1
|
Yan D, Han K, Lu Y, Peng J, Rao S, Wu G, Liu Y, Chen J, Zheng H, Yan F. The nanovirus U2 protein suppresses RNA silencing via three conserved cysteine residues. MOLECULAR PLANT PATHOLOGY 2024; 25:e13394. [PMID: 37823358 PMCID: PMC10782648 DOI: 10.1111/mpp.13394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 09/19/2023] [Accepted: 09/19/2023] [Indexed: 10/13/2023]
Abstract
Nanoviruses have multipartite, circular, single-stranded DNA genomes and cause huge production losses in legumes and other crops. No viral suppressor of RNA silencing (VSR) has yet been reported from a member of the genus Nanovirus. Here, we demonstrate that the nanovirus U2 protein is a VSR. The U2 protein of milk vetch dwarf virus (MDV) suppressed the silencing of the green fluorescent protein (GFP) gene induced by single-stranded and double-stranded RNA, and the systemic spread of the GFP silencing signal. An electrophoretic mobility shift assay showed that the U2 protein was able to bind double-stranded 21-nucleotide small interfering RNA (siRNA). The cysteine residues at positions 43, 79 and 82 in the MDV U2 protein are critical to its nuclear localization, self-interaction and siRNA-binding ability, and were essential for its VSR activity. In addition, expression of the U2 protein via a potato virus X vector induced more severe necrosis symptoms in Nicotiana benthamiana leaves. The U2 proteins of other nanoviruses also acted as VSRs, and the three conserved cysteine residues were indispensable for their VSR activity.
Collapse
Affiliation(s)
- Dankan Yan
- College of Life SciencesFujian Agriculture and Forestry UniversityFuzhouChina
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐Products, Institute of Plant VirologyNingbo UniversityNingboChina
- Institute of Plant Protection and Agro‐Products SafetyAnhui Academy of Agricultural SciencesHefeiChina
| | - Kelei Han
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐Products, Institute of Plant VirologyNingbo UniversityNingboChina
- Institute of Plant Protection and Agro‐Products SafetyAnhui Academy of Agricultural SciencesHefeiChina
| | - Yuwen Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐Products, Institute of Plant VirologyNingbo UniversityNingboChina
| | - Jiejun Peng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐Products, Institute of Plant VirologyNingbo UniversityNingboChina
| | - Shaofei Rao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐Products, Institute of Plant VirologyNingbo UniversityNingboChina
| | - Guanwei Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐Products, Institute of Plant VirologyNingbo UniversityNingboChina
| | - Yong Liu
- Institute of Plant ProtectionHunan Academy of Agricultural SciencesChangshaChina
| | - Jianping Chen
- College of Life SciencesFujian Agriculture and Forestry UniversityFuzhouChina
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐Products, Institute of Plant VirologyNingbo UniversityNingboChina
| | - Hongying Zheng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐Products, Institute of Plant VirologyNingbo UniversityNingboChina
| | - Fei Yan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐Products, Institute of Plant VirologyNingbo UniversityNingboChina
| |
Collapse
|
2
|
Lal A, Vo TTB, Sanjaya IGNPW, Ho PT, Kim JK, Kil EJ, Lee S. Nanovirus Disease Complexes: An Emerging Threat in the Modern Era. FRONTIERS IN PLANT SCIENCE 2020; 11:558403. [PMID: 33329624 PMCID: PMC7710663 DOI: 10.3389/fpls.2020.558403] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 10/28/2020] [Indexed: 06/12/2023]
Abstract
Multipartite viruses package their genomic segments independently and mainly infect plants; few target animals. Nanoviridae is a family of multipartite single-stranded DNA plant viruses that individually encapsidate single-stranded DNAs of approximately 1 kb and transmit them through aphids without replication in the aphid vectors, thereby causing important diseases of leguminous crops and banana. Significant findings regarding nanoviruses have recently been made on important features, such as their multicellular way of life, the transmission of distinct encapsidated genome segments through the vector body, evolutionary ambiguities, mode of infection, host range and geographical distribution. This review deals with all the above-mentioned features in view of recent advances with special emphasis on the emergence of new species and recognition of new host range of nanoviruses and aims to shed light on the evolutionary linkages, the potentially devastating impact on the world economy, and the future challenges imposed by nanoviruses.
Collapse
Affiliation(s)
- Aamir Lal
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, South Korea
| | - Thuy Thi Bich Vo
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, South Korea
| | | | - Phuong Thi Ho
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, South Korea
| | - Ji-Kwang Kim
- Research and Development Bureau, Chungcheongnam-do Agricultural Research and Extension Services, Yesan, South Korea
| | - Eui-Joon Kil
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, South Korea
- Department of Plant Medicals, Andong National University, Andong, South Korea
| | - Sukchan Lee
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, South Korea
| |
Collapse
|
3
|
Venkataraman S, Selvarajan R. Recent advances in understanding the replication initiator protein of the ssDNA plant viruses of the family Nanoviridae. Virusdisease 2019; 30:22-31. [PMID: 31143829 PMCID: PMC6517469 DOI: 10.1007/s13337-019-00514-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 02/13/2019] [Indexed: 12/20/2022] Open
Abstract
The families of viruses possessing single-stranded (ss) circular genome employ a dedicated replication initiator protein (Rep) for making copies of their genome through the process of rolling circle replication. The replication begins at conserved nonanucleotide sequence at the intergenic region. The Rep protein seems to be the most conserved amongst the available proteins of the nanovirids and comprises of the N-terminal endonuclease domain and the C-terminal helicase domain. The structural studies of Faba bean necrotic yellows virus endonuclease domain suggests a α + β fold comprising of central β sheet built from five antiparallel β strands surrounded by outer short α helices. The catalysis is mediated by a conserved Tyr residue and employs divalent metal ions (Mn2+). On one hand, the Reps associate with each other and oligomerize and on the other hand interact with varied host and vector associated proteins for successful infection. The sequence analysis of Reps from previously known nanovirids and the newly found ones from metagenomics data shed light on the evolutionary pattern of nanovirids in comparison to other plant infecting ssDNA viruses.
Collapse
Affiliation(s)
- Sangita Venkataraman
- Department of Biotechnology, Acharya Nagarjuna University, Nagarjuna Nagar, Guntur, 522510 India
| | - R. Selvarajan
- ICAR National Research Centre for Banana, Thayanur Post, Tiruchirapalli, 620102 India
| |
Collapse
|
4
|
Fehér T, Planson AG, Carbonell P, Fernández-Castané A, Grigoras I, Dariy E, Perret A, Faulon JL. Validation of RetroPath, a computer-aided design tool for metabolic pathway engineering. Biotechnol J 2014; 9:1446-57. [PMID: 25224453 DOI: 10.1002/biot.201400055] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Revised: 07/28/2014] [Accepted: 09/15/2014] [Indexed: 01/29/2023]
Abstract
Metabolic engineering has succeeded in biosynthesis of numerous commodity or high value compounds. However, the choice of pathways and enzymes used for production was many times made ad hoc, or required expert knowledge of the specific biochemical reactions. In order to rationalize the process of engineering producer strains, we developed the computer-aided design (CAD) tool RetroPath that explores and enumerates metabolic pathways connecting the endogenous metabolites of a chassis cell to the target compound. To experimentally validate our tool, we constructed 12 top-ranked enzyme combinations producing the flavonoid pinocembrin, four of which displayed significant yields. Namely, our tool queried the enzymes found in metabolic databases based on their annotated and predicted activities. Next, it ranked pathways based on the predicted efficiency of the available enzymes, the toxicity of the intermediate metabolites and the calculated maximum product flux. To implement the top-ranking pathway, our procedure narrowed down a list of nine million possible enzyme combinations to 12, a number easily assembled and tested. One round of metabolic network optimization based on RetroPath output further increased pinocembrin titers 17-fold. In total, 12 out of the 13 enzymes tested in this work displayed a relative performance that was in accordance with its predicted score. These results validate the ranking function of our CAD tool, and open the way to its utilization in the biosynthesis of novel compounds.
Collapse
Affiliation(s)
- Tamás Fehér
- Institute of Systems and Synthetic Biology, University of Evry-Val-d'Essonne, CNRS FRE3561, Evry Cedex, France
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Huang HH, Yu C, Zheng H, Hernandez T, Yau SC, He RL, Yang J, Yau SST. Global comparison of multiple-segmented viruses in 12-dimensional genome space. Mol Phylogenet Evol 2014; 81:29-36. [PMID: 25172357 DOI: 10.1016/j.ympev.2014.08.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 07/11/2014] [Accepted: 08/03/2014] [Indexed: 11/16/2022]
Abstract
We have recently developed a computational approach in a vector space for genome-based virus classification. This approach, called the "Natural Vector (NV) representation", which is an alignment-free method, allows us to classify single-segmented viruses with high speed and accuracy. For multiple-segmented viruses, typically phylogenetic trees of each segment are reconstructed for discovering viral phylogeny. Consensus tree methods may be used to combine the phylogenetic trees based on different segments. However, consensus tree methods were not developed for instances where the viruses have different numbers of segments or where their segments do not match well. We propose a novel approach for comparing multiple-segmented viruses globally, even in cases where viruses contain different numbers of segments. Using our method, each virus is represented by a set of vectors in R(12). The Hausdorff distance is then used to compare different sets of vectors. Phylogenetic trees can be reconstructed based on this distance. The proposed method is used for predicting classification labels of viruses with n-segments (n ⩾ 1). The correctness rates of our predictions based on cross-validation are as high as 96.5%, 95.4%, 99.7%, and 95.6% for Baltimore class, family, subfamily, and genus, respectively, which are comparable to the rates for single-segmented viruses only. Our method is not affected by the number or order of segments. We also demonstrate that the natural graphical representation based on the Hausdorff distance is more reasonable than the consensus tree for a recent public health threat, the influenza A (H7N9) viruses.
Collapse
Affiliation(s)
- Hsin-Hsiung Huang
- Department of Statistics, University of Central Florida, Orlando, FL 32816, USA
| | - Chenglong Yu
- Mind-Brain Theme, South Australian Health and Medical Research Institute, North Terrace, Adelaide, South Australia 5000, Australia
| | - Hui Zheng
- Department of Mathematics, Statistics, and Computer Science, University of Illinois at Chicago, Chicago, IL 60607, USA
| | | | - Shek-Chung Yau
- Information Technology Services Center, Hong Kong University of Science and Technology, Clearwater Bay, Kowloon, Hong Kong
| | - Rong Lucy He
- Department of Biological Sciences, Chicago State University, Chicago, IL 60628, USA
| | - Jie Yang
- Department of Mathematics, Statistics, and Computer Science, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Stephen S-T Yau
- Department of Mathematical Sciences, Tsinghua University, Beijing 100084, PR China.
| |
Collapse
|
6
|
Amin I, Ilyas M, Qazi J, Bashir R, Yadav JS, Mansoor S, Fauquet CM, Briddon RW. Identification of a major pathogenicity determinant and suppressors of RNA silencing encoded by a South Pacific isolate of Banana bunchy top virus originating from Pakistan. Virus Genes 2011; 42:272-81. [PMID: 21161359 DOI: 10.1007/s11262-010-0559-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2010] [Accepted: 11/26/2010] [Indexed: 12/11/2022]
Abstract
Five genes encoded by Banana bunchy top virus (BBTV) originating from Pakistan were expressed in Nicotiana benthamiana using a Potato virus X (PVX) vector. Expression of the master replication-associated protein (mRep) and movement protein (MP) resulted in necrotic cell death of inoculated tissues, as well as leaf curling and necrosis along the veins in newly emerging leaves. The systemic necrosis induced by the expression of MP was discolored (dark) in comparison to that induced by mRep. Expression of the cell-cycle link protein (Clink), the coat protein (CP), and the nuclear shuttle protein from the PVX vector induced somewhat milder symptoms, consisting of mild leaf curling and mosaic, although expression of the CP caused a necrotic response in inoculated leaf. The accumulation of viral RNA was enhanced by MP, Clink, and CP. Of the five BBTV-encoded gene products two, the MP and Clink, stabilized GFP-specific mRNA and reduced GFP-specific small interfering RNA in N. benthamiana line 16c when expressed under the control of the 35S promoter and co-inoculated with a construct for the expression of GFP hairpin RNA construct. These results identified MP and Clink as suppressors of RNA silencing. Taken together the ability of MP to induce severe symptoms in plants and suppress RNA silencing implicates this product as a major pathogenicity determinant of BBTV.
Collapse
Affiliation(s)
- Imran Amin
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, P.O. Box 577, Jhang Road, Faisalabad, Pakistan
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Abstract
Nanoviruses are multipartite single-stranded DNA (ssDNA) plant viruses that cause important diseases of leguminous crops and banana. Little has been known about the variability and molecular evolution of these viruses. Here we report on the variability of faba bean necrotic stunt virus (FBNSV), a nanovirus from Ethiopia. We found mutation frequencies of 7.52 x 10(-4) substitutions per nucleotide in a field population of the virus and 5.07 x 10(-4) substitutions per nucleotide in a laboratory-maintained population derived thereof. Based on virus propagation for a period of more than 2 years, we determined a nucleotide substitution rate of 1.78 x 10(-3) substitutions per nucleotide per year. This high molecular evolution rate places FBNSV, as a representative of the family Nanoviridae, among the fastest-evolving ssDNA viruses infecting plants or vertebrates.
Collapse
|
8
|
Grigoras I, Timchenko T, Katul L, Grande-Pérez A, Vetten HJ, Gronenborn B. Reconstitution of authentic nanovirus from multiple cloned DNAs. J Virol 2009; 83:10778-87. [PMID: 19656882 PMCID: PMC2753110 DOI: 10.1128/jvi.01212-09] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2009] [Accepted: 07/30/2009] [Indexed: 11/20/2022] Open
Abstract
We describe a new plant single-stranded DNA (ssDNA) virus, a nanovirus isolate originating from the faba bean in Ethiopia. We applied rolling circle amplification (RCA) to extensively copy the individual circular DNAs of the nanovirus genome. By sequence analyses of more than 208 individually cloned genome components, we obtained a representative sample of eight polymorphic swarms of circular DNAs, each about 1 kb in size. From these heterogeneous DNA populations after RCA, we inferred consensus sequences of the eight DNA components of the virus genome. Based on the distinctive molecular and biological properties of the virus, we propose to consider it a new species of the genus Nanovirus and to name it faba bean necrotic stunt virus (FBNSV). Selecting a representative clone of each of the eight DNAs for transfer by T-DNA plasmids of Agrobacterium tumefaciens into Vicia faba plants, we elicited the development of the typical FBNSV disease symptoms. Moreover, we showed that the virus thus produced was readily transmitted by two different aphid vector species, Aphis craccivora and Acyrthosiphon pisum. This represents the first reconstitution of a fully infectious and sustainably insect-transmissible nanovirus from its cloned DNAs and provides compelling evidence that the genome of a legume-infecting nanovirus is typically comprised of eight distinct DNA components.
Collapse
Affiliation(s)
- Ioana Grigoras
- Institut des Sciences du Végétal, CNRS, 91198 Gif sur Yvette, France
| | | | | | | | | | | |
Collapse
|