of Risk Assessment for Sericultural Products and Edible Insects, Ministry of Agriculture, Zhenjiang, Jiangsu, 212018, PR China
| | - Weiguo Zhao
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, 212018, PR China; The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu, 212018, PR China.
| | - Guohua Wu
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, 212018, PR China; The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu, 212018, PR China; Laboratory of Risk Assessment for Sericultural Products and Edible Insects, Ministry of Agriculture, Zhenjiang, Jiangsu, 212018, PR China.
| |
Collapse
|
8
|
Somu C, Karuppiah H, Sundaram J. Antiviral activity of seselin from Aegle marmelos against nuclear polyhedrosis virus infection in the larvae of silkworm, Bombyx mori. JOURNAL OF ETHNOPHARMACOLOGY 2019; 245:112155. [PMID: 31449858 DOI: 10.1016/j.jep.2019.112155] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 06/19/2019] [Accepted: 08/10/2019] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Traditional Indian medicine has utilized Aeglemarmelos (L.) Corr. commonly called as bael in several indigenous systems against various diseases. Bioactive components isolated from various plant parts of A. marmelos were used in ethno-medicine. More precisely they are known for its antiviral property against various human and animal viruses. AIM OF THE STUDY The study was conducted to investigate the antiviral activity of A.marmelos against Bombyx mori nucleopolyhedrovirus (BmNPV). MATERIALS AND METHODS Among the various crude extracts tested, hexane extracts of leaves of A. marmelos with promising anti-BmNPV activity was subjected to bioactivity guided fractionation based on column chromatography. Out of 40 fractions obtained from the fractionation, fractions showing similar TLC profiles were pooled into 14 fractions. A fraction with potential activity was used to purify a molecule with anti-BmNPV activity. This molecule was characterized through structural and functional analyses. RESULTS The functionally and structurally characterized molecule in the fraction with prospective anti-BmNPV activity revealed a single crystal compound 'seselin' (8, 8-dimethyl pyrido oxazine-2-one). CONCLUSION It is therefore understood that this seselin compound could be used as a natural medicine for the management of NPV infection in the silkworm larvae under commercial conditions after suitable field evaluations.
Collapse
Affiliation(s)
- Chitra Somu
- Department of Zoology, University of Madras, Guindy Campus, Chennai, 600025, India
| | - Hilda Karuppiah
- Department of Zoology, University of Madras, Guindy Campus, Chennai, 600025, India
| | - Janarthanan Sundaram
- Department of Zoology, University of Madras, Guindy Campus, Chennai, 600025, India.
| |
Collapse
|
9
|
Ekowati H, Arai J, Damana Putri AS, Nainu F, Shiratsuchi A, Nakanishi Y. Protective effects of Phaseolus vulgaris lectin against viral infection in Drosophila. Drug Discov Ther 2019; 11:329-335. [PMID: 29332891 DOI: 10.5582/ddt.2017.01071] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Phytohemagglutinin (PHA) isolated from the family of Phaseolus vulgaris beans is a promising agent against viral infection; however, it has not yet been demonstrated in vivo. We herein investigated this issue using Drosophila as a host. Adult flies were fed lectin approximately 12 h before they were subjected to a systemic viral infection. After a fatal infection with Drosophila C virus, death was delayed and survival was longer in flies fed PHA-P, a mixture of L4, L3E1, and L2E2, than in control unfed flies. We then examined PHA-L4, anticipating subunit L as the active form, and confirmed the protective effects of this lectin at markedly lower concentrations than PHA-P. In both experiments, lectin feeding reduced the viral load prior to the onset of fly death. Furthermore, we found a dramatic increase in the levels of the mRNAs of phagocytosis receptors in flies after feeding with PHA-L4 while a change in the levels of the mRNAs of antimicrobial peptides was marginal. We concluded that P. vulgaris PHA protects Drosophila against viral infection by augmenting the level of host immunity.
Collapse
Affiliation(s)
- Heny Ekowati
- Graduate School of Medical Sciences, Kanazawa University.,Faculty of Health Science, Jenderal Soedirman University
| | - Junko Arai
- Product Development Laboratory, J-Oil Mills, Inc
| | | | | | | | | |
Collapse
|
10
|
Saha SS, Suzuki J, Uda A, Watanabe K, Shimizu T, Watarai M. Silkworm model for Francisella novicida infection. Microb Pathog 2017; 113:94-101. [PMID: 29066381 DOI: 10.1016/j.micpath.2017.10.036] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 10/17/2017] [Accepted: 10/20/2017] [Indexed: 11/16/2022]
Abstract
Understanding the virulence and pathogenesis of human pathogens using insect models is an increasingly popular method. Francisella novicida, which is virulent in mice but non-pathogenic to immunocompetent humans, is widely used as an ideal candidate for Francisella research. In this study, we developed a silkworm (Bombyx mori) infection model for F. novicida by inoculating the hemocoels of silkworms with F. novicida. We found that silkworms died within 3-7 days of F. novicida infection. However, the deletion mutant of DotU, the core part of type VI secretion systems, failed to kill silkworm. In whole silkworm bodies, the bacterial load of the DotU deletion mutant was significantly less than that of the wild-type strain. Approximately 10-fold increase in bacterial load was recorded in hemolymph and subcutaneous tissues compared with that in the silk gland, Malpighian tubule, and reproductive organs. The CFU count of the DotU deletion mutant in all organs was similar results to the whole body CFU count. Confocal microscopy further confirmed the arrested growth of the mutant strain within hemocytes. The intracellular growth of F. novicida strains was also analyzed using the silkworm ovary-derived cell line BmN4. In BmN4, both CFU count assay and confocal microscopy revealed extensive growth of the wild-type strain compared with that of the mutant strain. Francisella DotU has already been proven as a virulence factor in mammals, and it was also found to be an essential virulence factor in our silkworm infection model. Therefore, this silkworm infection model is suitable for identifying new virulence factors of Francisella.
Collapse
Affiliation(s)
- Shib Shankar Saha
- The United Graduate School of Veterinary Science, Yamaguchi University, 1677-1, Yoshida, Yamaguchi 753-8515, Japan; Department of Pathology and Parasitology, Patuakhali Science and Technology University, Babugonj, Barisal 8210, Bangladesh
| | - Jin Suzuki
- The United Graduate School of Veterinary Science, Yamaguchi University, 1677-1, Yoshida, Yamaguchi 753-8515, Japan
| | - Akihiko Uda
- Department of Veterinary Science, National Institute of Infectious Diseases, Shinjuku, Tokyo 162-8640, Japan
| | - Kenta Watanabe
- The United Graduate School of Veterinary Science, Yamaguchi University, 1677-1, Yoshida, Yamaguchi 753-8515, Japan
| | - Takashi Shimizu
- The United Graduate School of Veterinary Science, Yamaguchi University, 1677-1, Yoshida, Yamaguchi 753-8515, Japan
| | - Masahisa Watarai
- The United Graduate School of Veterinary Science, Yamaguchi University, 1677-1, Yoshida, Yamaguchi 753-8515, Japan.
| |
Collapse
|
11
|
Ishii M, Matsumoto Y, Yamada T, Abe S, Sekimizu K. An invertebrate infection model for evaluating anti-fungal agents against dermatophytosis. Sci Rep 2017; 7:12289. [PMID: 28947778 PMCID: PMC5612966 DOI: 10.1038/s41598-017-12523-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 08/30/2017] [Indexed: 01/06/2023] Open
Abstract
Animal models of pathogenic infection are needed to evaluate candidate compounds for the development of anti-infectious drugs. Dermatophytes are pathogenic fungi that cause several infectious diseases. We established a silkworm dermatophyte infection model to evaluate anti-fungal drugs. Injection of conidia of the dermatophyte Arthroderma vanbreuseghemii into silkworms was lethal. A. vanbreuseghemii conidia germinated in liquid culture were more potent against silkworms than non-germinated conidia. Germinated conidia of other dermatophytes, Arthroderma benhamiae, Trichophyton rubrum, and Microsporum canis, also killed silkworms. Injection of heat-treated germinated A. vanbreuseghemii conidia did not kill silkworms, suggesting that only viable fungi are virulent. Injecting terbinafine or itraconazole, oral drugs used clinically to treat dermatophytosis, into the silkworm midgut had therapeutic effects against infection with germinated A. vanbreuseghemii conidia. When silkworms were injected with A. vanbreuseghemii expressing enhanced green fluorescent protein (eGFP), mycelial growth of the fungus was observed in the fat body and midgut. Injection of terbinafine into the silkworm midgut, which corresponds to oral administration in humans, inhibited the growth of A. vanbreuseghemii expressing eGFP in the fat body. These findings suggest that the silkworm infection model with eGFP-expressing dermatophytes is useful for evaluating the therapeutic activity of orally administered anti-fungal agents against dermatophytes.
Collapse
Affiliation(s)
- Masaki Ishii
- Genome Pharmaceuticals Institute Co. Ltd., 102 Next Building, 3-24-17 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Yasuhiko Matsumoto
- Teikyo University Institute of Medical Mycology, 359 Otsuka, Hachioji, Tokyo, 192-0395, Japan
| | - Tsuyoshi Yamada
- Teikyo University Institute of Medical Mycology, 359 Otsuka, Hachioji, Tokyo, 192-0395, Japan
| | - Shigeru Abe
- Teikyo University Institute of Medical Mycology, 359 Otsuka, Hachioji, Tokyo, 192-0395, Japan
| | - Kazuhisa Sekimizu
- Genome Pharmaceuticals Institute Co. Ltd., 102 Next Building, 3-24-17 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan. .,Teikyo University Institute of Medical Mycology, 359 Otsuka, Hachioji, Tokyo, 192-0395, Japan.
| |
Collapse
|
12
|
Abstract
As an important economic insect, silkworm Bombyx mori (L.) (Lepidoptera: Bombycidae) has numerous advantages in life science, such as low breeding cost, large progeny size, short generation time, and clear genetic background. Additionally, there are rich genetic resources associated with silkworms. The completion of the silkworm genome has further accelerated it to be a modern model organism in life science. Genomic studies showed that some silkworm genes are highly homologous to certain genes related to human hereditary disease and, therefore, are a candidate model for studying human disease. In this article, we provided a review of silkworm as an important model in various research areas, including human disease, screening of antimicrobial agents, environmental safety monitoring, and antitumor studies. In addition, the application potentiality of silkworm model in life sciences was discussed.
Collapse
Affiliation(s)
- Xu Meng
- Institute of Life Sciences, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Feifei Zhu
- Institute of Life Sciences, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Keping Chen
- Institute of Life Sciences, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| |
Collapse
|
13
|
Ishii M, Matsumoto Y, Nakamura I, Sekimizu K. Silkworm fungal infection model for identification of virulence genes in pathogenic fungus and screening of novel antifungal drugs. Drug Discov Ther 2017; 11:1-5. [DOI: 10.5582/ddt.2016.01080] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
| | | | | | - Kazuhisa Sekimizu
- Genome pharmaceuticals institute Co. Ltd
- Teikyo University Institute of Medical Mycology
| |
Collapse
|
14
|
Castillo Y, Suzuki J, Watanabe K, Shimizu T, Watarai M. Effect of Vitamin A on Listeria monocytogenes Infection in a Silkworm Model. PLoS One 2016; 11:e0163747. [PMID: 27669511 PMCID: PMC5036829 DOI: 10.1371/journal.pone.0163747] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 09/13/2016] [Indexed: 11/18/2022] Open
Abstract
Insect infection models have been used increasingly to study various pathogenic agents in evaluations of pathogenicity and drug efficacy. In this study, we demonstrated that larvae of the silkworm Bombyx mori are useful for studying Listeria monocytogenes infections in insects. Infection with the L. monocytogenes wild-type strain induced silkworm death. Infection by a listeriolysin O (LLO) deletion mutant also induced silkworm death, but the bacterial numbers in silkworms were lower than those of the wild-type strain. Intracellular growth was observed when the silkworm ovary-derived cell line BmN4 was infected with the wild-type strain. Explosive replication was not observed in BmN4 cells infected with the LLO mutant and the bacterial numbers of the LLO mutant were lower than those of the wild-type strain. Pretreatment with vitamin A did not affect silkworm mortality after bacterial infection, but the efficiency of infecting the hemocytes and BmN4 cells was decreased with vitamin A treatment. Our results indicate that silkworm larvae are a useful insect infection model for L. monocytogenes and that vitamin A has protective effects against bacterial infection in silkworms.
Collapse
Affiliation(s)
- Yussaira Castillo
- The United Graduate School of Veterinary Science, Yamaguchi University, 1677-1 Yoshida, Yamaguchi 753-8515, Japan
| | - Jin Suzuki
- The United Graduate School of Veterinary Science, Yamaguchi University, 1677-1 Yoshida, Yamaguchi 753-8515, Japan
| | - Kenta Watanabe
- The United Graduate School of Veterinary Science, Yamaguchi University, 1677-1 Yoshida, Yamaguchi 753-8515, Japan
| | - Takashi Shimizu
- The United Graduate School of Veterinary Science, Yamaguchi University, 1677-1 Yoshida, Yamaguchi 753-8515, Japan
| | - Masahisa Watarai
- The United Graduate School of Veterinary Science, Yamaguchi University, 1677-1 Yoshida, Yamaguchi 753-8515, Japan
- * E-mail:
| |
Collapse
|
15
|
Polansky H, Javaherian A, Itzkovitz E. Clinical study in genital herpes: natural Gene-Eden-VIR/Novirin versus acyclovir, valacyclovir, and famciclovir. DRUG DESIGN DEVELOPMENT AND THERAPY 2016; 10:2713-22. [PMID: 27621592 PMCID: PMC5010074 DOI: 10.2147/dddt.s112852] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
BACKGROUND This paper reports the results of a clinical study that tested the effect of suppressive treatment with the botanical product Gene-Eden-VIR/Novirin on the number of genital herpes outbreaks. The results in this study were compared to those published in clinical studies of acyclovir, valacyclovir, and famciclovir. METHODS The framework was a retrospective chart review. The population included 139 participants. The treatment was one to four capsules of Gene-Eden-VIR/Novirin per day. The duration of treatment was 2-48 months. The study included three controls recommended by the US Food and Drug Administration (FDA): baseline, no treatment, and dose response. RESULTS The treatment decreased the number of outbreaks per year in 90.8% of the participants. The treatment also decreased the mean number of outbreaks per year from 7.27 and 5.5 in the control groups to 2.39 (P<0.0001 and P<0.001, respectively). The treated participants reported no adverse experiences. Out of the 15 tests that compared Gene-Eden-VIR/Novirin to the three drugs, Gene-Eden-VIR/Novirin had superior efficacy in eight tests, inferior efficacy in three tests, and comparable efficacy in four tests. Gene-Eden-VIR/Novirin also had superior safety. CONCLUSION The clinical study showed that the natural Gene-Eden-VIR/Novirin decreases the number of genital herpes outbreaks without any side effects. The study also showed that the clinical effects reported in this study are mostly better than those reported in the reviewed studies of acyclovir, valacyclovir, and famciclovir.
Collapse
Affiliation(s)
- Hanan Polansky
- The Center for the Biology of Chronic Disease (CBCD), Valley Cottage, NY, USA
| | - Adrian Javaherian
- The Center for the Biology of Chronic Disease (CBCD), Valley Cottage, NY, USA
| | - Edan Itzkovitz
- The Center for the Biology of Chronic Disease (CBCD), Valley Cottage, NY, USA
| |
Collapse
|
16
|
Matsumoto Y, Sekimizu K. A hyperglycemic silkworm model for evaluating hypoglycemic activity of Rehmanniae Radix, an herbal medicine. Drug Discov Ther 2016; 10:14-8. [PMID: 26902904 DOI: 10.5582/ddt.2016.01016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Silkworm shows hyperglycemia after intake of diet containing large amount of glucose. The hyperglycemic silkworm model is useful for evaluation of anti-diabetic drugs. A hot water extract of Rehmanniae Radix, an herbal medicine, showed hypoglycemic effect against the hyperglycemic silkworms. This method is applicable for quick and simple evaluation of the hypoglycemic activities of different batches of Rehmanniae Radix. Our findings suggest that silkworms have a lot of merit as experimental animals for evaluation of various herbal medicines.
Collapse
Affiliation(s)
- Yasuhiko Matsumoto
- Laboratory of Microbiology, Graduate School of Pharmaceutical Sciences, The University of Tokyo
| | | |
Collapse
|
17
|
Matsumoto Y, Sekimizu K. Evaluation of anti-diabetic drugs by using silkworm, Bombyx mori . Drug Discov Ther 2016; 10:19-23. [DOI: 10.5582/ddt.2016.01017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Yasuhiko Matsumoto
- Laboratory of Microbiology, Graduate School of Pharmaceutical Sciences, The University of Tokyo
| | - Kazuhisa Sekimizu
- Laboratory of Microbiology, Graduate School of Pharmaceutical Sciences, The University of Tokyo
| |
Collapse
|
18
|
Zhou W, Zeng C, Liu R, Chen J, Li R, Wang X, Bai W, Liu X, Xiang T, Zhang L, Wan Y. Antiviral activity and specific modes of action of bacterial prodigiosin against Bombyx mori nucleopolyhedrovirus in vitro. Appl Microbiol Biotechnol 2015; 100:3979-88. [DOI: 10.1007/s00253-015-7242-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 12/02/2015] [Accepted: 12/07/2015] [Indexed: 04/25/2023]
|
19
|
Matsumoto Y, Ishii M, Hayashi Y, Miyazaki S, Sugita T, Sumiya E, Sekimizu K. Diabetic silkworms for evaluation of therapeutically effective drugs against type II diabetes. Sci Rep 2015; 5:10722. [PMID: 26024298 PMCID: PMC4448660 DOI: 10.1038/srep10722] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 04/09/2015] [Indexed: 12/13/2022] Open
Abstract
We previously reported that sugar levels in the silkworm hemolymph, i.e., blood, increase immediately (within 1 h) after intake of a high-glucose diet, and that the administration of human insulin decreases elevated hemolymph sugar levels in silkworms. In this hyperglycemic silkworm model, however, administration of pioglitazone or metformin, drugs used clinically for the treatment of type II diabetes, have no effect. Therefore, here we established a silkworm model of type II diabetes for the evaluation of anti-diabetic drugs such as pioglitazone and metformin. Silkworms fed a high-glucose diet over a long time-period (18 h) exhibited a hyperlipidemic phenotype. In these hyperlipidemic silkworms, phosphorylation of JNK, a stress-responsive protein kinase, was enhanced in the fat body, an organ that functionally resembles the mammalian liver and adipose tissue. Fat bodies isolated from hyperlipidemic silkworms exhibited decreased sensitivity to human insulin. The hyperlipidemic silkworms have impaired glucose tolerance, characterized by high fasting hemolymph sugar levels and higher hemolymph sugar levels in a glucose tolerance test. Administration of pioglitazone or metformin improved the glucose tolerance of the hyperlipidemic silkworms. These findings suggest that the hyperlipidemic silkworms are useful for evaluating the hypoglycemic activities of candidate drugs against type II diabetes.
Collapse
Affiliation(s)
- Yasuhiko Matsumoto
- Laboratory of Microbiology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 111-0033, Japan
| | - Masaki Ishii
- Laboratory of Microbiology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 111-0033, Japan
| | - Yohei Hayashi
- Laboratory of Microbiology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 111-0033, Japan
| | - Shinya Miyazaki
- Laboratory of Microbiology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 111-0033, Japan
| | - Takuya Sugita
- Laboratory of Microbiology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 111-0033, Japan
| | - Eriko Sumiya
- Laboratory of Microbiology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 111-0033, Japan
| | - Kazuhisa Sekimizu
- Laboratory of Microbiology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 111-0033, Japan
| |
Collapse
|
20
|
Ishii K, Hamamoto H, Sekimizu K. Studies of host-pathogen interactions and immune-related drug development using the silkworm: interdisciplinary immunology, microbiology, and pharmacology studies. Drug Discov Ther 2015; 9:238-46. [PMID: 25865526 DOI: 10.5582/ddt.2015.01015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Innate immunity acts as a front-line barrier against invading pathogens, and the majority of the components are widely conserved among species. Regulation of innate immunity is important for overcoming infections and preventing self-damaging sepsis. Using the silkworm (Bombyx mori) as an animal model, we elucidated the activation processes of innate immunity with emphasis on a multifunctional insect cytokine called paralytic peptide. Moreover, we established an ex vivo system using silkworm larval specimens to quantitatively evaluate the immunostimulatory activity of natural compounds. We observed that overactivation of innate immunity in silkworms induces tissue damage followed by host death, resembling sepsis-induced multi-organ failure in humans. Here, we summarize our recent findings and propose the usefulness of the silkworm as an animal model for studying immune regulation and for evaluating compounds with the potential to regulate innate immunity.
Collapse
Affiliation(s)
- Kenichi Ishii
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo
| | | | | |
Collapse
|
21
|
Ishii K, Hamamoto H, Sekimizu K. Paralytic peptide: an insect cytokine that mediates innate immunity. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2015; 88:18-30. [PMID: 25521626 DOI: 10.1002/arch.21215] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Host animals combat invading pathogens by activating various immune responses. Modulation of the immune pathways by cytokines is critical for efficient pathogen elimination. Insects and mammals possess common innate immune systems, and individual immune pathways have been intensively studied over the last two decades. Relatively less attention, however, has been focused on the functions of cytokines in insect innate immunity. Here, we summarize our recent findings from studies of the insect cytokine, paralytic peptide, in the silkworm Bombyx mori. The content of this report was presented at the First Asian Invertebrate Immunity Symposium. Acute activation of paralytic peptide occurs via proteolysis after stimulation with the cell wall components of pathogens, leading to the induction of a wide range of cellular and humoral immune responses. The pathogenic bacterium Serratia marcescens suppresses paralytic peptide-dependent immune activation, which impairs host resistance. Studies of insect cytokines will broaden our understanding of the basic mechanisms underlying the interaction between host innate immunity and pathogenic agents.
Collapse
Affiliation(s)
- Kenichi Ishii
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo, Japan
| | | | | |
Collapse
|
22
|
Zhou F, Gao Z, Lv Z, Chen J, Hong Y, Yu W, Wang D, Jiang C, Wu X, Zhang Y, Nie Z. Construction of the ie1-Bacmid expression system and its use to express EGFP and BmAGO2 in BmN cells. Appl Biochem Biotechnol 2013; 169:2237-47. [PMID: 23436226 DOI: 10.1007/s12010-013-0137-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Accepted: 02/11/2013] [Indexed: 11/25/2022]
Abstract
The presently available expression tools and vectors (e.g., eukaryotic expression vectors and the adenovirus expression system) for studying the functional genes in Bombyx mori are insufficient. The baculovirus expression system is only used as a protein production tool; therefore, recombinant proteins expressed by B. mori using the baculovirus expression system equipped with a polyhedrin promoter cannot be used for in vivo research applications. In this work, we constructed and screened a eukaryotic expression vector for silkworm cells The EGFP and B. mori Argonaute2 proteins were found to be efficiently expressed using the screened pIEx-1 vector with the FuGENE 6 transfection reagent. Additionally, we constructed a novel nucleopolyhedrovirus ie1-Bacmid expression system for the production of recombinant protein; we then used the system to highly express the EGFP and B. mori Argonaute2 proteins. In this system, the protein of interest can be efficiently expressed 13 h after infection by controlling the B. mori nucleopolyhedrovirus immediate early ie1 promoter. The ie1-Bacmid system provides a powerful "adenovirus-like" expression tool; not only can the tool be used to study baculovirus molecular biology for the silkworm but it is also useful in other research applications as well, such as the study of gene functions involved in cellular physiological processes.
Collapse
Affiliation(s)
- Fang Zhou
- Institute of Biochemistry, College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Feng F, Hu P, Chen L, Tang Q, Lian C, Yao Q, Chen K. Display of Human Proinsulin on the Bacillus subtilis Spore Surface for Oral Administration. Curr Microbiol 2013; 67:1-8. [DOI: 10.1007/s00284-013-0325-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Accepted: 01/22/2013] [Indexed: 11/29/2022]
|
24
|
Tanaka K, Li F, Tezuka Y, Watanabe S, Kawahara N, Kida H. Evaluation of the Quality of Chinese and Vietnamese Cassia Using LC-MS and Multivariate Analysis. Nat Prod Commun 2013. [DOI: 10.1177/1934578x1300800118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In the present study, the chemical composition of water extracts of Chinese and Vietnamese cassia (Cinnamomum cassia) were compared using multivariate analysis of LC-MS data. By principal component analysis of the LC-MS data, 6 compounds, cinnzeylanine (1), cinnzeylanol (2), anhydrocinnzeylanol (3), cinncasinol A (4), epicatechin (5) and procyanidin B2 (6), were identified as the marker compounds to characterize Chinese and Vietnamese cassia. It was clarified that Chinese cassia contains relatively larger amounts of epicatechin and procyanidin B2. On the other hand, Vietnamese cassia is characterized by a relatively larger amount of diterpenes. As catechin derivatives and diterpenes have different types of activity, it is important to choose the cassia that best suits the product for which it is to be used, whether in food or in herbal medicine.
Collapse
Affiliation(s)
- Ken Tanaka
- Institute of Natural Medicine, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Feng Li
- Institute of Natural Medicine, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Yasuhiro Tezuka
- Institute of Natural Medicine, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Shiro Watanabe
- Institute of Natural Medicine, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Nobuo Kawahara
- Research Center for Medicinal Plant Resources, National Institute of Biomedical Innovation, 1-2 Yahata-dai, Tsukuba, Ibaragi 305-0843, Japan
| | - Hiroaki Kida
- Alps Pharmaceutical Ind. Co. Ltd., 2-10-50 Furukawa-cho Mukai-machi, Hida-shi, Gifu 509-4241 Japan
| |
Collapse
|
25
|
Hamamoto H, Urai M, Paudel A, Horie R, Murakami K, Sekimizu K. [Identification of novel therapeutically effective antibiotics using silkworm infection model]. YAKUGAKU ZASSHI 2012; 132:79-84. [PMID: 22214583 DOI: 10.1248/yakushi.132.79] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Most antibiotics obtained by in vitro screening with antibacterial activity have inappropriate properties as medicines due to their toxicity and pharmacodynamics in animal bodies. Thus, evaluation of the therapeutic effects of these samples using animal models is essential in the crude stage. Mammals are not suitable for therapeutic evaluation of a large number of samples due to high costs and ethical issues. We propose the use of silkworms (Bombyx mori) as model animals for screening therapeutically effective antibiotics. Silkworms are infected by various pathogenic bacteria and are effectively treated with similar ED(50) values of clinically used antibiotics. Furthermore, the drug metabolism pathways, such as cytochrome P450 and conjugation systems, are similar between silkworms and mammals. Silkworms have many advantages compared with other infection models, such as their 1) low cost, 2) few associated ethical problems, 3) adequate body size for easily handling, and 4) easier separation of organs and hemolymph. These features of the silkworm allow for efficient screening of therapeutically effective antibiotics. In this review, we discuss the advantages of the silkworm model in the early stages of drug development and the screening results of some antibiotics using the silkworm infection model.
Collapse
Affiliation(s)
- Hiroshi Hamamoto
- Laboratory of Microbiology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | | | | | | | | | | |
Collapse
|
26
|
Zhang X, Xue R, Cao G, Pan Z, Zheng X, Gong C. Silkworms can be used as an animal model to screen and evaluate gouty therapeutic drugs. JOURNAL OF INSECT SCIENCE (ONLINE) 2012; 12:4. [PMID: 22934965 PMCID: PMC3467090 DOI: 10.1673/031.012.0401] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Accepted: 11/19/2011] [Indexed: 06/01/2023]
Abstract
In the past few decades, the mouse has been used as a mammalian model for hyperuricemia and gout, which has increased not only in prevalence, but also in clinical complexity, accentuated in part by a dearth of novel advances in treatments for hyperuricemia and gouty arthritis. However, the use of mice for the development of gouty therapeutic drugs creates a number of problems. Thus, identification and evaluation of the therapeutic effects of chemicals in an alternative animal model is desirable. In the present study, the effects of gouty therapeutic drugs on lowering the content of uric acid and inhibiting activity of xanthine oxidase were evaluated by using a silkworm model, Bombyx mori L. (Lepidoptera: Bombycidae). The results showed that the effectiveness of oral administration of various gouty therapeutic drugs to 5(th) instar silkworms is consistent with results for human. The activity of xanthine oxidase of silkworm treated with allopurinol was lower, and declined in a dose-dependent manner compared with control silkworms, while sodium bicarbonate failed at inhibiting the activity of xanthine oxidase. The concentration of uric acid in the both hemolymph and fat body declined by 90 and 95% at six days post-administration with 25 mg/mL of allopurinol, respectively (p < 0.01), while the concentration of uric acid in both the hemolymph and fat body also declined by 81 and 95% at six days post-administration with 25 mg/mL of sodium bicarbonate, respectively (p < 0.01). Moreover, the epidermis of silkworm treated with allopurinol or sodium bicarbonate became transparent compared with the negative control group. These results suggest that silkworm larva can be used as an animal model for screening and evaluation of gouty therapeutic drugs.
Collapse
Affiliation(s)
- Xiaoli Zhang
- Pre-clinical Medical and Biological Science College, Soochow University, Suzhou China
- These authors contributed equally to this work
| | - Renyu Xue
- Pre-clinical Medical and Biological Science College, Soochow University, Suzhou China
- National Engineering Laboratory for Modern Silk, Soochow University Suzhou, China
- These authors contributed equally to this work
| | - Guangli Cao
- Pre-clinical Medical and Biological Science College, Soochow University, Suzhou China
- National Engineering Laboratory for Modern Silk, Soochow University Suzhou, China
| | - Zhonghua Pan
- Pre-clinical Medical and Biological Science College, Soochow University, Suzhou China
- National Engineering Laboratory for Modern Silk, Soochow University Suzhou, China
| | - Xiaojian Zheng
- Pre-clinical Medical and Biological Science College, Soochow University, Suzhou China
- National Engineering Laboratory for Modern Silk, Soochow University Suzhou, China
| | - Chengliang Gong
- Pre-clinical Medical and Biological Science College, Soochow University, Suzhou China
- National Engineering Laboratory for Modern Silk, Soochow University Suzhou, China
| |
Collapse
|
27
|
Matsumoto Y, Miyazaki S, Fukunaga DH, Shimizu K, Kawamoto S, Sekimizu K. Quantitative evaluation of cryptococcal pathogenesis and antifungal drugs using a silkworm infection model with Cryptococcus neoformans. J Appl Microbiol 2011; 112:138-46. [PMID: 22040451 DOI: 10.1111/j.1365-2672.2011.05186.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
AIMS To develop an in vivo system that could quantitatively evaluate the therapeutic effects of antifungal drugs using a silkworm infection model with Cryptococcus neoformans. METHODS AND RESULTS Silkworms reared at 37°C died after an injection of viable serotype A C. neoformans fungus into the haemolymph. The serotype A C. neoformans, which is known to have higher mammal pathogenicity than the serotype D, was also more virulent against the silkworm. Furthermore, the deletion mutants of genes gpa1, pka1 and cna1, which are genes known to be necessary for the pathogenesis in mammals, showed an increase in the number of fungal cells necessary to kill half of the silkworm population (LD(50) value). Antifungal drugs, amphotericin B, flucytosine, fluconazole and ketoconazole, showed therapeutic effects in silkworms infected with C. neoformans. However, amphotericin B was not therapeutically effective when injected into the silkworm intestine, comparable to the fact that amphotericin B is not absorbed by the intestine in mammals. CONCLUSIONS The silkworm-C. neoformans infection model is useful for evaluating the therapeutic effects of antifungal drugs. SIGNIFICANCE AND IMPACT OF THE STUDY The silkworm infection model has various advantages for screening antifungal drug candidates. We can also elucidate the cryptococcal pathogenesis and evaluate the in vivo pharmacokinetics and toxicity of each drug.
Collapse
Affiliation(s)
- Y Matsumoto
- Laboratory of Microbiology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
28
|
Ulbricht C, Seamon E, Windsor RC, Armbruester N, Bryan JK, Costa D, Giese N, Gruenwald J, Iovin R, Isaac R, Grimes Serrano JM, Tanguay-Colucci S, Weissner W, Yoon H, Zhang J. An Evidence-Based Systematic Review of Cinnamon (Cinnamomumspp.) by the Natural Standard Research Collaboration. J Diet Suppl 2011; 8:378-454. [DOI: 10.3109/19390211.2011.627783] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
29
|
Matsumoto Y, Sumiya E, Sugita T, Sekimizu K. An invertebrate hyperglycemic model for the identification of anti-diabetic drugs. PLoS One 2011; 6:e18292. [PMID: 21479175 PMCID: PMC3068166 DOI: 10.1371/journal.pone.0018292] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2010] [Accepted: 03/02/2011] [Indexed: 11/25/2022] Open
Abstract
The number of individuals diagnosed with type 2 diabetes mellitus, which is caused by insulin resistance and/or abnormal insulin secretion, is increasing worldwide, creating a strong demand for the development of more effective anti-diabetic drugs. However, animal-based screening for anti-diabetic compounds requires sacrifice of a large number of diabetic animals, which presents issues in terms of animal welfare. Here, we established a method for evaluating the anti-diabetic effects of compounds using an invertebrate animal, the silkworm, Bombyx mori. Sugar levels in silkworm hemolymph increased immediately after feeding silkworms a high glucose-containing diet, resulting in impaired growth. Human insulin and 5-aminoimidazole-4-carboxamide-1-β-D-ribofuranoside (AICAR), an AMP-activated protein kinase (AMPK) activator, decreased the hemolymph sugar levels of the hyperglycemic silkworms and restored growth. Treatment of the isolated fat body with human insulin in an in vitro culture system increased total sugar in the fat body and stimulated Akt phosphorylation. These responses were inhibited by wortmannin, an inhibitor of phosphoinositide 3 kinase. Moreover, AICAR stimulated AMPK phosphorylation in the silkworm fat body. Administration of aminoguanidine, a Maillard reaction inhibitor, repressed the accumulation of Maillard reaction products (advanced glycation end-products; AGEs) in the hyperglycemic silkworms and restored growth, suggesting that the growth defect of hyperglycemic silkworms is caused by AGE accumulation in the hemolymph. Furthermore, we identified galactose as a hypoglycemic compound in jiou, an herbal medicine for diabetes, by monitoring its hypoglycemic activity in hyperglycemic silkworms. These results suggest that the hyperglycemic silkworm model is useful for identifying anti-diabetic drugs that show therapeutic effects in mammals.
Collapse
Affiliation(s)
- Yasuhiko Matsumoto
- Laboratory of Microbiology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Eriko Sumiya
- Laboratory of Microbiology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Takuya Sugita
- Laboratory of Microbiology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Kazuhisa Sekimizu
- Laboratory of Microbiology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
- * E-mail:
| |
Collapse
|
30
|
Uchida R, Iwatsuki M, Kim YP, Ohte S, Ōmura S, Tomoda H. Nosokomycins, new antibiotics discovered in an in vivo-mimic infection model using silkworm larvae. I: Fermentation, isolation and biological properties. J Antibiot (Tokyo) 2010; 63:151-5. [DOI: 10.1038/ja.2010.9] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
31
|
Pan MH, Cai XJ, Liu M, Lv J, Tang H, Tan J, Lu C. Establishment and characterization of an ovarian cell line of the silkworm, Bombyx mori. Tissue Cell 2009; 42:42-6. [PMID: 19665160 DOI: 10.1016/j.tice.2009.07.002] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2009] [Revised: 07/13/2009] [Accepted: 07/15/2009] [Indexed: 10/20/2022]
Abstract
A cell line BmN-SWU1 was established from the ovarian tissues of 3-day-old fourth instar Bombyx mori larvae of the 21-872nlw variety by performing primary cultures in Grace's medium supplemented with 20% fetal bovine serum (FBS). The cell line primarily consisted of short spindle cells and round cells. The frequency of cells with chromosome number 2n=56 was 80.5%; therefore, the cell line was considered to be a diploid cell line. The population-doubling time (PDT) at 45th passage line was 57.7h. This cell line was susceptible to the B. mori nuclear polyhedrovirus (BmNPV), and the median tissue culture infective dose (TCID(50)) at a cell density of 10(5) cells/ml was 16.3 OBs/ml. The transient expression efficiency of the green fluorescent protein (GFP) gene in this cell line was 54.8%. We used the BmN-SWU1 cell line to select and establish a GFP transgenic cell line.
Collapse
Affiliation(s)
- Min-Hui Pan
- The Key Sericultural Laboratory of Agricultural Ministry, Southwest University, 216 Tiansheng Rd., Beibei District, Chongqing 400716, China
| | | | | | | | | | | | | |
Collapse
|
32
|
Meng Y, Katsuma S, Daimon T, Banno Y, Uchino K, Sezutsu H, Tamura T, Mita K, Shimada T. The silkworm mutant lemon (lemon lethal) is a potential insect model for human sepiapterin reductase deficiency. J Biol Chem 2009; 284:11698-705. [PMID: 19246455 PMCID: PMC2670173 DOI: 10.1074/jbc.m900485200] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2009] [Revised: 02/18/2009] [Indexed: 11/06/2022] Open
Abstract
Tetrahydrobiopterin (BH4) is an essential cofactor for aromatic acid hydroxylases, which control the levels of monoamine neurotransmitters. BH4 deficiency has been associated with many neuropsychological disorders. An inherited defect in BH4 biosynthesis is caused by the deficiency of sepiapterin reductase (SPR), which catalyzes the biosynthesis of BH4 from guanosine triphosphate at the terminal step. The human SPR gene has been mapped at the PARK3 locus, which is related to the onset of Parkinson disease. In this study, we report that mutant strains, lemon (lem) and its lethal allele lemon lethal (lem(1)) with yellow body coloration, of the silkworm Bombyx mori could be used as the first insect model for human SPR deficiency diseases. We demonstrated that mutations in the SPR gene (BmSpr) were responsible for the irregular body coloration of lem and lem(l). Moreover, biochemical analysis revealed that SPR activity in lem(l) larvae was almost completely diminished, resulting in a lethal phenotype that the larvae cannot feed and that die immediately after the first ecdysis. Oral administration of BH4 and dopamine to lem(l) larvae effectively increased their survival rates and feeding abilities. Our data demonstrate that BmSPR plays a crucial role in the generation of BH4, and monoamine neurotransmitters in silkworms and the lem (lem(l)) mutant strains will be an invaluable resource to address many questions regarding SPR and BH4 deficiencies.
Collapse
Affiliation(s)
- Yan Meng
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Chikayama E, Suto M, Nishihara T, Shinozaki K, Hirayama T, Kikuchi J. Systematic NMR analysis of stable isotope labeled metabolite mixtures in plant and animal systems: coarse grained views of metabolic pathways. PLoS One 2008; 3:e3805. [PMID: 19030231 PMCID: PMC2583929 DOI: 10.1371/journal.pone.0003805] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2008] [Accepted: 10/21/2008] [Indexed: 11/23/2022] Open
Abstract
Background Metabolic phenotyping has become an important ‘bird's-eye-view’ technology which can be applied to higher organisms, such as model plant and animal systems in the post-genomics and proteomics era. Although genotyping technology has expanded greatly over the past decade, metabolic phenotyping has languished due to the difficulty of ‘top-down’ chemical analyses. Here, we describe a systematic NMR methodology for stable isotope-labeling and analysis of metabolite mixtures in plant and animal systems. Methodology/Principal Findings The analysis method includes a stable isotope labeling technique for use in living organisms; a systematic method for simultaneously identifying a large number of metabolites by using a newly developed HSQC-based metabolite chemical shift database combined with heteronuclear multidimensional NMR spectroscopy; Principal Components Analysis; and a visualization method using a coarse-grained overview of the metabolic system. The database contains more than 1000 1H and 13C chemical shifts corresponding to 142 metabolites measured under identical physicochemical conditions. Using the stable isotope labeling technique in Arabidopsis T87 cultured cells and Bombyx mori, we systematically detected >450 HSQC peaks in each 13C-HSQC spectrum derived from model plant, Arabidopsis T87 cultured cells and the invertebrate animal model Bombyx mori. Furthermore, for the first time, efficient 13C labeling has allowed reliable signal assignment using analytical separation techniques such as 3D HCCH-COSY spectra in higher organism extracts. Conclusions/Significance Overall physiological changes could be detected and categorized in relation to a critical developmental phase change in B. mori by coarse-grained representations in which the organization of metabolic pathways related to a specific developmental phase was visualized on the basis of constituent changes of 56 identified metabolites. Based on the observed intensities of 13C atoms of given metabolites on development-dependent changes in the 56 identified 13C-HSQC signals, we have determined the changes in metabolic networks that are associated with energy and nitrogen metabolism.
Collapse
|