1
|
Hu J, Wu J, Cao H, Luan N, Lin K, Zhang H, Gao D, Lei Z, Li H, Liu C. Effects of Rotavirus NSP4 on the Immune Response and Protection of Rotavirus-Norovirus Recombinant Subunit Vaccines in Different Immune Pathways. Vaccines (Basel) 2024; 12:1025. [PMID: 39340055 PMCID: PMC11436106 DOI: 10.3390/vaccines12091025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 09/05/2024] [Accepted: 09/06/2024] [Indexed: 09/30/2024] Open
Abstract
Diarrheal disease continues to be a major cause of global morbidity and mortality among children under 5 years of age. To address the current issues associated with oral attenuated rotavirus vaccines, the study of parenteral rotavirus vaccines has promising prospects. In our previous study, we reported that rotavirus nonstructural protein 4 (NSP4) did not increase the IgG antibody titer of co-immune antigen but did have a protective effect against diarrhea via the intramuscular injection method. Here, we explored whether NSP4 can exert adjuvant effects on mucosal immune pathways. In this study, we immunized mice via muscle and nasal routes, gavaged them with the rotavirus Wa strain or the rotavirus SA11 strain, and then tested the protective effects of immune sera against both viruses. The results revealed that the serum-specific VP8* IgG antibody titers of the mice immunized via the nasal route were much lower than those of the mice immunized by intramuscular injection, and the specific IgA antibodies were almost undetectable in the bronchoalveolar lavage fluid (BALF). NSP4 did not increase the titer of specific VP8* antibodies in either immune pathway. Therefore, in the two vaccines (PP-NSP4-VP8* and PP-VP8*+NSP4) used in this study, NSP4 was unable to perform its potential adjuvant role through the mucosal immune pathway. Instead, NSP4 was used as a co-immunized antigen to stimulate the mice to produce specific binding antibodies that play a protective role against diarrhea.
Collapse
Affiliation(s)
- Jingping Hu
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650118, China
| | - Jinyuan Wu
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650118, China
| | - Han Cao
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650118, China
| | - Ning Luan
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650118, China
| | - Kangyang Lin
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650118, China
| | - Haihao Zhang
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650118, China
| | - Dandan Gao
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650118, China
| | - Zhentao Lei
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650118, China
| | - Hongjun Li
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650118, China
| | - Cunbao Liu
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650118, China
| |
Collapse
|
2
|
Rao CD. Enteroviruses in gastrointestinal diseases. Rev Med Virol 2020; 31:1-12. [PMID: 32761735 DOI: 10.1002/rmv.2148] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 06/30/2020] [Accepted: 07/02/2020] [Indexed: 01/04/2023]
Abstract
Gastrointestinal diseases including diarrhoea constitute a major cause of morbidity and mortality in infants and young children especially in developing countries. Worldwide deaths among all ages due to diarrhoea during 2015 were estimated to be about 1.31 million, diarrhoeal deaths in children below 5 years of age being 499 000. Rotavirus accounted for about 200 000 deaths. Although diarrhoeal deaths decreased significantly during the last two decades, they still represent the third largest cause of infantile deaths. Several bacterial, viral, parasitic, fungal and non-infectious diarrhoea causing agents have been identified, but 30% to 40% of diarrhoeal cases remain undiagnosed. Enteroviruses transmit by the faecal-oral route and replicate first in intestinal cells before spreading to the target organ. They have been associated with diarrhoea in a few studies, but their causative role in diarrhoea in humans has not been systematically demonstrated. In view of the recent demonstration that enteroviruses cause diarrhoea in newborn mice pups, thus validating Koch's postulates, the purpose of this review is to emphasise the importance of recognising enteroviruses as major gastrointestinal pathogens associated with acute and persistent diarrhoea and non-diarrhoeal increased frequency of bowel movements in infants, young children and adults. Our studies and several other subsequent studies reported from different countries should stimulate strategies to reduce the burden of infantile gastrointestinal disease, which has hitherto remained unaddressed.
Collapse
Affiliation(s)
- C Durga Rao
- Department of Biology, SRM University, Amaravati, India
| |
Collapse
|
3
|
Kumar D, Singh A, Kumar P, Uversky VN, Rao CD, Giri R. Understanding the penetrance of intrinsic protein disorder in rotavirus proteome. Int J Biol Macromol 2020; 144:892-908. [PMID: 31739058 PMCID: PMC7112477 DOI: 10.1016/j.ijbiomac.2019.09.166] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 09/09/2019] [Accepted: 09/20/2019] [Indexed: 01/03/2023]
Abstract
Rotavirus is a major cause of severe acute gastroenteritis in the infants and young children. The past decade has evidenced the role of intrinsically disordered proteins/regions (IDPs)/(IDPRs) in viral and other diseases. In general, (IDPs)/(IDPRs) are considered as dynamic conformational ensembles that devoid of a specific 3D structure, being associated with various important biological phenomena. Viruses utilize IDPs/IDPRs to survive in harsh environments, to evade the host immune system, and to highjack and manipulate host cellular proteins. The role of IDPs/IDPRs in Rotavirus biology and pathogenicity are not assessed so far, therefore, we have designed this study to deeply look at the penetrance of intrinsic disorder in rotavirus proteome consisting 12 proteins encoded by 11 segments of viral genome. Also, for all human rotaviral proteins, we have deciphered molecular recognition features (MoRFs), which are disorder based binding sites in proteins. Our study shows the wide spread of intrinsic disorder in several rotavirus proteins, primarily the nonstructural proteins NSP3, NSP4, and NSP5 that are involved in viral replication, translation, viroplasm formation and/or maturation. This study may serve as a primer for understanding the role of IDPs/MoRFs in rotavirus biology, design of alternative therapeutic strategies, and development of disorder-based drugs.
Collapse
Affiliation(s)
- Deepak Kumar
- Indian Institute of Technology Mandi, VPO Kamand, Himachal Pradesh 175005, India
| | - Ankur Singh
- Indian Institute of Technology Mandi, VPO Kamand, Himachal Pradesh 175005, India
| | - Prateek Kumar
- Indian Institute of Technology Mandi, VPO Kamand, Himachal Pradesh 175005, India
| | - Vladimir N Uversky
- Department of Molecular Medicine and Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - C Durga Rao
- SRM University, AP - Amaravati, Neerukonda, Mangalagiri Mandal Guntur District, Mangalagiri, Andhra Pradesh 522502, India.
| | - Rajanish Giri
- Indian Institute of Technology Mandi, VPO Kamand, Himachal Pradesh 175005, India; BioX Center, Indian Institute of Technology Mandi, Himachal Pradesh, India.
| |
Collapse
|
4
|
Abid N, Chillemi G, Salemi M. Coding-Gene Coevolution Analysis of Rotavirus Proteins: A Bioinformatics and Statistical Approach. Genes (Basel) 2019; 11:genes11010028. [PMID: 31878331 PMCID: PMC7016848 DOI: 10.3390/genes11010028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 12/10/2019] [Accepted: 12/19/2019] [Indexed: 01/12/2023] Open
Abstract
Rotavirus remains a major cause of diarrhea in infants and young children worldwide. The permanent emergence of new genotypes puts the potential effectiveness of vaccines under serious question. The distribution of unusual genotypes subject to viral fitness is influenced by interactions among viral proteins. The present work aimed at analyzing the genetic constellation and the coevolution of rotavirus coding genes for the available rotavirus genotypes. Seventy-two full genome sequences of different genetic constellations were analyzed using a genetic algorithm. The results revealed an extensive genome-wide covariance network among the 12 viral proteins. Altogether, the emergence of new genotypes represents a challenge to the outcome and success of vaccination and the coevolutionary analysis of rotavirus proteins may boost efforts to better understand the interaction networks of proteins during viral replication/transcription.
Collapse
Affiliation(s)
- Nabil Abid
- Laboratory of Transmissible Diseases and Biological Active Substances LR99ES27, Faculty of Pharmacy, University of Monastir, Rue Ibn Sina, Monastir 5000, Tunisia
- High Institute of Biotechnology of Sidi Thabet, Department of Biotechnology, University Manouba, BP-66, Ariana-Tunis 2020, Tunisia
- Correspondence: or ; Tel.: +216-92–974-000
| | - Giovanni Chillemi
- Department for Innovation in Biological, Agro-food and Forest systems, DIBAF, University of Tuscia, via S. Camillo de Lellis s.n.c., 01100 Viterbo, Italy;
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, IBIOM, CNR, Via Giovanni Amendola, 122/O, 70126 Bari, Italy
| | - Marco Salemi
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida College of Medicine, Emerging Pathogens Institute, P.O. Box 100009, Gainesville, FL 32610-3633, USA;
| |
Collapse
|
5
|
Tamim S, Matthijnssens J, Heylen E, Zeller M, Van Ranst M, Salman M, Hasan F. Evidence of zoonotic transmission of VP6 and NSP4 genes into human species A rotaviruses isolated in Pakistan in 2010. Arch Virol 2019; 164:1781-1791. [PMID: 31079214 DOI: 10.1007/s00705-019-04271-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 03/30/2019] [Indexed: 10/26/2022]
Abstract
Introduction of animal group A rotavirus (RVA) gene segments into the human RVA population is a major factor shaping the genetic landscape of human RVA strains. The VP6 and NSP4 genes of 74 G/P-genotyped RVA isolates collected in Rawalpindi during 2010 were analyzed, revealing the presence of VP6 genotypes I1 (60.8%) and I2 (39.2%) and NSP4 genotypes E1 (60.8%), E2 (28.3%) and E-untypable (10.8%) among the circulating human RVA strains. The typical human RVA combinations I1E1 and I2E2 were found in 59.4% and 24.3% of the cases, respectively, whereas 5.4% of the RVA strains were reassortants, i.e., either I1E2 or I2E1. The phylogeny of the NSP4 gene showed that one G2P[4] and two G1P[6] RVA strains clustered with porcine E1 RVA strains or RVA strains that were considered to be (partially) of porcine origin. In addition, the NSP4 gene segment of the unusual human G6P[1] RVA strains clustered closely with bovine E2 RVA strains, further strengthening the hypothesis of an interspecies transmission event. The study further demonstrates the role of genomic re-assortment and the involvement of interspecies transmission in the evolution of human RVA strains. The VP6 and NSP4 nucleotide sequences analyzed in the study received the GenBank accession numbers KC846908- KC846971 and KC846972-KC847037, respectively.
Collapse
Affiliation(s)
- Sana Tamim
- Public Health Laboratories Division, Department of Virology/Immunology, National Institute of Health, Islamabad, Pakistan.
| | - Jelle Matthijnssens
- Laboratory of Viral Metagenomics, Rega Institute, Herestraat 49 box 1040, 3000, Leuven, Belgium
| | - Elisabeth Heylen
- Laboratory of Virology and Chemotherapy, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Mark Zeller
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Marc Van Ranst
- Laboratory for Clinical and Epidemiological Virology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven-University of Leuven, Leuven, Belgium
| | - Muhammad Salman
- Public Health Laboratories Division, Department of Virology/Immunology, National Institute of Health, Islamabad, Pakistan
| | - Fariha Hasan
- Department of Microbiology, Quaid-i-Azam University, Islamabad, Pakistan
| |
Collapse
|
6
|
Kumar S, Ramappa R, Pamidimukkala K, Rao CD, Suguna K. New tetrameric forms of the rotavirus NSP4 with antiparallel helices. Arch Virol 2018; 163:1531-1547. [DOI: 10.1007/s00705-018-3753-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 01/13/2018] [Indexed: 01/05/2023]
|
7
|
Saurabh S, Sircar S, Kattoor JJ, Ghosh S, Kobayashi N, Banyai K, VinodhKumar OR, De UK, Sahoo NR, Dhama K, Malik YS. Analysis of structure-function relationship in porcine rotavirus A enterotoxin gene. J Vet Sci 2018; 19:35-43. [PMID: 28057906 PMCID: PMC5799398 DOI: 10.4142/jvs.2018.19.1.35] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 10/29/2016] [Accepted: 11/23/2016] [Indexed: 11/28/2022] Open
Abstract
Rotavirus (RV)-infected piglets are presumed to be latent sources of heterologous RV infection in humans and other animals. In RVs, non-structural protein 4 (NSP4) is the major virulence factor with pleiotropic properties. In this study, we analyzed the nsp4 gene from porcine RVs isolated from diarrheic and non-diarrheic cases at different levels of protein folding to explore correlations to diarrhea-inducing capabilities and evolution of nsp4 in the porcine population. Full-length nsp4 genes were amplified, cloned, sequenced, and then analyzed for antigenic epitopes, RotaC classification, homology, genetic relationship, modeling of NSP4 protein, and prediction of post-translational modification. RV presence was observed in both diarrheic and non-diarrheic piglets. All nsp4 genes possessed the E1 genotype. Comparison of primary, secondary, and tertiary structure and the prediction of post-translational modifications of NSP4 from diarrheic and non-diarrheic piglets revealed no apparent differences. Sequence analysis indicated that nsp4 genes have a multi-phyletic evolutionary origin and exhibit species independent genetic diversity. The results emphasize the evolution of the E9 nsp4 genotype from the E1 genotype and suggest that the diarrhea-inducing capability of porcine RVs may not be exclusively linked to its enterotoxin gene.
Collapse
Affiliation(s)
- Sharad Saurabh
- Indian Council of Agricultural Research-Indian Veterinary Research Institute, Uttar Pradesh 243122, India
| | - Shubhankar Sircar
- Indian Council of Agricultural Research-Indian Veterinary Research Institute, Uttar Pradesh 243122, India
| | - Jobin J Kattoor
- Indian Council of Agricultural Research-Indian Veterinary Research Institute, Uttar Pradesh 243122, India
| | - Souvik Ghosh
- Department of Biomedical Sciences, One Health Center for Zoonoses and Tropical Veterinary Medicine, Ross University School of Veterinary Medicine, P.O. Box 334, Basseterre, Federation of Saint Kitts and Nevis
| | | | - Krisztian Banyai
- Institute for Veterinary Medical Research, Centre for Agricultural Research, Hungarian Academy of Sciences, Budapest 1143, Hungary
| | - Obli R VinodhKumar
- Indian Council of Agricultural Research-Indian Veterinary Research Institute, Uttar Pradesh 243122, India
| | - Ujjwal K De
- Indian Council of Agricultural Research-Indian Veterinary Research Institute, Uttar Pradesh 243122, India
| | - Nihar R Sahoo
- Indian Council of Agricultural Research-Indian Veterinary Research Institute, Uttar Pradesh 243122, India
| | - Kuldeep Dhama
- Indian Council of Agricultural Research-Indian Veterinary Research Institute, Uttar Pradesh 243122, India
| | - Yashpal S Malik
- Indian Council of Agricultural Research-Indian Veterinary Research Institute, Uttar Pradesh 243122, India
| |
Collapse
|
8
|
|
9
|
Genetic variability of VP7, VP4, VP6 and NSP4 genes of common human G1P[8] rotavirus strains circulating in Italy between 2010 and 2014. Virus Res 2016; 220:117-28. [DOI: 10.1016/j.virusres.2016.04.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 04/20/2016] [Accepted: 04/20/2016] [Indexed: 12/12/2022]
|
10
|
Sahmani M, Azari S, Tebianian M, Gheibi N, Pourasgari F. Higher Expression Level and Lower Toxicity of Genetically Spliced Rotavirus NSP4 in Comparison to the Full-Length Protein in E. coli. IRANIAN JOURNAL OF BIOTECHNOLOGY 2016; 14:50-57. [PMID: 28959326 DOI: 10.15171/ijb.1233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND Rotavirus group A (RVA) is recognized as a major cause of severe gastroenteritis in children and new-born animals. Nonstructural protein 4 (NSP4) is responsible for the enterotoxic activity of these viruses in the villus epithelial cells. Amino acids 114-135 of NSP4 are known to form the diarrhea-inducing region of this viral enterotoxin. Therefore, developing an NSP4 lacking the enterotoxin domain could result in the introduction of a new subunit vaccine against rotaviruses in both humans and animals. OBJECTIVES The aim of this study is the evaluation of rotavirus A NSP4 expression in E. coli expression system before and after removal of the diarrhea-inducing domain, which is the first step towards further immunological studies of the resulting protein. MATERIALS AND METHODS Splicing by overlap extension (SOEing) PCR was used to remove the diarrhea-inducing sequence from the NSP4 cDNA. Both the full-length (FL-NSP4) and the spliced (S-NSP4) cDNA amplicons were cloned into pET-32c and pGEX-6P-2. Expression levels of the recombinant proteins were evaluated in E. coli BL21 (DE3) by Western blot analysis. In addition, the toxicity of pET plasmids bearing the S-NSP4 and FL-NSP4 fragments was investigated by plasmid stability test. RESULTS For FL-NSP4, protein expression was detected for the strain containing the pGEX:FL-NSP4 plasmid, but not for the strain carrying pET:FL-NSP4. Hourly sampling up to 3 h showed that the protein production decreased by time. In contrast, expression of S-NSP4 was detected for pET:S-NSP4 strain, but not for pGEX:S-NSP4. Plasmid stability test showed that pET:S-NSP4 recombinant plasmid was almost stable, while pET:FL-NSP4 was unstable. CONCLUSIONS This is the first report of production of rotavirus NSP4 lacking the diarrhea-inducing domain (S-NSP4). SNSP4 shows less toxicity in this expression system and potentially could be a promising goal for rotavirus immunological and vaccine studies in the future.
Collapse
Affiliation(s)
- Mehdi Sahmani
- Department of Clinical Biochemistry and Genetics, Cellular and Molecular Research Center, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Siavash Azari
- Department of Biotechnology, School of Paramedical Sciences, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Majid Tebianian
- Department of Biotechnology, Razi Vaccine and Serum Research Institute, Karaj, Iran
| | - Nematollah Gheibi
- Cellular and Molecular Research Center, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Farzaneh Pourasgari
- Department of Biotechnology, Razi Vaccine and Serum Research Institute, Karaj, Iran
| |
Collapse
|
11
|
Bertol JW, Fregolente MCD, Caruzo TAR, Silva MJD, Munford V, Sáfadi MAP, Rácz ML, Gatti MSV. Molecular characterisation of the NSP4 gene of group A human rotavirus G2P[4] strains circulating in São Paulo, Brazil, from 1994 and 2006 to 2010. Mem Inst Oswaldo Cruz 2015; 110:786-92. [PMID: 26517658 PMCID: PMC4667582 DOI: 10.1590/0074-02760150199] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 08/20/2015] [Indexed: 11/22/2022] Open
Abstract
Group A human rotaviruses (HuRVA) are causative agents of acute gastroenteritis. Six viral structural proteins (VPs) and six nonstructural proteins (NSPs) are produced in RV-infected cells. NSP4 is a diarrhoea-inducing viral enterotoxin and NSP4 gene analysis revealed at least 15 (E1-E15) genotypes. This study analysed the NSP4 genetic diversity of HuRVA G2P[4] strains collected in the state of São Paulo (SP) from 1994 and 2006-2010 using reverse transcription-polymerase chain reaction, sequencing and phylogenetic analysis. Forty (97.6%) G2P[4] strains displayed genotype E2; one strain (2.4%) displayed genotype E1. These results are consistent with the proposed linkage between VP4/VP7 (G2P[4]) and the NSP4 (E2) genotype of HuRVA. NSP4 phylogenetic analysis showed distinct clusters, with grouping of most strains by their genotype and collection year, and most strains from SP were clustered together with strains from other Brazilian states. A deduced amino acid sequence alignment for E2 showed many variations in the C-terminal region, including the VP4-binding domain. Considering the ability of NSP4 to generate host immunity, monitoring NSP4 variations, along with those in the VP4 or VP7 protein, is important for evaluating the circulation and pathogenesis of RV. Finally, the presence of one G2P[4]E1 strain reinforces the idea that new genotype combinations emerge through reassortment and independent segregation.
Collapse
Affiliation(s)
- Jéssica Wildgrube Bertol
- Departamento de Genética, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, SP, Brasil
| | | | | | - Márcio José da Silva
- Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, Campinas, SP, Brasil
| | - Veridiana Munford
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, Brasil
| | | | - Maria Lucia Rácz
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, Brasil
| | - Maria Silvia Viccari Gatti
- Departamento de Genética, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, SP, Brasil
| |
Collapse
|
12
|
Rao CD, Reddy H, Naidu JR, Raghavendra A, Radhika NS, Karande A. An enzyme-linked immuno focus assay for rapid detection and enumeration, and a newborn mouse model for human non-polio enteroviruses associated with acute diarrhea. J Virol Methods 2015; 224:47-52. [PMID: 26300372 DOI: 10.1016/j.jviromet.2015.08.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2015] [Revised: 08/16/2015] [Accepted: 08/17/2015] [Indexed: 12/15/2022]
Abstract
We have recently reported significant association of non-polio enteroviruses (NPEVs) with acute and persistent diarrhea (18-21% of total diarrheal cases), and non-diarrheal Increased Frequency of Bowel Movements (IFoBM-ND) (about 29% of the NPEV infections) in children and that the NPEV-associated diarrhea was as significant as rotavirus diarrhea. However, their diarrhea-causing potential is yet to be demonstrated in an animal model system. Since the determination of virus titers by the traditional plaque assay takes 4-7 days, there is a need for development of a rapid method for virus titer determination to facilitate active clinical research on enterovirus-associated diarrhea. The goal of this study is to develop a cell-based rapid detection and enumeration method and to demonstrate the diarrhea-inducing potential of purified and characterized non-polio enteroviruses, which were isolated from diarrheic children. Here we describe generation of monoclonal and polyclonal antibodies against purified strains belonging to different serotypes, and development of an enzyme-linked immuno focus assay (ELIFA) for detection and enumeration of live NPEV particles in clinical and purified virus samples, and a newborn mouse model for NPEV diarrhea. Plaque-purified NPVEs, belonging to different serotypes, isolated from children with diarrhea, were grown in cell culture and purified by isopycnic CsCl density gradient centrifugation. By ELIFA, NPEVs could be detected and enumerated within 12h post-infection. Our results demonstrated that Coxsackievirus B1 (CVB1) and CVB5 strains, isolated from diarrheic children, induced severe diarrhea in orally-inoculated 9-12 day-old mouse pups, fulfilling Koch's postulates. The methods described here would facilitate studies on NPEV-associated gastrointestinal disease.
Collapse
Affiliation(s)
- C Durga Rao
- Department of Microbiology & Cell Biology, Indian Institute of Science, Sir C. V. Raman Ave, New Biological Sciences Building, Bangalore, Karnataka 560012, India.
| | - Harikrishna Reddy
- Department of Microbiology & Cell Biology, Indian Institute of Science, Sir C. V. Raman Ave, New Biological Sciences Building, Bangalore, Karnataka 560012, India
| | - Jagadish R Naidu
- Department of Microbiology & Cell Biology, Indian Institute of Science, Sir C. V. Raman Ave, New Biological Sciences Building, Bangalore, Karnataka 560012, India; Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | - A Raghavendra
- Department of Microbiology & Cell Biology, Indian Institute of Science, Sir C. V. Raman Ave, New Biological Sciences Building, Bangalore, Karnataka 560012, India
| | - N S Radhika
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | - Anjali Karande
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| |
Collapse
|
13
|
Ben Hadj Fredj M, Ben Hamida-Rebaï M, Zeller M, Heylen E, Van Ranst M, Matthijnssens J, Trabelsi A. Sequence and structural analyses of NSP4 proteins from human group A rotavirus strains detected in Tunisia. ACTA ACUST UNITED AC 2014; 62:146-51. [PMID: 24679587 DOI: 10.1016/j.patbio.2013.10.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Accepted: 10/08/2013] [Indexed: 12/15/2022]
Abstract
BACKGROUND The NSP4 protein of group A rotavirus (RVA) has been recognized as a viral enterotoxin and plays important roles in viral pathogenesis and morphogenesis. Domains involved in structural and functional interactions have been proposed mainly based on the simian SA11 strain. METHODS NSP4 has been classified into 15 different genotypes (E1-E15), and the aim of this study was to analyze the sequences of 46 RVA strains in order to determine the aminoacid (aa) differences between E1 and E2 genotypes. Another aspect was to characterize the structural and physicochemical properties of these strains. RESULTS Comparison of deduced aa sequences of the NSP4 protein showed that divergences between NSP4 genotypes E1 and E2 were mostly observed in the VP4-binding, the interspecies variable domain (ISVD) and the double-layered particle (DLP) binding domains. Interestingly, uncommon variations in residues 131 and 138, which are known to be important aa in pathogenesis, were found in one unusual animal derived strain belonging to the E2 genotype. Concerning the structural aspect, no significant differences were noted. CONCLUSION The presence of punctual aa variations in the NSP4 genotypes may indicate that NSP4 mutates mainly via accumulation of point mutations.
Collapse
Affiliation(s)
- M Ben Hadj Fredj
- UR06SP20, Laboratory of Microbiology, Sahloul University Hospital, 4054 Sousse, Tunisia; Faculty of Pharmacy, University of Monastir, avenue Avicenne, 5019 Monastir, Tunisia
| | - M Ben Hamida-Rebaï
- UR06SP20, Laboratory of Microbiology, Sahloul University Hospital, 4054 Sousse, Tunisia; Faculty of Pharmacy, University of Monastir, avenue Avicenne, 5019 Monastir, Tunisia
| | - M Zeller
- Laboratory of Clinical and Epidemiological Virology, Department of Microbiology and Immunology, Rega Institute for Medical Research, University of Leuven, 1, place de l'Université, 1348 Louvain-La-Neuve, Belgium
| | - E Heylen
- Laboratory of Clinical and Epidemiological Virology, Department of Microbiology and Immunology, Rega Institute for Medical Research, University of Leuven, 1, place de l'Université, 1348 Louvain-La-Neuve, Belgium
| | - M Van Ranst
- Laboratory of Clinical and Epidemiological Virology, Department of Microbiology and Immunology, Rega Institute for Medical Research, University of Leuven, 1, place de l'Université, 1348 Louvain-La-Neuve, Belgium
| | - J Matthijnssens
- Laboratory of Clinical and Epidemiological Virology, Department of Microbiology and Immunology, Rega Institute for Medical Research, University of Leuven, 1, place de l'Université, 1348 Louvain-La-Neuve, Belgium
| | - A Trabelsi
- UR06SP20, Laboratory of Microbiology, Sahloul University Hospital, 4054 Sousse, Tunisia; Faculty of Pharmacy, University of Monastir, avenue Avicenne, 5019 Monastir, Tunisia.
| |
Collapse
|
14
|
Virulence-associated genome mutations of murine rotavirus identified by alternating serial passages in mice and cell cultures. J Virol 2014; 88:5543-58. [PMID: 24599996 DOI: 10.1128/jvi.00041-14] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
UNLABELLED Although significant clinical efficacy and safety of rotavirus vaccines were recently revealed in many countries, the mechanism of their attenuation is not well understood. We passaged serially a cell culture-adapted murine rotavirus EB strain in mouse pups or in cell cultures alternately and repeatedly and fully sequenced all 11 genes of 21 virus samples passaged in mice or in cell cultures. Sequence analysis revealed that mouse-passaged viruses that regained virulence almost consistently acquired four kinds of amino acid (aa) substitutions in VP4 and substitution in aa 37 (Val to Ala) in NSP4. In addition, they gained and invariably conserved the 3' consensus sequence in NSP1. The molecular changes occurred along with the acquisition of virulence during passages in mice and then disappeared following passages in cell cultures. Intraperitoneal injection of recombinant NSP4 proteins confirmed the aa 37 site as important for its diarrheagenic activity in mice. These genome changes are likely to be correlated with rotavirus virulence. IMPORTANCE Serial passage of a virulent wild-type virus in vitro often results in loss of virulence of the virus in an original animal host, while serial passage of a cell culture-adapted avirulent virus in vivo often gains virulence in an animal host. Actually, live attenuated virus vaccines were originally produced by serial passage in cell cultures. Although clinical efficacy and safety of rotavirus vaccines were recently revealed, the mechanism of their attenuation is not well understood. We passaged serially a murine rotavirus by alternating switch of host (mice or cell cultures) repeatedly and sequenced the eleven genes of the passaged viruses to identify mutations associated with the emergence or disappearance of virulence. Sequence analysis revealed that changes in three genes (VP4, NSP1, and NSP4) were associated with virulence in mice. Intraperitoneal injection of recombinant NSP4 proteins confirmed its diarrheagenic activity in mice. These genome changes are likely to be correlated with rotavirus virulence.
Collapse
|
15
|
Sastri NP, Pamidimukkala K, Marathahalli JR, Kaza S, Rao CD. Conformational Differences Unfold a Wide Range of Enterotoxigenic Abilities Exhibited by rNSP4 Peptides from Different Rotavirus Strains. Open Virol J 2011; 5:124-35. [PMID: 22253650 PMCID: PMC3256577 DOI: 10.2174/1874357901105010124] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Revised: 08/18/2011] [Accepted: 09/06/2011] [Indexed: 12/28/2022] Open
Abstract
NSP4 has been recognized as the rotavirus-encoded enterotoxin. However, a few studies failed to support its diarrheagenic activity. As recombinant NSP4 (rNSP4) peptides of different lengths were used in the limited number of studies, a comparison of relative diarrheagenic potential of NSP4 from different strains could not be possible. To better understand the diarrheagenic potential of NSP4 from different strains, in this report we have evaluated the enterotoxigenic activity of the deletion mutant ΔN72 that lacks the N-terminal 72 residues and the biologically relevant ΔN112 peptide which when derived from SA11 rotavirus strain were previously shown to be highly diarrheagenic in newborn mice. Detailed comparative analysis of biochemical and biophysical properties and diarrheagenic activity of the recombinant ΔN72 peptides from seventeen different strains under identical conditions revealed wide differences among themselves in their resistance to trypsin cleavage, thioflavin T (ThT) binding, multimerization and conformation without any correlation with their diarrhea inducing abilities. These results support our previously proposed concept for the requirement of a unique conformation for optimal biological functions conferred by cooperation between the N- and C-terminal regions of the cytoplasmic tail.
Collapse
|
16
|
Novel pentameric structure of the diarrhea-inducing region of the rotavirus enterotoxigenic protein NSP4. J Virol 2011; 85:12721-32. [PMID: 21917949 DOI: 10.1128/jvi.00349-11] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
A novel pentameric structure which differs from the previously reported tetrameric form of the diarrhea-inducing region of the rotavirus enterotoxin NSP4 is reported here. A significant feature of this pentameric form is the absence of the calcium ion located in the core region of the tetrameric structures. The lysis of cells, the crystallization of the region spanning residues 95 to 146 of NSP4 (NSP4(95-146)) of strain ST3 (ST3:NSP4(95-146)) at acidic pH, and comparative studies of the recombinant purified peptide under different conditions by size-exclusion chromatography (SEC) and of the crystal structures suggested pH-, Ca(2+)-, and protein concentration-dependent oligomeric transitions in the peptide. Since the NSP4(95-146) mutant lacks the N-terminal amphipathic domain (AD) and most of the C-terminal flexible region (FR), to demonstrate that the pentameric transition is not a consequence of the lack of the N- and C-terminal regions, glutaraldehyde cross-linking of the ΔN72 and ΔN94 mutant proteins, which contain or lack the AD, respectively, but possess the complete C-terminal FR, was carried out. The results indicate the presence of pentamers in preparations of these longer mutants. Detailed SEC analyses of ΔN94 prepared under different conditions, however, revealed protein concentration-dependent but metal ion- and pH-independent pentamer accumulation at high concentrations which dissociated into tetramers and lower oligomers at low protein concentrations. While calcium appeared to stabilize the tetramer, magnesium in particular stabilized the dimer. ΔN72 existed primarily in the multimeric form under all conditions. These findings of a calcium-free NSP4 pentamer and its concentration-dependent and largely calcium-independent oligomeric transitions open up a new dimension in an understanding of the structural basis of its multitude of functions.
Collapse
|
17
|
Abstract
PURPOSE OF REVIEW The authors discuss the most relevant information in the field of rotavirus vaccines published from October 2007 to June 2009; new information on the virus, host response and disease burden that relate to our understanding of vaccine mechanisms and impact are discussed. The review will focus on the role of the vaccines for the developing world but this does not preclude the relevance of these vaccines for children living in the industrialized world. RECENT FINDINGS Immune mechanisms involved in rotavirus-associated immunity potentially relevant for vaccine-associated immunity continue to be identified including anti-NSP4 antibodies, cellular and mucosal mechanisms. Rotavirus-associated disease burden is high, causing approximately 40% of diarrhea-associated hospitalizations in children less than 5 years of age worldwide; G12, G8 and P[6] antigenic types emerging in developing countries are increasing in prevalence and may share worldwide circulation with the other five more common serotypes. The two currently available vaccines, based on different immune concepts, (VP7/VP4 homotypic specificity for RotaTeq vs. homotypic and heterotypic specificity for Rotarix) have demonstrated high and sustained efficacy in middle and high-income countries. Recent efficacy and effectiveness studies demonstrate acceptable protection levels in the poorest countries of the world against most antigenic types, leading to universal vaccine recommendation. Postlicensure surveillance has not detected any signal of increased risk for intussusception in children vaccinated with any of the two vaccines. SUMMARY Rotavirus vaccines are well tolerated and provide adequate protection against moderate to severe disease in high, middle and low-income regions. Partnerships between governments, industry, and funding agencies will now be urgently needed to promote vaccine use, especially in the less privileged countries of the world.
Collapse
|