1
|
Schiavone M, Dagkesamanskaya A, Vieu PG, Duperray M, Duplan-Eche V, François JM. A flow cytometry method for quantitative measurement and molecular investigation of the adhesion of bacteria to yeast cells. Sci Rep 2024; 14:20935. [PMID: 39251857 PMCID: PMC11385505 DOI: 10.1038/s41598-024-72030-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 09/03/2024] [Indexed: 09/11/2024] Open
Abstract
The study of microorganism interactions is important for understanding the organization and functioning of microbial consortia. Additionally, the interaction between yeast and bacteria is of interest in the field of health and nutrition area for the development of probiotics. To investigate these microbial interactions at the cellular and molecular levels, a simple, reliable, and quantitative method is proposed. We demonstrated that flow cytometry enables the measurement of interactions at a single-cell level by detecting and counting yeast cells with bound fluorescent bacteria. Imaging flow cytometry revealed that the number of bacteria attached to yeast followed a Gaussian distribution whose maximum reached 14 bacterial cells using a clinical Escherichia coli strain E22 and the laboratory yeast strain BY4741. We found that the dynamics of adhesion resemble a Langmuir adsorption model, albeit it is a rapid and almost irreversible process. This adhesion is dependent on the mannose-specific type 1 fimbriae, as E. coli mutants lacking these appendages no longer adhere to yeast. However, this type 1 fimbriae-dependent adhesion could involve additional yeast cell wall factors, since the interaction between bacteria and yeast mutants with altered mannan content remained comparable to that of wild-type yeast. In summary, flow cytometry is an appropriate method for studying bacteria-yeast adhesion, as well as for the high-throughput screening of candidate molecules likely to promote or counteract this interaction.
Collapse
Affiliation(s)
- Marion Schiavone
- Toulouse Biotechnology Institute (TBI), UMR INSA-CNRS 5504 & INRA 792, 135 Avenue de Rangeuil, 31077, Toulouse, France
- Lallemand SAS, 19, Rue Des Briquetiers, 31702, Blagnac, France
| | - Adilya Dagkesamanskaya
- Toulouse Biotechnology Institute (TBI), UMR INSA-CNRS 5504 & INRA 792, 135 Avenue de Rangeuil, 31077, Toulouse, France
| | - Pierre-Gilles Vieu
- Toulouse Biotechnology Institute (TBI), UMR INSA-CNRS 5504 & INRA 792, 135 Avenue de Rangeuil, 31077, Toulouse, France
| | - Maëlle Duperray
- Toulouse Biotechnology Institute (TBI), UMR INSA-CNRS 5504 & INRA 792, 135 Avenue de Rangeuil, 31077, Toulouse, France
| | - Valérie Duplan-Eche
- Institut Toulousain Des Maladies Infectieuses Et Inflammatoires (Infinity), CNRS U5051, INSERM U1291, University Toulouse III, 31000, Toulouse, France
| | - Jean Marie François
- Toulouse Biotechnology Institute (TBI), UMR INSA-CNRS 5504 & INRA 792, 135 Avenue de Rangeuil, 31077, Toulouse, France.
| |
Collapse
|
2
|
Chen YC, Lee WC, Chuang YC. Emerging Non-Antibiotic Options Targeting Uropathogenic Mechanisms for Recurrent Uncomplicated Urinary Tract Infection. Int J Mol Sci 2023; 24:ijms24087055. [PMID: 37108218 PMCID: PMC10138837 DOI: 10.3390/ijms24087055] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 04/06/2023] [Accepted: 04/09/2023] [Indexed: 04/29/2023] Open
Abstract
Urinary tract infections (UTIs) are the most frequent bacterial infections in the clinical setting. Even without underlying anatomic or functional abnormalities, more than 40% of women experience at least one UTI in their lifetime, of which 30% develop recurrent UTIs (rUTIs) within 6 months. Conventional management with antibiotics for rUTIs may eventually lead to the development of multidrug-resistant uropathogens. Targeting of the pathogenicity of rUTIs, the evolution of uropathogenic Escherichia coli (UPEC), and inadequate host defenses by immune responses should be explored to provide non-antibiotic solutions for the management of rUTIs. The adaptive evolution of UPEC has been observed in several aspects, including colonization, attachment, invasion, and intracellular replication to invade the urothelium and survive intracellularly. Focusing on the antivirulence of UPEC and modulating the immunity of susceptible persons, researchers have provided potential alternative solutions in four categories: antiadhesive treatments (i.e., cranberries and D-mannose), immunomodulation therapies, vaccines, and prophylaxis with topical estrogen therapy and probiotics (e.g., Lactobacillus species). Combination therapies targeting multiple pathogenic mechanisms are expected to be a future trend in UTI management, although some of these treatment options have not been well established in terms of their long-term efficacy. Additional clinical trials are warranted to validate the therapeutic efficacy and durability of these techniques.
Collapse
Affiliation(s)
- Yu-Chen Chen
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
- Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
| | - Wei-Chia Lee
- Division of Urology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan
| | - Yao-Chi Chuang
- Division of Urology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan
- Center for Shock Wave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
| |
Collapse
|
3
|
Buberg ML, Mo SS, Sekse C, Sunde M, Wasteson Y, Witsø IL. Population structure and uropathogenic potential of extended-spectrum cephalosporin-resistant Escherichia coli from retail chicken meat. BMC Microbiol 2021; 21:94. [PMID: 33781204 PMCID: PMC8008618 DOI: 10.1186/s12866-021-02160-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 03/17/2021] [Indexed: 12/20/2022] Open
Abstract
Background Food-producing animals and their products are considered a source for human acquisition of antimicrobial resistant (AMR) bacteria, and poultry are suggested to be a reservoir for Escherichia coli resistant to extended-spectrum cephalosporins (ESC), a group of antimicrobials used to treat community-onset urinary tract infections in humans. However, the zoonotic potential of ESC-resistant E. coli from poultry and their role as extraintestinal pathogens, including uropathogens, have been debated. The aim of this study was to characterize ESC-resistant E. coli isolated from domestically produced retail chicken meat regarding their population genetic structure, the presence of virulence-associated geno- and phenotypes as well as their carriage of antimicrobial resistance genes, in order to evaluate their uropathogenic potential. Results A collection of 141 ESC-resistant E. coli isolates from retail chicken in the Norwegian monitoring program for antimicrobial resistance in bacteria from food, feed and animals (NORM-VET) in 2012, 2014 and 2016 (n = 141) were whole genome sequenced and analyzed. The 141 isolates, all containing the beta-lactamase encoding gene blaCMY-2, were genetically diverse, grouping into 19 different sequence types (STs), and temporal variations in the distribution of STs were observed. Generally, a limited number of virulence-associated genes were identified in the isolates. Eighteen isolates were selected for further analysis of uropathogen-associated virulence traits including expression of type 1 fimbriae, motility, ability to form biofilm, serum resistance, adhesion- and invasion of eukaryotic cells and colicin production. These isolates demonstrated a high diversity in virulence-associated phenotypes suggesting that the uropathogenicity of ESC-resistant E. coli from chicken meat is correspondingly highly variable. For some isolates, there was a discrepancy between the presence of virulence-associated genes and corresponding expected phenotype, suggesting that mutations or regulatory mechanisms could influence their pathogenic potential. Conclusion Our results indicate that the ESC-resistant E. coli from chicken meat have a low uropathogenic potential to humans, which is important knowledge for improvement of future risk assessments of AMR in the food chains. Supplementary Information The online version contains supplementary material available at 10.1186/s12866-021-02160-y.
Collapse
Affiliation(s)
- May Linn Buberg
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway
| | - Solveig Sølverød Mo
- Section for Food safety and Animal Health Research, Department of Animal Health and Food Safety, Norwegian Veterinary Institute, Oslo, Norway
| | - Camilla Sekse
- Section for Food safety and Animal Health Research, Department of Animal Health and Food Safety, Norwegian Veterinary Institute, Oslo, Norway
| | - Marianne Sunde
- Section for Food safety and Animal Health Research, Department of Animal Health and Food Safety, Norwegian Veterinary Institute, Oslo, Norway
| | - Yngvild Wasteson
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway
| | - Ingun Lund Witsø
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway.
| |
Collapse
|
4
|
Kolenda R, Ugorski M, Grzymajlo K. Everything You Always Wanted to Know About Salmonella Type 1 Fimbriae, but Were Afraid to Ask. Front Microbiol 2019; 10:1017. [PMID: 31139165 PMCID: PMC6527747 DOI: 10.3389/fmicb.2019.01017] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 04/24/2019] [Indexed: 12/19/2022] Open
Abstract
Initial attachment to host intestinal mucosa after oral infection is one of the most important stages during bacterial pathogenesis. Adhesive structures, widely present on the bacterial surface, are mainly responsible for the first contact with host cells and of host-pathogen interactions. Among dozens of different bacterial adhesins, type 1 fimbriae (T1F) are one of the most common adhesive organelles in the members of the Enterobacteriaceae family, including Salmonella spp., and are important virulence factors. Those long, thin structures, composed mainly of FimA proteins, are responsible for recognizing and binding high-mannose oligosaccharides, which are carried by various glycoproteins and expressed at the host cell surface, via FimH adhesin, which is presented at the top of T1F. In this review, we discuss investigations into the functions of T1F, from the earliest work published in 1958 to operon organization, organelle structure, T1F biogenesis, and the various functions of T1F in Salmonella-host interactions. We give special attention to regulation of T1F expression and their role in binding of Salmonella to cells, cell lines, organ explants, and other surfaces with emphasis on biofilm formation and discuss T1F role as virulence factors based on work using animal models. We also discuss the importance of allelic variation in fimH to Salmonella pathogenesis, as well as role of FimH in Salmonella host specificity.
Collapse
Affiliation(s)
- Rafal Kolenda
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Maciej Ugorski
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Krzysztof Grzymajlo
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| |
Collapse
|
5
|
Rodríguez FI, Procura F, Bueno DJ. Comparison of 7 culture methods for Salmonella serovar Enteritidis and Salmonella serovar Typhimurium isolation in poultry feces. Poult Sci 2018; 97:3826-3836. [DOI: 10.3382/ps/pey259] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 05/25/2018] [Indexed: 11/20/2022] Open
|
6
|
Feenstra T, Thøgersen MS, Wieser E, Peschel A, Ball MJ, Brandes R, Satchell SC, Stockner T, Aarestrup FM, Rees AJ, Kain R. Adhesion of Escherichia coli under flow conditions reveals potential novel effects of FimH mutations. Eur J Clin Microbiol Infect Dis 2016; 36:467-478. [PMID: 27816993 PMCID: PMC5309269 DOI: 10.1007/s10096-016-2820-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 10/16/2016] [Indexed: 12/29/2022]
Abstract
FimH-mediated adhesion of Escherichia coli to bladder epithelium is a prerequisite for urinary tract infections. FimH is also essential for blood-borne bacterial dissemination, but the mechanisms are poorly understood. The purpose of this study was to assess the influence of different FimH mutations on bacterial adhesion using a novel adhesion assay, which models the physiological flow conditions bacteria are exposed to. We introduced 12 different point mutations in the mannose binding pocket of FimH in an E. coli strain expressing type 1 fimbriae only (MSC95-FimH). We compared the bacterial adhesion of each mutant across several commonly used adhesion assays, including agglutination of yeast, adhesion to mono- and tri-mannosylated substrates, and static adhesion to bladder epithelial and endothelial cells. We performed a comparison of these assays to a novel method that we developed to study bacterial adhesion to mammalian cells under flow conditions. We showed that E. coli MSC95-FimH adheres more efficiently to microvascular endothelium than to bladder epithelium, and that only endothelium supports adhesion at physiological shear stress. The results confirmed that mannose binding pocket mutations abrogated adhesion. We demonstrated that FimH residues E50 and T53 are crucial for adhesion under flow conditions. The coating of endothelial cells on biochips and modelling of physiological flow conditions enabled us to identify FimH residues crucial for adhesion. These results provide novel insights into screening methods to determine the effect of FimH mutants and potentially FimH antagonists.
Collapse
Affiliation(s)
- T Feenstra
- Clinical Institute of Pathology, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | - M S Thøgersen
- National Food Institute, Research Group for Genomic Epidemiology, Technical University of Denmark, Søltofts Plads 221, 2800, Kongens Lyngby, Denmark.,Department of Biotechnology and Biomedicine, Bacterial Ecophysiology and Biotechnology Group, Technical University of Denmark, Matematiktorvet 301, 2800, Kongens Lyngby, Denmark
| | - E Wieser
- Clinical Institute of Pathology, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | - A Peschel
- Clinical Institute of Pathology, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | - M J Ball
- Clinical Institute of Pathology, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria.,Department of Nephrology, Ipswich Hospital, Heath Road, Ipswich, IP4 5PD, UK
| | - R Brandes
- Clinical Institute of Pathology, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | - S C Satchell
- Academic Renal Unit, University of Bristol, Southmead Hospital, Bristol, UK
| | - T Stockner
- Institute of Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Währingerstrasse 13A, 1090, Vienna, Austria
| | - F M Aarestrup
- National Food Institute, Research Group for Genomic Epidemiology, Technical University of Denmark, Søltofts Plads 221, 2800, Kongens Lyngby, Denmark
| | - A J Rees
- Clinical Institute of Pathology, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | - R Kain
- Clinical Institute of Pathology, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria.
| |
Collapse
|
7
|
Corrected Genome Annotations Reveal Gene Loss and Antibiotic Resistance as Drivers in the Fitness Evolution of Salmonella enterica Serovar Typhimurium. J Bacteriol 2016; 198:3152-3161. [PMID: 27621280 DOI: 10.1128/jb.00545-16] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 09/02/2016] [Indexed: 11/20/2022] Open
Abstract
Horizontal acquisition of novel chromosomal genes is considered to be a key process in the evolution of bacterial pathogens. However, the identification of gene presence or absence could be hindered by the inconsistencies in bacterial genome annotations. Here, we performed a cross-annotation of omnipresent core and mosaic accessory genes in the chromosome of Salmonella enterica serovar Typhimurium across a total of 20 fully assembled genomes deposited into GenBank. Cross-annotation resulted in a 32% increase in the number of core genes and a 3-fold decrease in the number of genes identified as mosaic genes (i.e., genes present in some strains only) by the original annotation. Of the remaining noncore genes, the vast majority were prophage genes, and 255 of the nonphage genes were actually of core origin but lost in some strains upon the emergence of the S Typhimurium serovar, suggesting that the chromosomal portion of the S Typhimurium genome acquired a very limited number of novel genes other than prophages. Only horizontally acquired nonphage genes related to bacterial fitness or virulence were found in four recently sequenced isolates, all located on three different genomic islands that harbor multidrug resistance determinants. Thus, the extensive use of antimicrobials could be the main selection force behind the new fitness gene acquisition and the emergence of novel Salmonella pathotypes. IMPORTANCE Significant discrepancies in the annotations of bacterial genomes could mislead the conclusions about evolutionary origin of chromosomal genes, as we demonstrate here via a cross-annotation-based analysis of Salmonella Typhimurium genomes from GenBank. We conclude that despite being able to infect a broad range of vertebrate hosts, the genomic diversity of S Typhimurium strains is almost exclusively limited to gene loss and the transfer of prophage DNA. Only nonphage chromosomal genes acquired after the emergence of the serovar are linked to the genomic islands harboring multidrug resistance factors. Since the fitness factors could lead to increased virulence, this poses an important research question: could overuse or misuse of antimicrobials act as selection forces for the emergence of more pathogenic strains of Salmonella?
Collapse
|
8
|
Mathematical model of flagella gene expression dynamics in Salmonella enterica serovar typhimurium. SYSTEMS AND SYNTHETIC BIOLOGY 2015; 9:19-31. [PMID: 25972986 DOI: 10.1007/s11693-015-9160-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 10/11/2014] [Accepted: 01/21/2015] [Indexed: 01/11/2023]
Abstract
Flagellar assembly in Salmonella is controlled by an intricate genetic and biochemical network. This network comprises of a number of inter-connected feedback loops, which control the assembly process dynamically. Critical among these are the FliA-FlgM feedback, FliZ-mediated positive feedback, and FliT-mediated negative feedback. In this work, we develop a mathematical model to track the dynamics of flagellar gene expression in Salmonella. Analysis of our model demonstrates that the network is wired to not only control the transition of the cell from a non-flagellated to a flagellated state, but to also control dynamics of gene expression during cell division. Further, we predict that FliZ encoded in the flagellar regulon acts as a critical secretion-dependent molecular link between flagella and Salmonella Pathogenicity Island 1 gene expression. Sensitivity analysis of the model demonstrates that the flagellar regulatory network architecture is extremely robust to mutations.
Collapse
|
9
|
Prevalence and fimbrial genotype distribution of poultry Salmonella isolates in China (2006 to 2012). Appl Environ Microbiol 2013; 80:687-93. [PMID: 24242234 DOI: 10.1128/aem.03223-13] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
In this study, a total of 323 Salmonella enterica strains were isolated from 3,566 rectal swab samples of 51 poultry farms in seven regions of 12 provinces of China between 2006 and 2012. The prevalences of Salmonella sp. carriage were 12.4% in geese (66 positive/533 samples), 10.4% in turkeys (32/309), 9.8% in chickens (167/1,706), 6.8% in ducks (41/601), and 4.1% in pigeons (17/417), respectively. These isolates belonged to 20 serovars, in which the most frequent serovars were S. enterica serovar Gallinarum biovar Pullorum (herein, S. Pullorum) (55 isolates, 17.0%), S. enterica serovar Typhimurium (50 isolates, 15.5%), and S. enterica serovar Enteritidis (39 isolates, 12.1%). Overall, S. Typhimurium was the most commonly detected serovar; among the individual species, S. Pullorum was most commonly isolated from chickens, S. Enteritidis was most common in ducks, S. Typhimurium was most common in geese and pigeons, and S. enterica serovar Saintpaul was most common in turkeys. PCR determination of 20 fimbrial genes demonstrated the presence of bcfD, csgA, fimA, stdB, and sthE genes and the absence of staA and stgA genes in these isolates, and other loci were variably distributed, with frequency values ranging from 11.8 to 99.1%. These 323 Salmonella isolates were subdivided into 41 different fimbrial genotypes, and of these isolate, 285 strains (88.2%) had 12 to 14 fimbrial genes. Our findings indicated that the Salmonella isolates from different poultry species were phenotypically and genetically diverse and that some fimbrial genes are more frequently associated with serovars or serogroups.
Collapse
|