1
|
Wang X, Yang J, Huang P, Wang D, Zhang Z, Zhou Z, Liang L, Yao R, Yang L. Cytisine: State of the art in pharmacological activities and pharmacokinetics. Biomed Pharmacother 2024; 171:116210. [PMID: 38271893 DOI: 10.1016/j.biopha.2024.116210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/02/2024] [Accepted: 01/22/2024] [Indexed: 01/27/2024] Open
Abstract
Cytisine is a naturally occurring bioactive compound, an alkaloid mainly isolated from legume plants. In recent years, various biological activities of cytisine have been explored, showing certain effects in smoking cessation, reducing drinking behavior, anti-tumor, cardiovascular protection, blood sugar regulation, neuroprotection, osteoporosis prevention and treatment, etc. At the same time, cytisine has the advantages of high efficiency, safety, and low cost, has broad development prospects, and is a drug of great application value. However, a summary of cytisine's biological activities is currently lacking. Therefore, this paper summarizes the pharmacological action, mechanism, and pharmacokinetics of cytisine by referring to numerous databases, and analyzes the new and core targets of cytisine with the help of computer simulation technology, to provide reference for doctors.
Collapse
Affiliation(s)
- Xuezhen Wang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Jiaming Yang
- Research Center for Infectious Diseases, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Peifeng Huang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Dong Wang
- The First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Zhibin Zhang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Zehua Zhou
- Research Center for Infectious Diseases, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Leiqin Liang
- Research Center for Infectious Diseases, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Rongmei Yao
- Research Center for Infectious Diseases, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Long Yang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Research Center for Infectious Diseases, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; School of Public Health, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| |
Collapse
|
2
|
Terry AV, Jones K, Bertrand D. Nicotinic acetylcholine receptors in neurological and psychiatric diseases. Pharmacol Res 2023; 191:106764. [PMID: 37044234 DOI: 10.1016/j.phrs.2023.106764] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/30/2023] [Accepted: 04/07/2023] [Indexed: 04/14/2023]
Abstract
Neuronal nicotinic acetylcholine receptors (nAChRs) are ligand-gated ion channels that are widely distributed both pre- and post-synaptically in the mammalian brain. By modulating cation flux across cell membranes, neuronal nAChRs regulate neuronal excitability and the release of a variety of neurotransmitters to influence multiple physiologic and behavioral processes including synaptic plasticity, motor function, attention, learning and memory. Abnormalities of neuronal nAChRs have been implicated in the pathophysiology of neurologic disorders including Alzheimer's disease, Parkinson's disease, epilepsy, and Tourette´s syndrome, as well as psychiatric disorders including schizophrenia, depression, and anxiety. The potential role of nAChRs in a particular illness may be indicated by alterations in the expression of nAChRs in relevant brain regions, genetic variability in the genes encoding for nAChR subunit proteins, and/or clinical or preclinical observations where specific ligands showed a therapeutic effect. Over the past 25 years, extensive preclinical and some early clinical evidence suggested that ligands at nAChRs might have therapeutic potential for neurologic and psychiatric disorders. However, to date the only approved indications for nAChR ligands are smoking cessation and the treatment of dry eye disease. It has been argued that progress in nAChR drug discovery has been limited by translational gaps between the preclinical models and the human disease as well as unresolved questions regarding the pharmacological goal (i.e., agonism, antagonism or receptor desensitization) depending on the disease.
Collapse
Affiliation(s)
- Alvin V Terry
- Department of Pharmacology and Toxicology, Medical College of Georgia at Augusta University, Augusta, Georgia, 30912.
| | - Keri Jones
- Educational Innovation Institute, Medical College of Georgia at Augusta University, Augusta, Georgia, 30912
| | - Daniel Bertrand
- HiQScreen Sàrl, 6, rte de Compois, 1222 Vésenaz, Geneva, Switzerland
| |
Collapse
|
3
|
Noda Y, Knyahnytska Y, Zomorrodi R, Downar J, Rajji TK, Daskalakis ZJ, Blumberger DM. Vagally Mediated Heart Rate Variability Is Associated With Executive Function Changes in Patients With Treatment-Resistant Depression Following Magnetic Seizure Therapy. Neuromodulation 2022; 25:1378-1386. [PMID: 32870549 DOI: 10.1111/ner.13262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 07/03/2020] [Accepted: 07/25/2020] [Indexed: 12/14/2022]
Abstract
OBJECTIVES Magnetic seizure therapy (MST) is a novel investigational brain stimulation modality for patients with treatment-resistant depression (TRD). MST is a potential alternative seizure-based treatment to electroconvulsive therapy (ECT), given that it may offer equivalent antidepressant efficacy, yet with a relative sparing of cognitive functioning. Heart rate variability (HRV) is a marker of central autonomic functioning. We aimed to explore the relationships among baseline HRV, age, clinical outcome, and executive function following MST, in patients with TRD. MATERIALS AND METHODS Eighty-eight TRD patients (55 females; 18-70 years) were enrolled and 48 patients completed a course of MST in an open-label study. Patients received MST treatments two to three times per week, using one of three stimulation frequencies (ie, 100 Hz, 50 Hz, or 25 Hz) at 100% stimulator output. Root mean square of the successive R-R differences (RMSSD), an index of HRV, was computed from a baseline electrocardiogram (ECG) recording. Clinical symptoms were assessed using the Hamilton Depression Rating Scale (HAM-D24) and the Quick Inventory of Depressive Symptomatology (QIDS16). Executive function was assessed using the Trail Making Test and the Mazes Test from the MATRICS battery. RESULTS Baseline RMSSD was correlated with baseline HAM-D24 (r = -0.340, p = 0.001) and baseline Mazes Test (r = 0.417, p = 0.0007) but not with baseline Trail Making Test. Furthermore, baseline RMSSD was not correlated with changes on the HAM-D24, QIDS16, or total scores on the Trail Making Test. However, there was a significant correlation between baseline RMSSD and improvement on the Mazes Test following MST (r = 0.502, p = 0.0004). CONCLUSIONS Since this is an open-label trial, the influence of the placebo effect cannot be excluded. However, our results suggest that baseline RMSSD may be a state-biomarker of depression and executive function impairment. Additionally, while baseline vagally mediated resting cardiac activity did not predict the outcome of depression, it may mediate executive function improvements following MST.
Collapse
Affiliation(s)
- Yoshihiro Noda
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada; Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Yuliya Knyahnytska
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Reza Zomorrodi
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Jonathan Downar
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada; MRI-Guided rTMS Clinic, University Health Network, Toronto, ON, Canada
| | - Tarek K Rajji
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada; Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Zafiris J Daskalakis
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada; Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Daniel M Blumberger
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada; Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada.
| |
Collapse
|
4
|
Santis GD, Takeda N, Hirata K, Tsuruta K, Ishiuchi SI, Xantheas SS, Fujii M. Structure of Gas Phase Monohydrated Nicotine: Implications for Nicotine's Native Structure in the Acetylcholine Binding Protein. J Am Chem Soc 2022; 144:16698-16702. [PMID: 36043852 DOI: 10.1021/jacs.2c04064] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We report a joint experimental-theoretical study of the never reported before structure and infrared spectra of gas phase monohydrated nicotine (NIC) and nornicotine (NOR) and use them to assign their protonation sites. NIC's biological activity is strongly affected by its protonation site, namely, the pyrrolidine (Pyrro-NICH+, anticipated active form) and pyridine (Pyri-NICH+) forms; however, these have yet to be directly experimentally determined in either the nicotinic acetylcholine receptor (nAChR, no water present) or the acetylcholine-binding protein (AChBP, a single water molecule is present) but can only be inferred to be Pyrro-NICH+ from the intermolecular distance to the neighboring residues (i.e., tryptophan). Our temperature-controlled double ion trap infrared spectroscopic experiments assisted by the collisional stripping method and high-level theoretical calculations yield the protonation ratio of Pyri:Pyrro = 8:2 at 240 K for the gas phase NICH+···(H2O) complex, which resembles the molecular cluster present in the AChBP. Therefore, a single water molecule in the gas phase enhances this ratio in NICH+ relative to the 3:2 for the nonhydrated gas phase NICH+ in a trend that contrasts with the almost exclusive presence of Pyrro-NICH+ in aqueous solution. In contrast, the Pyri-NORH+ protomer is exclusively observed, a fact that may correlate with its weaker biological activity.
Collapse
Affiliation(s)
- Garrett D Santis
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Naoya Takeda
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8503, Japan.,School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8503, Japan
| | - Keisuke Hirata
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8503, Japan.,Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1 4259 Ookayama, Meguro-ku, Tokyo 152-8550, Japan.,Tokyo Tech World Research Hub Initiative (WRHI), Institute of Innovation Research, Tokyo Institute of Technology, 4259, Nagatsuta-cho, Midori-ku, Yokohama 226-8503, Japan
| | - Kazuya Tsuruta
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8503, Japan.,School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8503, Japan
| | - Shun-Ichi Ishiuchi
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8503, Japan.,Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1 4259 Ookayama, Meguro-ku, Tokyo 152-8550, Japan.,IIR Program for World Research (IPWR), Institute of Innovation Research, Tokyo Institute of Technology, 4259, Nagatsuta-cho, Midori-ku, Yokohama 226-8503, Japan
| | - Sotiris S Xantheas
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States.,Tokyo Tech World Research Hub Initiative (WRHI), Institute of Innovation Research, Tokyo Institute of Technology, 4259, Nagatsuta-cho, Midori-ku, Yokohama 226-8503, Japan.,Advanced Computing, Mathematics and Data Division, Pacific Northwest National Laboratory, 902 Battelle Boulevard, P.O. Box 999, MS K1-83, Richland, Washington 99352, United States
| | - Masaaki Fujii
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8503, Japan.,School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8503, Japan.,Tokyo Tech World Research Hub Initiative (WRHI), Institute of Innovation Research, Tokyo Institute of Technology, 4259, Nagatsuta-cho, Midori-ku, Yokohama 226-8503, Japan
| |
Collapse
|
5
|
Nirogi R, Abraham R, Jayarajan P, Goura V, Kallepalli R, Medapati RB, Tadiparthi J, Goyal VK, Pandey SK, Subramanian R, Petlu S, Thentu JB, Palacharla VRC, Gagginapally SR, Mohammed AR, Jasti V. Ropanicant (SUVN-911), an α4β2 nicotinic acetylcholine receptor antagonist intended for the treatment of depressive disorders: pharmacological, behavioral, and neurochemical characterization. Psychopharmacology (Berl) 2022; 239:2215-2232. [PMID: 35298691 DOI: 10.1007/s00213-022-06108-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 01/16/2022] [Indexed: 11/26/2022]
Abstract
RATIONALE Ropanicant (SUVN-911) (3-(6-Chloropyridine-3-yloxymethyl)-2-azabicyclo (3.1.0) hexane hydrochloride) is a novel α4β2 nicotinic acetylcholine receptor (nAChR) antagonist being developed for the treatment of depressive disorders. OBJECTIVES Pharmacological and neurochemical characterization of Ropanicant to support a potential molecule for the treatment of depressive disorders. METHODS Ropanicant was assessed for antidepressant-like activity using the rat forced swimming test (FST) and differential reinforcement of low rate -72 s (DRL-72 s). Alleviation of anhedonia was assessed in chronic mild stress model using sucrose preference test. To understand the mechanism of action, serotonin levels, ionized calcium-binding adaptor molecule 1 (Iba1), and brain-derived neurotrophic factor (BDNF) were determined. The onset of antidepressant-like activity was determined using the reduction in submissive behavior assay. The effects on cognition and sexual functions were assessed using the object recognition task and sexual dysfunction assay respectively. Interaction of Ropanicant, TC-5214, and methyllycaconitine (MLA) with citalopram was investigated individually in mice FST. RESULTS Ropanicant exhibited antidepressant like properties in the FST and DRL-72 s. A significant reduction in anhedonia was observed in the sucrose preference test. Oral administration of Ropanicant produced a significant increase in serotonin and BDNF levels, with a reduction in the Iba1 activity. The onset of antidepressant like effect with Ropanicant was within a week of treatment, and was devoid of cognitive dulling and sexual dysfunction. While Ropanicant potentiated the effect of citalopram in FST, such an effect was not observed with MLA or TC-5214. CONCLUSIONS Preclinical studies with Ropanicant support the likelihood of its therapeutic utility in the treatment of depressive disorders.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Venkat Jasti
- Suven Life Sciences Ltd, Hyderabad, 500034, India
| |
Collapse
|
6
|
Cytisine and cytisine derivatives. More than smoking cessation aids. Pharmacol Res 2021; 170:105700. [PMID: 34087351 DOI: 10.1016/j.phrs.2021.105700] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 05/29/2021] [Accepted: 05/29/2021] [Indexed: 12/12/2022]
Abstract
Cytisine, a natural bioactive compound that is mainly isolated from plants of the Leguminosae family (especially the seeds of Laburnum anagyroides), has been marketed in central and eastern Europe as an aid in the clinical management of smoking cessation for more than 50 years. Its main targets are neuronal nicotinic acetylcholine receptors (nAChRs), and pre-clinical studies have shown that its interactions with various nAChR subtypes located in different areas of the central and peripheral nervous systems are neuroprotective, have a wide range of biological effects on nicotine and alcohol addiction, regulate mood, food intake and motor activity, and influence the autonomic and cardiovascular systems. Its relatively rigid conformation makes it an attractive template for research of new derivatives. Recent studies of structurally modified cytisine have led to the development of new compounds and for some of them the biological activities are mediated by still unidentified targets other than nAChRs, whose mechanisms of action are still being investigated. The aim of this review is to describe and discuss: 1) the most recent pre-clinical results obtained with cytisine in the fields of neurological and non-neurological diseases; 2) the effects and possible mechanisms of action of the most recent cytisine derivatives; and 3) the main areas warranting further research.
Collapse
|
7
|
Gendy MNS, Ibrahim C, Sloan ME, Le Foll B. Randomized Clinical Trials Investigating Innovative Interventions for Smoking Cessation in the Last Decade. Handb Exp Pharmacol 2020; 258:395-420. [PMID: 31267165 DOI: 10.1007/164_2019_253] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Every year, billions of dollars are spent treating smoking and related conditions, yet smoking-related morbidity and mortality continue to rise. There are currently only three FDA-approved medications for smoking cessation: nicotine replacement therapy, bupropion, and varenicline. Although these medications increase abstinence rates, most individuals relapse following treatment. This chapter reviews clinical trials published within the past 10 years investigating novel smoking cessation pharmacotherapies. Among these pharmacotherapies, some showed promising results, such as cytisine and endocannabinoid modulators, whereas others failed to produce significant effects. More research is needed to develop drugs that produce higher rates of long-term abstinence and to determine which subgroups of patients benefit from a given treatment.
Collapse
Affiliation(s)
- Marie N S Gendy
- Translational Addiction Research Laboratory, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Pharmacology, University of Toronto, Toronto, ON, Canada
| | - Christine Ibrahim
- Translational Addiction Research Laboratory, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Pharmacology, University of Toronto, Toronto, ON, Canada
| | - Matthew E Sloan
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Bernard Le Foll
- Translational Addiction Research Laboratory, Centre for Addiction and Mental Health, Toronto, ON, Canada.
- Department of Pharmacology, University of Toronto, Toronto, ON, Canada.
- Addictions Division, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada.
- Division of Brain and Therapeutics, Department of Psychiatry, University of Toronto, Toronto, ON, Canada.
- Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada.
- Alcohol Research and Treatment Clinic, Centre for Addiction and Mental Health, Toronto, ON, Canada.
- Department of Family and Community Medicine, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
8
|
Lithgow BJ, Moussavi Z, Fitzgerald PB. Quantitative separation of the depressive phase of bipolar disorder and major depressive disorder using electrovestibulography. World J Biol Psychiatry 2019; 20:799-812. [PMID: 30912461 DOI: 10.1080/15622975.2019.1599143] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Objectives: No electrophysiological, neuroimaging or genetic markers have been established that strongly relate to the diagnostic separation of bipolar disorder (BD) and major depressive disorder (MDD). This paper's objective is to describe the potential of features, extracted from the recording of electrical activity from the outer ear canal, in a process called electrovestibulography (EVestG), for identifying depressed and partly remitted/remitted MDD and BD patients from each other.Methods: From EVestG data four sensory vestibulo-acoustic features were extracted from both background (no movement) and using a single supine-vertical translation stimulus to distinguish 27 controls, 39 MDD and 43 BD patients.Results: Using leave-one-out-cross-validation, unbiased parametric and non-parametric classification routines resulted in 78-83% (2-3 features), 80-81% (1-2 features) and 66-68% (3 features) accuracies for separation of MDD from BD, controls from depressed (BD & MDD) and the 3-way separation of BD from MDD from control groups, respectively. The main limitations of this study were the inability to fully disentangle the impact of prescribed medication from the responses and also the limited sample size.Conclusions: EVestG features can reliably identify depressed and partly remitted/remitted MDD and BD patients from each other.
Collapse
Affiliation(s)
- Brian J Lithgow
- Monash Alfred Psychiatry Research Centre, Monash University Central Clinical School and the Alfred Hospital, Melbourne, Australia.,Diagnostic and Neurosignal Processing Research Laboratory, Riverview Health Centre, University of Manitoba, Winnipeg, Canada
| | - Zahra Moussavi
- Diagnostic and Neurosignal Processing Research Laboratory, Riverview Health Centre, University of Manitoba, Winnipeg, Canada
| | - Paul B Fitzgerald
- Monash Alfred Psychiatry Research Centre, Monash University Central Clinical School and the Alfred Hospital, Melbourne, Australia.,Epworth Centre for Innovation in Mental Health, Epworth Healthcare, Camberwell, Australia
| |
Collapse
|
9
|
So HC, Chau CKL, Lau A, Wong SY, Zhao K. Translating GWAS findings into therapies for depression and anxiety disorders: gene-set analyses reveal enrichment of psychiatric drug classes and implications for drug repositioning. Psychol Med 2019; 49:2692-2708. [PMID: 30569882 DOI: 10.1017/s0033291718003641] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
BACKGROUND Depression and anxiety disorders (AD) are the first and sixth leading causes of disability worldwide. Despite their high prevalence and significant disability resulted, there are limited advances in new drug development. Recently, genome-wide association studies (GWAS) have greatly advanced our understanding of the genetic basis underlying psychiatric disorders. METHODS Here we employed gene-set analyses of GWAS summary statistics for drug repositioning. We explored five related GWAS datasets, including two on major depressive disorder (MDD2018 and MDD-CONVERGE, with the latter focusing on severe melancholic depression), one on AD, and two on depressive symptoms and neuroticism in the population. We extracted gene-sets associated with each drug from DSigDB and examined their association with each GWAS phenotype. We also performed repositioning analyses on meta-analyzed GWAS data, integrating evidence from all related phenotypes. RESULTS Importantly, we showed that the repositioning hits are generally enriched for known psychiatric medications or those considered in clinical trials. Enrichment was seen for antidepressants and anxiolytics but also for antipsychotics. We also revealed new candidates or drug classes for repositioning, some of which were supported by experimental or clinical studies. For example, the top repositioning hit using meta-analyzed p values was fendiline, which was shown to produce antidepressant-like effects in mouse models by inhibition of acid sphingomyelinase. CONCLUSION Taken together, our findings suggest that human genomic data such as GWAS are useful in guiding drug discoveries for depression and AD.
Collapse
Affiliation(s)
- Hon-Cheong So
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
- KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research of Common Diseases, Kunming Zoology Institute of Zoology and The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Carlos Kwan-Long Chau
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Alexandria Lau
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Sze-Yung Wong
- Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Kai Zhao
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
| |
Collapse
|
10
|
Sudewi AA, Susilawathi NM, Mahardika BK, Mahendra AN, Pharmawati M, Phuong MA, Mahardika GN. Selecting Potential Neuronal Drug Leads from Conotoxins of Various Venomous Marine Cone Snails in Bali, Indonesia. ACS OMEGA 2019; 4:19483-19490. [PMID: 31763573 PMCID: PMC6868881 DOI: 10.1021/acsomega.9b03122] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 10/23/2019] [Indexed: 06/10/2023]
Abstract
Many conotoxins, natural peptides of marine cone snails, have been identified to target neurons. Here, we provide data on pharmacological families of the conotoxins of 11 species of cone snails collected in Bali. The identified definitive pharmacological families possibly targeting neuronal tissues were α (alpha), ι (iota), κ (kappa), and ρ (rho). These classes shall target nicotinic acetylcholine receptors, voltage-gated Na channels, voltage-gated K channels, and α1-adrenoceptors, respectively. The VI/VII-O3 conotoxins might be prospected as an inhibitor of N-methyl-d-aspartate. Con-ikot-ikot could be applied as an α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor blocker medicine. The definitive pharmacology classes of conotoxins as well as those yet to be elucidated need to be further established and verified.
Collapse
Affiliation(s)
- Anak A.
R. Sudewi
- Neurology
Department of the Faculty of Medicine and Pharmacology Department of the Faculty
of Medicine, Udayana University, Jl. Sudirman, Denpasar 80226, Bali, Indonesia
| | - Ni M. Susilawathi
- Neurology
Department of the Faculty of Medicine and Pharmacology Department of the Faculty
of Medicine, Udayana University, Jl. Sudirman, Denpasar 80226, Bali, Indonesia
| | - Bayu K. Mahardika
- The
Animal Biomedical and Molecular Biology Laboratory, Udayana University of Bali, Jl. Sesetan-Markisa 6, Denpasar 80223, Bali, Indonesia
| | - Agung N. Mahendra
- Neurology
Department of the Faculty of Medicine and Pharmacology Department of the Faculty
of Medicine, Udayana University, Jl. Sudirman, Denpasar 80226, Bali, Indonesia
| | - Made Pharmawati
- Faculty
of Mathematic and Natural Sciences, Udayana
University of Bali, Kampus
Bukit Jimbaran, Badung 80361, Bali, Indonesia
| | - Mark A. Phuong
- Department
of Ecology and Evolutionary Biology, University
of California, Los Angeles, Los
Angeles 90095, California, United States
| | - Gusti N. Mahardika
- The
Animal Biomedical and Molecular Biology Laboratory, Udayana University of Bali, Jl. Sesetan-Markisa 6, Denpasar 80223, Bali, Indonesia
- The Indonesian
Biodiversity Research Center, Jl. Sudirman, Denpasar 80225, Bali, Indonesia
| |
Collapse
|
11
|
Lithgow BJ, Moussavi Z, Gurvich C, Kulkarni J, Maller JJ, Fitzgerald PB. Bipolar disorder in the balance. Eur Arch Psychiatry Clin Neurosci 2019; 269:761-775. [PMID: 30083956 DOI: 10.1007/s00406-018-0935-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Accepted: 07/30/2018] [Indexed: 12/27/2022]
Abstract
Bipolar disorder (BD) is a severe mood disorder that lacks established electrophysiological, neuroimaging or biological markers to assist with both diagnosis and monitoring disease severity. This study's aim is to describe the potential of new neurophysiological features assistive in BD diagnosis and severity measurement utilizing the recording of electrical activity from the outer ear canal called Electrovestibulography (EVestG). From EVestG data sensory vestibulo-acoustic features were extracted from a single supine-vertical translation stimulus to distinguish 50 depressed and partly remitted/remitted bipolar disorder patients [18 symptomatic (BD-S, MADRS > 19), 32 reduced symptomatic (BD-R, MADRS ≤ 19)] and 31 age and gender matched healthy individuals (controls). Six features were extracted from the measured firing pattern interval histogram and the extracted shape of the average field potential response. Five of the six features had low but significant correlations (p < 0.05) with the MADRS assessment. Using leave-one-out-cross-validation, unbiased parametric and non-parametric classification routines resulted in 75-79%, 84-86%, 76-85% and 79-82% accuracy for separation of control from BD, BD-S and BD-R as well as BD-S from BD-R groups, respectively. The main limitation of this study was the inability to fully disentangle the impact of prescribed medication from the responses recorded. A mix of stationary and movement evoked EVestG features produced good discrimination between control and BD patients whether BD-S or BD-R. Moreover, BD-S and BD-R appear to have measurably different pathophysiological manifestations. The firing pattern features used were dissimilar to those observed in a prior major depressive disorder study.
Collapse
Affiliation(s)
- Brian J Lithgow
- Monash Alfred Psychiatry Research Centre, Monash University Central Clinical School and The Alfred Hospital, 607 St Kilda Rd, Melbourne, VIC, Australia.
- Diagnostic and Neurosignal Processing Research Laboratory, Riverview Health Centre, University of Manitoba, Winnipeg, MB, Canada.
| | - Zahra Moussavi
- Diagnostic and Neurosignal Processing Research Laboratory, Riverview Health Centre, University of Manitoba, Winnipeg, MB, Canada
| | - Caroline Gurvich
- Monash Alfred Psychiatry Research Centre, Monash University Central Clinical School and The Alfred Hospital, 607 St Kilda Rd, Melbourne, VIC, Australia
| | - Jayashri Kulkarni
- Monash Alfred Psychiatry Research Centre, Monash University Central Clinical School and The Alfred Hospital, 607 St Kilda Rd, Melbourne, VIC, Australia
| | - Jerome J Maller
- Monash Alfred Psychiatry Research Centre, Monash University Central Clinical School and The Alfred Hospital, 607 St Kilda Rd, Melbourne, VIC, Australia
| | - Paul B Fitzgerald
- Monash Alfred Psychiatry Research Centre, Monash University Central Clinical School and The Alfred Hospital, 607 St Kilda Rd, Melbourne, VIC, Australia
| |
Collapse
|
12
|
Zakrzewicz A, Richter K, Zakrzewicz D, Siebers K, Damm J, Agné A, Hecker A, McIntosh JM, Chamulitrat W, Krasteva-Christ G, Manzini I, Tikkanen R, Padberg W, Janciauskiene S, Grau V. SLPI Inhibits ATP-Mediated Maturation of IL-1β in Human Monocytic Leukocytes: A Novel Function of an Old Player. Front Immunol 2019; 10:664. [PMID: 31019507 PMCID: PMC6458293 DOI: 10.3389/fimmu.2019.00664] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 03/11/2019] [Indexed: 12/17/2022] Open
Abstract
Interleukin-1β (IL-1β) is a potent, pro-inflammatory cytokine of the innate immune system that plays an essential role in host defense against infection. However, elevated circulating levels of IL-1β can cause life-threatening systemic inflammation. Hence, mechanisms controlling IL-1β maturation and release are of outstanding clinical interest. Secretory leukocyte protease inhibitor (SLPI), in addition to its well-described anti-protease function, controls the expression of several pro-inflammatory cytokines on the transcriptional level. In the present study, we tested the potential involvement of SLPI in the control of ATP-induced, inflammasome-dependent IL-1β maturation and release. We demonstrated that SLPI dose-dependently inhibits the ATP-mediated inflammasome activation and IL-1β release in human monocytic cells, without affecting the induction of pro-IL-1β mRNA by LPS. In contrast, the ATP-independent IL-1β release induced by the pore forming bacterial toxin nigericin is not impaired, and SLPI does not directly modulate the ion channel function of the human P2X7 receptor heterologously expressed in Xenopus laevis oocytes. In human monocytic U937 cells, however, SLPI efficiently inhibits ATP-induced ion-currents. Using specific inhibitors and siRNA, we demonstrate that SLPI activates the calcium-independent phospholipase A2β (iPLA2β) and leads to the release of a low molecular mass factor that mediates the inhibition of IL-1β release. Signaling involves nicotinic acetylcholine receptor subunits α7, α9, α10, and Src kinase activation and results in an inhibition of ATP-induced caspase-1 activation. In conclusion, we propose a novel anti-inflammatory mechanism induced by SLPI, which inhibits the ATP-dependent maturation and secretion of IL-1β. This novel signaling pathway might lead to development of therapies that are urgently needed for the prevention and treatment of systemic inflammation.
Collapse
Affiliation(s)
- Anna Zakrzewicz
- Laboratory of Experimental Surgery, Department of General and Thoracic Surgery, German Center for Lung Research, Justus-Liebig-University Giessen, Giessen, Germany
| | - Katrin Richter
- Laboratory of Experimental Surgery, Department of General and Thoracic Surgery, German Center for Lung Research, Justus-Liebig-University Giessen, Giessen, Germany
| | - Dariusz Zakrzewicz
- German Center for Lung Research, Faculty of Medicine, Institute of Biochemistry, Justus-Liebig-University Giessen, Giessen, Germany
| | - Kathrin Siebers
- Laboratory of Experimental Surgery, Department of General and Thoracic Surgery, German Center for Lung Research, Justus-Liebig-University Giessen, Giessen, Germany
| | - Jelena Damm
- Laboratory of Experimental Surgery, Department of General and Thoracic Surgery, German Center for Lung Research, Justus-Liebig-University Giessen, Giessen, Germany
| | - Alisa Agné
- Laboratory of Experimental Surgery, Department of General and Thoracic Surgery, German Center for Lung Research, Justus-Liebig-University Giessen, Giessen, Germany
| | - Andreas Hecker
- Laboratory of Experimental Surgery, Department of General and Thoracic Surgery, German Center for Lung Research, Justus-Liebig-University Giessen, Giessen, Germany
| | - J Michael McIntosh
- Department of Biology, University of Utah, Salt Lake City, UT, United States.,George E. Wahlen Veterans Affairs, Medical Center, Salt Lake City, UT, United States.,Department of Psychiatry, University of Utah, Salt Lake City, UT, United States
| | - Walee Chamulitrat
- Department of Internal Medicine IV, University Heidelberg Hospital, Heidelberg, Germany
| | - Gabriela Krasteva-Christ
- Faculty of Medicine, Institute of Anatomy and Cell Biology, Saarland University, Homburg, Germany
| | - Ivan Manzini
- Department of Animal Physiology and Molecular Biomedicine, Justus-Liebig-University Giessen, Giessen, Germany
| | - Ritva Tikkanen
- Faculty of Medicine, Institute of Biochemistry, Justus-Liebig-University, Giessen, Germany
| | - Winfried Padberg
- Laboratory of Experimental Surgery, Department of General and Thoracic Surgery, German Center for Lung Research, Justus-Liebig-University Giessen, Giessen, Germany
| | - Sabina Janciauskiene
- Department of Respiratory Medicine, German Center for Lung Research, Hannover Medical School, Hannover, Germany
| | - Veronika Grau
- Laboratory of Experimental Surgery, Department of General and Thoracic Surgery, German Center for Lung Research, Justus-Liebig-University Giessen, Giessen, Germany
| |
Collapse
|
13
|
Gillentine MA, White JJ, Grochowski CM, Lupski JR, Schaaf CP, Calarge CA, Calarge CA. CHRNA7 copy number gains are enriched in adolescents with major depressive and anxiety disorders. J Affect Disord 2018; 239:247-252. [PMID: 30029151 PMCID: PMC6273479 DOI: 10.1016/j.jad.2018.07.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 05/15/2018] [Accepted: 07/07/2018] [Indexed: 12/19/2022]
Abstract
OBJECTIVE Neuronal nicotinic acetylcholine receptors (nAChRs), specifically the α7 nAChR encoded by the gene CHRNA7, have been implicated in behavior regulation in animal models. In humans, copy number variants (CNVs) of CHRNA7 are found in a range of neuropsychiatric disorders, including mood and anxiety disorders. Here, we aimed to determine the prevalence of CHRNA7 CNVs among adolescents and young adults with major depressive disorder (MDD) and anxiety disorders. METHODS Twelve to 21 year-old participants with MDD and/or anxiety disorders (34% males, mean ± std age: 18.9 ± 1.8 years) were assessed for CHRNA7 copy number state using droplet digital PCR (ddPCR) and genomic quantitative PCR (qPCR). Demographic, anthropometric, and clinical data, including the Beck Anxiety Index (BAI), Beck Depression Inventory (BDI), and the Inventory of Depressive Symptoms (IDS) were collected and compared across individuals with and without a CHRNA7 CNV. RESULTS Of 205 individuals, five (2.4%) were found to carry a CHRNA7 gain, significantly higher than the general population. No CHRNA7 deletions were identified. Clinically, the individuals carrying CHRNA7 duplications did not differ significantly from copy neutral individuals with MDD and/or anxiety disorders. CONCLUSIONS CHRNA7 gains are relatively prevalent among young individuals with MDD and anxiety disorders (odds ratio = 4.032) without apparent distinguishing clinical features. Future studies should examine the therapeutic potential of α7 nAChR targeting drugs to ameliorate depressive and anxiety disorders.
Collapse
Affiliation(s)
- Madelyn A. Gillentine
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas.,Jan and Dan Neurological Research Institute, Texas Children’s Hospital, Houston, Texas
| | - Janson J. White
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | | | - James R. Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas.,Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas.,Texas Children’s Hospital, Houston, Texas
| | - Christian P. Schaaf
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas.,Jan and Dan Neurological Research Institute, Texas Children’s Hospital, Houston, Texas
| | - Chadi A. Calarge
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, Texas
| | - Chadi A Calarge
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX 77030, United States.
| |
Collapse
|
14
|
Siebers K, Fink B, Zakrzewicz A, Agné A, Richter K, Konzok S, Hecker A, Zukunft S, Küllmar M, Klein J, McIntosh JM, Timm T, Sewald K, Padberg W, Aggarwal N, Chamulitrat W, Santoso S, Xia W, Janciauskiene S, Grau V. Alpha-1 Antitrypsin Inhibits ATP-Mediated Release of Interleukin-1β via CD36 and Nicotinic Acetylcholine Receptors. Front Immunol 2018; 9:877. [PMID: 29922281 PMCID: PMC5996888 DOI: 10.3389/fimmu.2018.00877] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 04/09/2018] [Indexed: 12/30/2022] Open
Abstract
While interleukin (IL)-1β is a potent pro-inflammatory cytokine involved in host defense, high levels can cause life-threatening sterile inflammation including systemic inflammatory response syndrome. Hence, the control of IL-1β secretion is of outstanding biomedical importance. In response to a first inflammatory stimulus such as lipopolysaccharide, pro-IL-1β is synthesized as a cytoplasmic inactive pro-form. Extracellular ATP originating from injured cells is a prototypical second signal for inflammasome-dependent maturation and release of IL-1β. The human anti-protease alpha-1 antitrypsin (AAT) and IL-1β regulate each other via mechanisms that are only partially understood. Here, we demonstrate that physiological concentrations of AAT efficiently inhibit ATP-induced release of IL-1β from primary human blood mononuclear cells, monocytic U937 cells, and rat lung tissue, whereas ATP-independent IL-1β release is not impaired. Both, native and oxidized AAT are active, suggesting that the inhibition of IL-1β release is independent of the anti-elastase activity of AAT. Signaling of AAT in monocytic cells involves the lipid scavenger receptor CD36, calcium-independent phospholipase A2β, and the release of a small soluble mediator. This mediator leads to the activation of nicotinic acetylcholine receptors, which efficiently inhibit ATP-induced P2X7 receptor activation and inflammasome assembly. We suggest that AAT controls ATP-induced IL-1β release from human mononuclear blood cells by a novel triple-membrane-passing signaling pathway. This pathway may have clinical implications for the prevention of sterile pulmonary and systemic inflammation.
Collapse
Affiliation(s)
- Kathrin Siebers
- Laboratory of Experimental Surgery, Department of General and Thoracic Surgery, Justus Liebig University Giessen, German Centre for Lung Research, Giessen, Germany
| | - Bijan Fink
- Laboratory of Experimental Surgery, Department of General and Thoracic Surgery, Justus Liebig University Giessen, German Centre for Lung Research, Giessen, Germany
| | - Anna Zakrzewicz
- Laboratory of Experimental Surgery, Department of General and Thoracic Surgery, Justus Liebig University Giessen, German Centre for Lung Research, Giessen, Germany
| | - Alisa Agné
- Laboratory of Experimental Surgery, Department of General and Thoracic Surgery, Justus Liebig University Giessen, German Centre for Lung Research, Giessen, Germany
| | - Katrin Richter
- Laboratory of Experimental Surgery, Department of General and Thoracic Surgery, Justus Liebig University Giessen, German Centre for Lung Research, Giessen, Germany
| | - Sebastian Konzok
- Fraunhofer Institute for Toxicology and Experimental Medicine, German Centre for Lung Research, Hannover, Germany
| | - Andreas Hecker
- Laboratory of Experimental Surgery, Department of General and Thoracic Surgery, Justus Liebig University Giessen, German Centre for Lung Research, Giessen, Germany
| | - Sven Zukunft
- Institute of Vascular Signalling, Centre for Molecular Medicine, Goethe University, Frankfurt, Germany
| | - Mira Küllmar
- Laboratory of Experimental Surgery, Department of General and Thoracic Surgery, Justus Liebig University Giessen, German Centre for Lung Research, Giessen, Germany
| | - Jochen Klein
- Department of Pharmacology, Goethe University College of Pharmacy, Frankfurt, Germany
| | - J Michael McIntosh
- Department of Biology, University of Utah, Salt Lake City, UT, United States.,George E. Wahlen Veterans Affairs Medical Center, Salt Lake City, UT, United States.,Department of Psychiatry, University of Utah, Salt Lake City, UT, United States
| | - Thomas Timm
- Protein Analytics, Institute of Biochemistry, Justus Liebig University Giessen, Giessen, Germany
| | - Katherina Sewald
- Fraunhofer Institute for Toxicology and Experimental Medicine, German Centre for Lung Research, Hannover, Germany
| | - Winfried Padberg
- Laboratory of Experimental Surgery, Department of General and Thoracic Surgery, Justus Liebig University Giessen, German Centre for Lung Research, Giessen, Germany
| | - Nupur Aggarwal
- Department of Respiratory Medicine, Hannover Medical School, German Centre for Lung Research, Hannover, Germany
| | - Walee Chamulitrat
- Department of Internal Medicine IV, University Heidelberg Hospital, Heidelberg, Germany
| | - Sentot Santoso
- Institute for Clinical Immunology and Transfusion Medicine, Justus Liebig University Giessen, Giessen, Germany
| | - Wendy Xia
- Institute of Blood Transfusion, Guangzhou Blood Centre, Guangzhou, China
| | - Sabina Janciauskiene
- Department of Respiratory Medicine, Hannover Medical School, German Centre for Lung Research, Hannover, Germany
| | - Veronika Grau
- Laboratory of Experimental Surgery, Department of General and Thoracic Surgery, Justus Liebig University Giessen, German Centre for Lung Research, Giessen, Germany
| |
Collapse
|
15
|
Petrakis IL, Ralevski E, Gueorguieva R, O’Malley SS, Arias A, Sevarino KA, Jane JS, O’Brien E, Krystal JH. Mecamylamine treatment for alcohol dependence: a randomized controlled trial. Addiction 2018; 113:6-14. [PMID: 28710873 PMCID: PMC5725262 DOI: 10.1111/add.13943] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 03/08/2017] [Accepted: 07/12/2017] [Indexed: 12/24/2022]
Abstract
BACKGROUND AND AIMS The nicotinic acetylcholine receptor antagonist, mecamylamine, is a potential novel pharmacotherapy for alcohol use disorder. The aims were to compare alcohol consumption between mecamylamine and placebo and test if smoking status modified treatment effects. DESIGN Out-patient, randomized, double-blind clinical trial for 12 weeks of treatment with mecamylamine (10 mg) (n = 65) versus placebo (n = 63). SETTING Connecticut, USA. PARTICIPANTS Individuals had current alcohol dependence (n = 128), had an average age of 48.5 [standard deviation (SD) = 9.4], 110 (85.9%) were men, and included 74 smokers (57.8%) and 54 non-smokers (42.2%). Participants were randomized to mecamylamine 10 mg per day or placebo. All subjects also received medical management therapy administered by trained research personnel. MEASUREMENTS Primary outcome was percentage of heavy drinking days during the last month of treatment; other outcomes included drinking days, drinks per drinking days, alcohol craving, smoking, symptoms of nicotine withdrawal and side effects. FINDINGS There were no significant differences in the percentage of heavy drinking days at 3 months between the mecamylamine (mean = 18.4, SD = 29.0) and placebo treatment groups (mean = 20.4, SD = 29.2) [F1, 100 = 1.3, P = 0.25; effect size d = 0.07; mean difference = 2.06, 95% confidence interval (CI) = -8.96 to 13.08]. There were no significant differences in percentage of drinking days or in drinks per drinking day at month 3 between the mecamylamine and placebo groups; there were no significant interactions. CONCLUSIONS Mecamylamine 10 mg per day did not reduce alcohol consumption significantly in treatment-seeking smokers and non-smokers with alcohol use disorder.
Collapse
Affiliation(s)
- Ismene L. Petrakis
- VISN I Mental Illness Research Education Clinical Center (MIRECC)
- VA Connecticut Healthcare System
- Yale University School of Medicine, Department of Psychiatry
| | - Elizabeth Ralevski
- VISN I Mental Illness Research Education Clinical Center (MIRECC)
- VA Connecticut Healthcare System
- Yale University School of Medicine, Department of Psychiatry
| | - Ralitza Gueorguieva
- Yale University School of Medicine, Department of Psychiatry
- Yale University School of Public Health, Department of Biostatistics
| | | | - Albert Arias
- VISN I Mental Illness Research Education Clinical Center (MIRECC)
- VA Connecticut Healthcare System
- Yale University School of Medicine, Department of Psychiatry
| | - Kevin A. Sevarino
- VISN I Mental Illness Research Education Clinical Center (MIRECC)
- VA Connecticut Healthcare System
- Yale University School of Medicine, Department of Psychiatry
| | - Jane S. Jane
- VISN I Mental Illness Research Education Clinical Center (MIRECC)
- VA Connecticut Healthcare System
- Yale University School of Medicine, Department of Psychiatry
| | - Erin O’Brien
- VISN I Mental Illness Research Education Clinical Center (MIRECC)
- VA Connecticut Healthcare System
- Yale University School of Medicine, Department of Psychiatry
| | - John H. Krystal
- VA Connecticut Healthcare System
- Yale University School of Medicine, Department of Psychiatry
| |
Collapse
|
16
|
Kirsch GE, Fedorov NB, Kuryshev YA, Liu Z, Armstrong LC, Orr MS. Electrophysiology-Based Assays to Detect Subtype-Selective Modulation of Human Nicotinic Acetylcholine Receptors. Assay Drug Dev Technol 2017; 14:333-44. [PMID: 27505073 PMCID: PMC4991607 DOI: 10.1089/adt.2015.688] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The Family Smoking Prevention and Tobacco Control Act of 2009 (Public Law 111-31) gave the US Food and Drug Administration (FDA) the responsibility for regulating tobacco products. Nicotine is the primary addictive component of tobacco and its effects can be modulated by additional ingredients in manufactured products. Nicotine acts by mimicking the neurotransmitter acetylcholine on neuronal nicotinic acetylcholine receptors (nAChRs), which function as ion channels in cholinergic modulation of neurotransmission. Subtypes within the family of neuronal nAChRs are defined by their α- and β-subunit composition. The subtype-selective profiles of tobacco constituents are largely unknown, but could be essential for understanding the physiological effects of tobacco products. In this report, we report the development and validation of electrophysiology-based high-throughput screens (e-HTS)for human nicotinic subtypes, α3β4, α3β4α5, α4β2, and α7 stably expressed in Chinese Hamster Ovary cells. Assessment of agonist sensitivity and acute desensitization gave results comparable to those obtained by conventional manual patch clamp electrophysiology assays. The potency of reference antagonists for inhibition of the receptor channels and selectivity of positive allosteric modulators also were very similar between e-HTS and conventional manual patch voltage clamp data. Further validation was obtained in pilot screening of a library of FDA-approved drugs that identified α7 subtype-selective positive allosteric modulation by novel compounds. These assays provide new tools for profiling of nicotinic receptor selectivity.
Collapse
Affiliation(s)
| | | | | | - Zhiqi Liu
- 1 Charles River Discovery , Cleveland, Ohio
| | | | - Michael S Orr
- 2 Center for Tobacco Products , US FDA, Silver Spring, Maryland
| |
Collapse
|
17
|
Zakrzewicz A, Richter K, Agné A, Wilker S, Siebers K, Fink B, Krasteva-Christ G, Althaus M, Padberg W, Hone AJ, McIntosh JM, Grau V. Canonical and Novel Non-Canonical Cholinergic Agonists Inhibit ATP-Induced Release of Monocytic Interleukin-1β via Different Combinations of Nicotinic Acetylcholine Receptor Subunits α7, α9 and α10. Front Cell Neurosci 2017; 11:189. [PMID: 28725182 PMCID: PMC5496965 DOI: 10.3389/fncel.2017.00189] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 06/20/2017] [Indexed: 12/22/2022] Open
Abstract
Recently, we discovered a cholinergic mechanism that inhibits the adenosine triphosphate (ATP)-dependent release of interleukin-1β (IL-1β) by human monocytes via nicotinic acetylcholine receptors (nAChRs) composed of α7, α9 and/or α10 subunits. Furthermore, we identified phosphocholine (PC) and dipalmitoylphosphatidylcholine (DPPC) as novel nicotinic agonists that elicit metabotropic activity at monocytic nAChR. Interestingly, PC does not provoke ion channel responses at conventional nAChRs composed of subunits α9 and α10. The purpose of this study is to determine the composition of nAChRs necessary for nicotinic signaling in monocytic cells and to test the hypothesis that common metabolites of phosphatidylcholines, lysophosphatidylcholine (LPC) and glycerophosphocholine (G-PC), function as nAChR agonists. In peripheral blood mononuclear cells from nAChR gene-deficient mice, we demonstrated that inhibition of ATP-dependent release of IL-1β by acetylcholine (ACh), nicotine and PC depends on subunits α7, α9 and α10. Using a panel of nAChR antagonists and siRNA technology, we confirmed the involvement of these subunits in the control of IL-1β release in the human monocytic cell line U937. Furthermore, we showed that LPC (C16:0) and G-PC efficiently inhibit ATP-dependent release of IL-1β. Of note, the inhibitory effects mediated by LPC and G-PC depend on nAChR subunits α9 and α10, but only to a small degree on α7. In Xenopuslaevis oocytes heterologously expressing different combinations of human α7, α9 or α10 subunits, ACh induced canonical ion channel activity, whereas LPC, G-PC and PC did not. In conclusion, we demonstrate that canonical nicotinic agonists and PC elicit metabotropic nAChR activity in monocytes via interaction of nAChR subunits α7, α9 and α10. For the metabotropic signaling of LPC and G-PC, nAChR subunits α9 and α10 are needed, whereas α7 is virtually dispensable. Furthermore, molecules bearing a PC group in general seem to regulate immune functions without perturbing canonical ion channel functions of nAChR.
Collapse
Affiliation(s)
- Anna Zakrzewicz
- Laboratory of Experimental Surgery, Department of General and Thoracic Surgery, Justus-Liebig-University GiessenGiessen, Germany
| | - Katrin Richter
- Laboratory of Experimental Surgery, Department of General and Thoracic Surgery, Justus-Liebig-University GiessenGiessen, Germany
| | - Alisa Agné
- Laboratory of Experimental Surgery, Department of General and Thoracic Surgery, Justus-Liebig-University GiessenGiessen, Germany
| | - Sigrid Wilker
- Laboratory of Experimental Surgery, Department of General and Thoracic Surgery, Justus-Liebig-University GiessenGiessen, Germany
| | - Kathrin Siebers
- Laboratory of Experimental Surgery, Department of General and Thoracic Surgery, Justus-Liebig-University GiessenGiessen, Germany
| | - Bijan Fink
- Laboratory of Experimental Surgery, Department of General and Thoracic Surgery, Justus-Liebig-University GiessenGiessen, Germany
| | - Gabriela Krasteva-Christ
- Institute of Anatomy and Cell Biology, Justus-Liebig-University GiessenGiessen, Germany.,Institute of Anatomy and Cell Biology, Saarland UniversityHomburg, Germany.,Member of the German Centre for Lung ResearchGiessen, Germany
| | - Mike Althaus
- Institute of Animal Physiology, Justus-Liebig-University GiessenGiessen, Germany.,School of Biology, Newcastle UniversityNewcastle upon Tyne, United Kingdom
| | - Winfried Padberg
- Laboratory of Experimental Surgery, Department of General and Thoracic Surgery, Justus-Liebig-University GiessenGiessen, Germany
| | - Arik J Hone
- Department of Biology, University of UtahSalt Lake City, UT, United States
| | - J Michael McIntosh
- Department of Biology, University of UtahSalt Lake City, UT, United States.,George E. Wahlen Veterans Affairs Medical CenterSalt Lake City, UT, United States.,Department of Psychiatry, University of UtahSalt Lake City, UT, United States
| | - Veronika Grau
- Laboratory of Experimental Surgery, Department of General and Thoracic Surgery, Justus-Liebig-University GiessenGiessen, Germany.,Member of the German Centre for Lung ResearchGiessen, Germany
| |
Collapse
|
18
|
PET imaging of α 7 nicotinic acetylcholine receptors: a comparative study of [ 18F]ASEM and [ 18F]DBT-10 in nonhuman primates, and further evaluation of [ 18F]ASEM in humans. Eur J Nucl Med Mol Imaging 2017; 44:1042-1050. [PMID: 28120003 DOI: 10.1007/s00259-017-3621-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 12/20/2016] [Indexed: 10/20/2022]
Abstract
PURPOSE The α7 nicotinic acetylcholine receptor (nAChR) is implicated in many neuropsychiatric disorders, making it an important target for positron emission tomography (PET) imaging. The first aim of this work was to compare two α7 nAChRs PET radioligands, [18F]ASEM (3-(1,4-diazabicyclo[3.2.2]nonan-4-yl)-6-([18F]fluorodibenzo[b,d]thiophene 5,5-dioxide) and [18F]DBT-10 (7-(1,4-diazabicyclo[3.2.2]nonan-4-yl)-2-([18F]fluorodibenzo[b,d]thiophene 5,5-dioxide), in nonhuman primates. The second aim was to assess further the quantification and test-retest variability of [18F]ASEM in humans. METHODS PET scans with high specific activity [18F]ASEM or [18F]DBT-10 were acquired in three rhesus monkeys (one male, two female), and the kinetic properties of these radiotracers were compared. Additional [18F]ASEM PET scans with blocking doses of nicotine, varenicline, and cold ASEM were acquired separately in two animals. Next, six human subjects (five male, one female) were imaged with [18F]ASEM PET for 180 min, and arterial sampling was used to measure the parent input function. Different modeling approaches were compared to identify the optimal analysis method and scan duration for quantification of [18F]ASEM distribution volume (V T). In addition, retest scans were acquired in four subjects (three male, one female), and the test-retest variability of V T was assessed. RESULTS In the rhesus monkey brain [18F]ASEM and [18F]DBT-10 exhibited highly similar kinetic profiles. Dose-dependent blockade of [18F]ASEM binding was observed, while administration of either nicotine or varenicline did not change [18F]ASEM V T. [18F]ASEM was selected for further validation because it has been used in humans. Accurate quantification of [18F]ASEM V T in humans was achieved using multilinear analysis with at least 90 min of data acquisition, resulting in V T values ranging from 19.6 ± 2.5 mL/cm3 in cerebellum to 25.9 ± 2.9 mL/cm3 in thalamus. Test-retest variability of V T was 11.7 ± 9.8%. CONCLUSIONS These results confirm [18F]ASEM as a suitable radiotracer for the imaging and quantification of α7 nAChRs in humans.
Collapse
|
19
|
Lithgow BJ, Garrett AL, Moussavi ZM, Gurvich C, Kulkarni J, Maller JJ, Fitzgerald PB. Major depression and electrovestibulography. World J Biol Psychiatry 2016; 16:334-50. [PMID: 25815564 DOI: 10.3109/15622975.2015.1014410] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVES No electrophysiological neuroimaging or genetic markers have been established that strongly relate to a diagnosis of major depression or its severity. The objective of this paper is to describe the preliminary evaluation of a potential new biomarker for depression utilizing the recording of electrical activity from the outer ear canal referred to as electrovestibulography (EVestG). METHODS Sensory oto-acoustic features were extracted from EVestG data to compare 31 healthy age- and gender-matched individuals as controls to 43 major depressive disorder (MDD) subjects (22 symptomatic (MDD-S), 21 reduced symptomatic (MDD-R)). The stimulus was a single supine-vertical translation. The six features examined were based on the measured firing pattern interval histogram and the shape of the average field potential response. RESULTS An unbiased classification accuracy of 85, 87 and 77% was achieved for separating Control from MDD-S, Control from MDD, and MDD-S from MDD-R groups respectively. Features used showed low but significant correlations (P < 0.05) with MADRS and CORE assessments. CONCLUSIONS The results support the use of separate features for measuring MDD symptomatology versus diagnosing MDD, representing plausible different mechanisms of brain function in MDD-S and MDD-R. The first evidence of the successful application of sensory oto-acoustic features toward diagnosing and measuring the symptomatology of MDD is presented.
Collapse
Affiliation(s)
- Brian J Lithgow
- Monash Alfred Psychiatry Research Centre, Monash University Central Clinical School and the Alfred Hospital , Melbourne, Victoria Australia
| | | | | | | | | | | | | |
Collapse
|
20
|
Han J, Wang DS, Liu SB, Zhao MG. Cytisine, a Partial Agonist of α4β2 Nicotinic Acetylcholine Receptors, Reduced Unpredictable Chronic Mild Stress-Induced Depression-Like Behaviors. Biomol Ther (Seoul) 2016; 24:291-7. [PMID: 27098858 PMCID: PMC4859792 DOI: 10.4062/biomolther.2015.113] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 09/30/2015] [Accepted: 10/07/2015] [Indexed: 01/05/2023] Open
Abstract
Cytisine (CYT), a partial agonist of α4β2-nicotinic receptors, has been used for antidepressant efficacy in several tests. Nicotinic receptors have been shown to be closely associated with depression. However, little is known about the effects of CYT on the depression. In the present study, a mouse model of depression, the unpredictable chronic mild stress (UCMS), was used to evaluate the activities of CYT. UCMS caused significant depression-like behaviors, as shown by the decrease of total distances in open field test, and the prolonged duration of immobility in tail suspension test and forced swimming test. Treatment with CYT for two weeks notably relieved the depression-like behaviors in the UCMS mice. Next, proteins related to depressive disorder in the brain region of hippocampus and amygdala were analyzed to elucidate the underlying mechanisms of CYT. CYT significantly reversed the decreases of 5-HT1A, BDNF, and mTOR levels in the hippocampus and amygdala. These results imply that CYT may act as a potential anti-depressant in the animals under chronic stress.
Collapse
Affiliation(s)
- Jing Han
- Department of Pharmacology, School of Pharmacy, The Fourth Military Medical University, Xi'an 710032, China
| | - Dong-Sheng Wang
- Department of Orthopedics, Jinling Hospital, Clinical School of Nanjing, Second Military Medical University, Nanjing 210002, China
| | - Shui-Bing Liu
- Department of Pharmacology, School of Pharmacy, The Fourth Military Medical University, Xi'an 710032, China
| | - Ming-Gao Zhao
- Department of Pharmacology, School of Pharmacy, The Fourth Military Medical University, Xi'an 710032, China
| |
Collapse
|
21
|
PET imaging evaluation of [(18)F]DBT-10, a novel radioligand specific to α7 nicotinic acetylcholine receptors, in nonhuman primates. Eur J Nucl Med Mol Imaging 2015; 43:537-47. [PMID: 26455500 DOI: 10.1007/s00259-015-3209-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 09/28/2015] [Indexed: 12/17/2022]
Abstract
PURPOSE Positron emission tomography (PET) radioligands specific to α7 nicotinic acetylcholine receptors (nAChRs) afford in vivo imaging of this receptor for neuropathologies such as Alzheimer's disease, schizophrenia, and substance abuse. This work aims to characterize the kinetic properties of an α7-nAChR-specific radioligand, 7-(1,4-diazabicyclo[3.2.2]nonan-4-yl)-2-[(18)F]-fluorodibenzo[b,d]thiophene 5,5-dioxide ([(18)F]DBT-10), in nonhuman primates. METHODS [(18)F]DBT-10 was produced via nucleophilic substitution of the nitro-precursor. Four Macaca mulatta subjects were imaged with [(18)F]DBT-10 PET, with measurement of [(18)F]DBT-10 parent concentrations and metabolism in arterial plasma. Baseline PET scans were acquired for all subjects. Following one scan, ex vivo analysis of brain tissue was performed to inspect for radiolabeled metabolites in brain. Three blocking scans with 0.69 and 1.24 mg/kg of the α7-nAChR-specific ligand ASEM were also acquired to assess dose-dependent blockade of [(18)F]DBT-10 binding. Kinetic analysis of PET data was performed using the metabolite-corrected input function to calculate the parent fraction corrected total distribution volume (V T/f P). RESULTS [(18)F]DBT-10 was produced within 90 min at high specific activities of 428 ± 436 GBq/μmol at end of synthesis. Metabolism of [(18)F]DBT-10 varied across subjects, stabilizing by 120 min post-injection at parent fractions of 15-55%. Uptake of [(18)F]DBT-10 in brain occurred rapidly, reaching peak standardized uptake values (SUVs) of 2.9-3.7 within 30 min. The plasma-free fraction was 18.8 ± 3.4%. No evidence for radiolabeled [(18)F]DBT-10 metabolites was found in ex vivo brain tissue samples. Kinetic analysis of PET data was best described by the two-tissue compartment model. Estimated V T/f P values were 193-376 ml/cm(3) across regions, with regional rank order of thalamus > frontal cortex > striatum > hippocampus > occipital cortex > cerebellum > pons. Dose-dependent blockade of [(18)F]DBT-10 binding by structural analog ASEM was observed throughout the brain, and occupancy plots yielded a V ND/f P estimate of 20 ± 16 ml/cm(3). CONCLUSION These results demonstrate suitable kinetic properties of [(18)F]DBT-10 for in vivo quantification of α7-nAChR binding in nonhuman primates.
Collapse
|
22
|
Valli M, Betti AH, Danuello A, Pivatto M, Centurião F, Antonio CB, Rates SMK, Bolzani VDS. Pyridinic analog of the natural product (−)-spectaline as potential adjuvant for the treatment of central nervous system disorders. Bioorg Med Chem Lett 2015; 25:2247-50. [DOI: 10.1016/j.bmcl.2015.02.050] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 02/16/2015] [Accepted: 02/20/2015] [Indexed: 12/28/2022]
|
23
|
Behavioral effects of nicotinic antagonist mecamylamine in a rat model of depression: prefrontal cortex level of BDNF protein and monoaminergic neurotransmitters. Psychopharmacology (Berl) 2015; 232:1095-105. [PMID: 25315361 DOI: 10.1007/s00213-014-3745-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 09/10/2014] [Indexed: 12/25/2022]
Abstract
Several studies have pointed to the nicotinic acetylcholine receptor (nAChR) antagonists, such as mecamylamine (MEC), as a potential therapeutic target for the treatment of depression. The present study evaluated the behavioral and neurochemical effects of chronic administration of MEC (1, 2, and 4 mg/kg/day, intraperitoneally (i.p.)) in Wistar rats exposed to chronic restraint stress (CRS, 4 h × 6 W). MEC prevented CRS-induced depressive-like behavior via increasing sucrose preference, body weight, and forced swim test (FST) struggling and swimming while reducing immobility in FST and hypothalamic-pituitary-adrenal (HPA) axis hyperactivity (adrenal gland weight and serum corticosterone). At the same time, MEC amended CRS-induced anxiety as indicated by decreasing central zone duration in open field test and increasing active interaction duration. Additionally, MEC modulated the prefrontal cortex (PFC) level of brain-derived neurotrophic factor (BDNF), 5-hydroxy tryptamine (5-HT), and norepinephrine (NE). In conclusion, the present data suggest that MEC possesses antidepressant and anxiolytic-like activities in rats exposed to CRS. These behavioral effects may be in part mediated by reducing HPA axis hyperactivity and increasing PFC level of BDNF and monoamines. Accordingly, these findings further support the hypothesis that nAChRs blockade might afford a novel promising strategy for pharmacotherapy of depression.
Collapse
|
24
|
O'Brien PL, Thomas CP, Hodgkin D, Levit KR, Mark TL. The diminished pipeline for medications to treat mental health and substance use disorders. Psychiatr Serv 2014; 65:1433-8. [PMID: 25178309 PMCID: PMC4788407 DOI: 10.1176/appi.ps.201400044] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
OBJECTIVE Psychotropic drug development is perceived to be lagging behind other pharmaceutical development, even though there is a need for more effective psychotropic medications. This study examined the state of the current psychotropic drug pipeline and potential barriers to psychotropic drug development. METHODS The authors scanned the recent academic and "grey" literature to evaluate psychotropic drug development and to identify experts in the fields of psychiatry and substance use disorder treatment and psychotropic drug development. On the basis of that preliminary research, the authors interviewed six experts and analyzed drugs being studied for treatment of major psychiatric disorders in phase III clinical trials. RESULTS Interviews and review of clinical trials of drugs in phase III of development confirmed that the psychotropic pipeline is slim and that a majority of the drugs in phase III trials are not very innovative. Among the barriers to development are incentives that encourage firms to focus on incremental innovation rather than take risks on radically new approaches. Other barriers include human brain complexity, failure of animal trials to translate well to human trials, and a drug approval threshold that is perceived as so high that it discourages development. CONCLUSIONS Drivers of innovation in psychotropic drug development largely parallel those for other drugs, yet crucial distinctions have led to slowing psychotropic development after a period of innovation and growth. Various factors have acted to dry up the pipeline for psychotropic drugs, with expert opinion suggesting that in the near term, this trend is likely to continue.
Collapse
Affiliation(s)
- Peggy L O'Brien
- Dr. O'Brien and Dr. Hodgkin are with the Institute for Behavioral Health and Dr. Thomas is with the Schneider Institute for Health Policy, Heller School of Social Policy and Management, Brandeis University, Waltham, Massachusetts (e-mail: ). Ms. Levit and Dr. Mark are with the Department of Behavioral Health and Quality Research, Truven Health Analytics, Washington, D.C
| | | | | | | | | |
Collapse
|
25
|
Hutson PH, Tarazi FI, Madhoo M, Slawecki C, Patkar AA. Preclinical pharmacology of amphetamine: Implications for the treatment of neuropsychiatric disorders. Pharmacol Ther 2014; 143:253-64. [DOI: 10.1016/j.pharmthera.2014.03.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Accepted: 03/14/2014] [Indexed: 11/28/2022]
|
26
|
Faster, better, stronger: towards new antidepressant therapeutic strategies. Eur J Pharmacol 2014; 753:32-50. [PMID: 25092200 DOI: 10.1016/j.ejphar.2014.07.046] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 05/28/2014] [Accepted: 07/24/2014] [Indexed: 12/26/2022]
Abstract
Major depression is a highly prevalent disorder and is predicted to be the second leading cause of disease burden by 2020. Although many antidepressant drugs are currently available, they are far from optimal. Approximately 50% of patients do not respond to initial first line antidepressant treatment, while approximately one third fail to achieve remission following several pharmacological interventions. Furthermore, several weeks or months of treatment are often required before clinical improvement, if any, is reported. Moreover, most of the commonly used antidepressants have been primarily designed to increase synaptic availability of serotonin and/or noradrenaline and although they are of therapeutic benefit to many patients, it is clear that other therapeutic targets are required if we are going to improve the response and remission rates. It is clear that more effective, rapid-acting antidepressants with novel mechanisms of action are required. The purpose of this review is to outline the current strategies that are being taken in both preclinical and clinical settings for identifying superior antidepressant drugs. The realisation that ketamine has rapid antidepressant-like effects in treatment resistant patients has reenergised the field. Further, developing an understanding of the mechanisms underlying the rapid antidepressant effects in treatment-resistant patients by drugs such as ketamine may uncover novel therapeutic targets that can be exploited to meet the Olympian challenge of developing faster, better and stronger antidepressant drugs.
Collapse
|
27
|
Jepsen TH, Jensen AA, Lund MH, Glibstrup E, Kristensen JL. Synthesis and Pharmacological Evaluation of DHβE Analogues as Neuronal Nicotinic Acetylcholine Receptor Antagonists. ACS Med Chem Lett 2014; 5:766-70. [PMID: 25050162 DOI: 10.1021/ml500094c] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Accepted: 05/20/2014] [Indexed: 11/29/2022] Open
Abstract
Dihydro-β-erythroidine (DHβE) is a member of the Erythrina family of alkaloids and a potent competitive antagonist of the α4β2-subtype of the nicotinic acetylcholine receptors (nAChRs). Guided by an X-ray structure of DHβE in complex with an ACh binding protein, we detail the design, synthesis, and pharmacological characterization of a series of DHβE analogues in which two of the four rings in the natural product has been excluded. We found that the direct analogue of DHβE maintains affinity for the α4β2-subtype, but further modifications of the simplified analogues were detrimental to their activities on the nAChRs.
Collapse
Affiliation(s)
- Tue Heesgaard Jepsen
- Department of Drug Design
and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Anders A. Jensen
- Department of Drug Design
and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Mads Henrik Lund
- Department of Drug Design
and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Emil Glibstrup
- Department of Drug Design
and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Jesper Langgaard Kristensen
- Department of Drug Design
and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| |
Collapse
|
28
|
Yu LF, Zhang HK, Caldarone BJ, Eaton JB, Lukas RJ, Kozikowski AP. Recent developments in novel antidepressants targeting α4β2-nicotinic acetylcholine receptors. J Med Chem 2014; 57:8204-23. [PMID: 24901260 PMCID: PMC4207546 DOI: 10.1021/jm401937a] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
![]()
Nicotinic acetylcholine receptors
(nAChRs) have been investigated
for developing drugs that can potentially treat various central nervous
system disorders. Considerable evidence supports the hypothesis that
modulation of the cholinergic system through activation and/or desensitization/inactivation
of nAChR holds promise for the development of new antidepressants.
The introductory portion of this Miniperspective discusses the basic
pharmacology that underpins the involvement of α4β2-nAChRs
in depression, along with the structural features that are essential
to ligand recognition by the α4β2-nAChRs. The remainder
of this Miniperspective analyzes reported nicotinic ligands in terms
of drug design considerations and their potency and selectivity, with
a particular focus on compounds exhibiting antidepressant-like effects
in preclinical or clinical studies. This Miniperspective aims to provide
an in-depth analysis of the potential for using nicotinic ligands
in the treatment of depression, which may hold some promise in addressing
an unmet clinical need by providing relief from depressive symptoms
in refractory patients.
Collapse
Affiliation(s)
- Li-Fang Yu
- Department of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago , 833 South Wood Street, Chicago, Illinois 60612, United States
| | | | | | | | | | | |
Collapse
|
29
|
Hannestad JO, Cosgrove KP, DellaGioia NF, Perkins E, Bois F, Bhagwagar Z, Seibyl JP, McClure-Begley TD, Picciotto MR, Esterlis I. Changes in the cholinergic system between bipolar depression and euthymia as measured with [123I]5IA single photon emission computed tomography. Biol Psychiatry 2013; 74:768-76. [PMID: 23773793 PMCID: PMC3805761 DOI: 10.1016/j.biopsych.2013.04.004] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Revised: 04/02/2013] [Accepted: 04/04/2013] [Indexed: 11/24/2022]
Abstract
BACKGROUND The cholinergic system is substantially altered in individuals with major depression and is partially restored when depression remits. We quantified the availability of β2-subunit-containing nicotinic acetylcholine receptors (β2*-nAChR) in subjects with bipolar disorder. METHODS Twenty-five subjects with bipolar disorder (15 depressed, 10 euthymic) and 25 sex- and age-matched control subjects had a [(123)I]5IA-85380 single photon emission computed tomography scan to quantify β2*-nAChR VT/fP (total volume of distribution, corrected for individual differences in metabolism and protein binding of the radiotracer). Average VT/fP was compared between groups and correlated with clinical characteristics. Postmortem analysis of β2*-nAChRs was conducted using equilibrium binding with [(125)I]5IA in subjects with bipolar disorder and matched control subjects. RESULTS We showed significantly lower β2*-nAChR availability (20%-38%) in subjects with bipolar depression compared with euthymic and control subjects across all brain regions assessed (frontal, parietal, temporal, and anterior cingulate cortex, hippocampus, amygdala, thalamus, striatum). The postmortem binding study in which endogenous acetylcholine was washed out did not show a statistically significant difference in β2*-nAChR number in temporal cortex of the bipolar depressed and control groups (15% difference; p = .2). CONCLUSIONS We show that the alteration in the cholinergic system observed during a depressive episode appears to resolve during euthymia. We suggest that lower VT/fP observed in vivo may be due to a combination of higher endogenous acetylcholine levels during depression, which could compete with radiotracer binding to the receptor in vivo, and lower receptor number in bipolar depression. Identification of differences in cholinergic signaling in subjects with bipolar depression may improve our understanding of its etiology and reveal new treatment targets.
Collapse
|
30
|
|
31
|
Nicotinic modulation of intrinsic brain networks in schizophrenia. Biochem Pharmacol 2013; 86:1163-72. [PMID: 23796751 DOI: 10.1016/j.bcp.2013.06.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Revised: 06/13/2013] [Accepted: 06/14/2013] [Indexed: 12/13/2022]
Abstract
The nicotinic receptor is a promising drug target currently being investigated for the treatment of cognitive symptoms in schizophrenia. A key step in this process is the development of noninvasive functional neuroimaging biomarkers that can be used to determine if nicotinic agents are eliciting their targeted biological effect, ideally through modulation of a fundamental aspect of neuronal function. To that end, neuroimaging researchers are beginning to understand how nicotinic modulation affects "intrinsic" brain networks to elicit potentially therapeutic effects. An intrinsic network is a functionally and (often) structurally connected network of brain areas whose activity reflects a fundamental neurobiological organizational principle of the brain. This review summarizes findings of the effects of nicotinic drugs on three topics related to intrinsic brain network activity: (1) the default mode network, a group of brain areas for which activity is maximal at rest and reduced during cognitive tasks, (2) the salience network, which integrates incoming sensory data with prior internal representations to guide future actions and change predictive values, and (3) multi-scale complex network dynamics, which describe these brain's ability to efficiency integrate information while preserving local functional specialization. These early findings can be used to inform future neuroimaging studies that examine the network effects of nicotinic agents.
Collapse
|
32
|
Melis M, Scheggi S, Carta G, Madeddu C, Lecca S, Luchicchi A, Cadeddu F, Frau R, Fattore L, Fadda P, Ennas MG, Castelli MP, Fratta W, Schilstrom B, Banni S, De Montis MG, Pistis M. PPARα regulates cholinergic-driven activity of midbrain dopamine neurons via a novel mechanism involving α7 nicotinic acetylcholine receptors. J Neurosci 2013; 33:6203-11. [PMID: 23554501 PMCID: PMC6618938 DOI: 10.1523/jneurosci.4647-12.2013] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Revised: 02/15/2013] [Accepted: 02/21/2013] [Indexed: 11/21/2022] Open
Abstract
Ventral tegmental area dopamine neurons control reward-driven learning, and their dysregulation can lead to psychiatric disorders. Tonic and phasic activity of these dopaminergic neurons depends on cholinergic tone and activation of nicotinic acetylcholine receptors (nAChRs), particularly those containing the β2 subunit (β2*-nAChRs). Nuclear peroxisome proliferator-activated receptors type-α (PPARα) tonically regulate β2*-nAChRs and thereby control dopamine neuron firing activity. However, it is unknown how and when PPARα endogenous ligands are synthesized by dopamine cells. Using ex vivo and in vivo electrophysiological techniques combined with biochemical and behavioral analysis, we show that activation of α7-nAChRs increases in the rat VTA both the tyrosine phosphorylation of the β2 subunit of nAChRs and the levels of two PPARα endogenous ligands in a Ca(2+)-dependent manner. Accordingly, in vivo production of endogenous PPARα ligands, triggered by α7-nAChR activation, blocks in rats nicotine-induced increased firing activity of dopamine neurons and displays antidepressant-like properties. These data demonstrate that endogenous PPARα ligands are effectors of α7-nAChRs and that their neuromodulatory properties depend on phosphorylation of β2*-nAChRs on VTA dopamine cells. This reveals an autoinhibitory mechanism aimed at reducing dopamine cell overexcitation engaged during hypercholinergic drive. Our results unveil important physiological functions of nAChR/PPARα signaling in dopamine neurons and how behavioral output can change after modifications of this signaling pathway. Overall, the present study suggests PPARα as new therapeutic targets for disorders associated with unbalanced dopamine-acetylcholine systems.
Collapse
Affiliation(s)
- Miriam Melis
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, 09042 Monserrato, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Hurley LL, Tizabi Y. Neuroinflammation, neurodegeneration, and depression. Neurotox Res 2013; 23:131-44. [PMID: 22895696 PMCID: PMC3751583 DOI: 10.1007/s12640-012-9348-1] [Citation(s) in RCA: 196] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Revised: 07/26/2012] [Accepted: 07/30/2012] [Indexed: 12/19/2022]
Abstract
Neurodegeneration and depression are two common co-morbid conditions, particularly within the aging population. Research has linked neuroinflammation as a major contributing factor to both of these diseases. The key to neuroinflammation effects on neurodegeneration and depression appears to lie within the dysregulation of the control and release of pro- and anti-inflammatory cytokines. This can come from an internal or external insult to the system, or from changes in the individual due to aging that culminate in immune dysregulation. The need to reduce neuroinflammation has led to extensive research into neuroprotectants. We discuss the efficacy found with nicotine, alcohol, resveratrol, curcumin, and ketamine. Our main focus will be on what research tells us about the connections between neuroinflammation, neurodegeneration, and depression, and the hope that neuroprotectants research gives people suffering from neurodegeneration and depression stemming from neuroinflammation. We will conclude by making suggestions for future research in this area.
Collapse
Affiliation(s)
- Laura L. Hurley
- Department of Pharmacology, College of Medicine, Howard University, Washington, DC 20059
| | - Yousef Tizabi
- Department of Pharmacology, College of Medicine, Howard University, Washington, DC 20059
| |
Collapse
|
34
|
Fernandez JW, Grizzell JA, Wecker L. The role of estrogen receptor β and nicotinic cholinergic receptors in postpartum depression. Prog Neuropsychopharmacol Biol Psychiatry 2013; 40:199-206. [PMID: 23063492 DOI: 10.1016/j.pnpbp.2012.10.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Revised: 10/02/2012] [Accepted: 10/02/2012] [Indexed: 01/19/2023]
Abstract
Postpartum depression (PPD) is a devastating disease occurring in approximately 20% of women. Women who suffer from PPD appear to be more sensitive to postpartum hormonal changes than women who do not experience this form of depression. Furthermore, women who quit smoking prior to or during pregnancy, and who develop PPD, are at an increased risk of smoking relapse. Unfortunately, the mechanistic relationship between the pathophysiology of PPD and smoking relapse is unknown. Here we review the roles of both estrogen receptor beta (ERβ) and cholinergic nicotinic receptors (nAChRs) in the pathogenesis of depression and propose a mechanistic rationale to explain the high rate of smoking relapse exhibited by women who develop PPD.
Collapse
Affiliation(s)
- Jamie Winderbaum Fernandez
- Department of Psychiatry and Behavioral Neurosciences, Morsani College of Medicine, University of South Florida, 3515 E. Fletcher Avenue, Tampa, FL, 33611, USA.
| | | | | |
Collapse
|