1
|
Robu AC, Popescu L, Seidler DG, Zamfir AD. Chip-based high resolution tandem mass spectrometric determination of fibroblast growth factor-chondroitin sulfate disaccharides noncovalent interaction. JOURNAL OF MASS SPECTROMETRY : JMS 2018; 53:624-634. [PMID: 29676520 DOI: 10.1002/jms.4193] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 04/04/2018] [Accepted: 04/11/2018] [Indexed: 06/08/2023]
Abstract
Fibroblast growth factor-2 (FGF-2) is involved in wound healing and embryonic development. Glycosaminoglycans (GAGs), the major components of the extracellular matrix (ECM), play fundamental roles at this level. FGF-GAG noncovalent interactions are in the focus of research, due to their influence upon cell proliferation and tissue regeneration. Lately, high resolution mass spectrometry (MS) coupled with chip-nanoelectrospray (nanoESI) contributed a significant progress in glycosaminoglycomics by discoveries related to novel species and their characterization. We have employed a fully automated chip-nanoESI coupled to a quadrupole time-of-flight (QTOF) MS for assessing FGF-GAG noncovalent complexes. For the first time, a CS disaccharide was involved in a binding assay with FGF-2. The experiments were conducted in 10 mM ammonium acetate/formic acid, pH 6.8, by incubating FGF-2 and CS in buffer. The detected complexes were characterized by top-down in tandem MS (MS/MS) using collision induced-dissociation (CID). CID MS/MS provided data showing for the first time that the binding process occurs via the sulfate group located at C4 in GalNAc. This study has demonstrated that chip-MS may generate reliable data upon the formation of GAG-protein complexes and their structure. Biologically, the findings are relevant for studies focused on the identification of the active domains in longer GAG chains.
Collapse
Affiliation(s)
- Adrian C Robu
- Mass Spectrometry Laboratory, National Institute for Research and Development in Electrochemistry and Condensed Matter, Plautius Andronescu Str. 1, RO-300224, Timisoara, Romania
- Faculty of Physics, West University of Timisoara, Blvd. Vasile Parvan 4, RO-300223, Timisoara, Romania
| | - Laurentiu Popescu
- Mass Spectrometry Laboratory, National Institute for Research and Development in Electrochemistry and Condensed Matter, Plautius Andronescu Str. 1, RO-300224, Timisoara, Romania
- Faculty of Physics, West University of Timisoara, Blvd. Vasile Parvan 4, RO-300223, Timisoara, Romania
| | - Daniela G Seidler
- Department of Gastroentero-, Hepato-, and Endocrinology I3, Hannover Medical School, EB2/R3110, Carl-Neuberg-Str. 1, D-30625, Hannover, Germany
| | - Alina D Zamfir
- Mass Spectrometry Laboratory, National Institute for Research and Development in Electrochemistry and Condensed Matter, Plautius Andronescu Str. 1, RO-300224, Timisoara, Romania
- Department of Chemical and Biological Sciences, "Aurel Vlaicu" University of Arad, Revolutiei Blvd. 77, RO-310130, Arad, Romania
| |
Collapse
|
2
|
Nikolovska K, Spillmann D, Seidler DG. Uronyl 2-O sulfotransferase potentiates Fgf2-induced cell migration. J Cell Sci 2016; 128:460-71. [PMID: 25480151 DOI: 10.1242/jcs.152660] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Fibroblast growth factor 2 (Fgf2) is involved in several biological functions. Fgf2 requires glycosaminoglycans, like chondroitin and dermatan sulfates (hereafter denoted CS/DS) as co-receptors. CS/DS are linear polysaccharides composed of repeating disaccharide units [-4GlcUAb1-3-GalNAc-b1-] and [-4IdoUAa1-3-GalNAc-b1-],which can be sulfated. Uronyl 2-O-sulfotransferase (Ust)introduces sulfation at the C2 of IdoUA and GlcUA resulting inover-sulfated units. Here, we investigated the role of Ust-mediated CS/DS 2-O sulfation in Fgf2-induced cell migration. We found that CHO-K1 cells overexpressing Ust contain significantly more CS/DS2-O sulfated units, whereas Ust knockdown abolished CS/DS 2-O sulfation. These structural differences in CS/DS resulted in altered Fgf2 binding and increased phosphorylation of ERK1/2 (also known as MAPK3 and MAPK1, respectively). As a functional consequence of CS/DS 2-O sulfation and altered Fgf2 binding, cell migration and paxillin activation were increased. Inhibition of sulfation, knockdown of Ust and inhibition of FgfR resulted in reduced migration. Similarly, in 3T3 cells Fgf2 treatment increased migration, which was abolished by Ust knockdown. The proteoglycan controlling the CHO migration was syndecan 1. Knockdown of Sdc1 in CHO-K1 cells overexpressing Ust abolished cell migration.We conclude that the presence of distinctly sulfated CS/DS can tune the Fgf2 effect on cell migration.
Collapse
|
3
|
Robu AC, Popescu L, Munteanu CVA, Seidler DG, Zamfir AD. Orbitrap mass spectrometry characterization of hybrid chondroitin/dermatan sulfate hexasaccharide domains expressed in brain. Anal Biochem 2015; 485:122-31. [PMID: 26123275 DOI: 10.1016/j.ab.2015.06.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Revised: 06/16/2015] [Accepted: 06/22/2015] [Indexed: 01/03/2023]
Abstract
In the central nervous system, chondroitin/dermatan sulfate (CS/DS) glycosaminoglycans (GAGs) modulate neurotrophic effects and glial cell maturation during brain development. Previous reports revealed that GAG composition could be responsible for CS/DS activities in brain. In this work, for the structural characterization of DS- and CS-rich domains in hybrid GAG chains extracted from neural tissue, we have developed an advanced approach based on high-resolution mass spectrometry (MS) using nanoelectrospray ionization Orbitrap in the negative ion mode. Our high-resolution MS and multistage MS approach was developed and applied to hexasaccharides obtained from 4- and 14-week-old mouse brains by GAG digestion with chondroitin B and in parallel with AC I lyase. The expression of DS- and CS-rich domains in the two tissues was assessed comparatively. The analyses indicated an age-related structural variability of the CS/DS motifs. The older brain was found to contain more structures and a higher sulfation of DS-rich regions, whereas the younger brain was found to be characterized by a higher sulfation of CS-rich regions. By multistage MS using collision-induced dissociation, we also demonstrated the incidence in mouse brain of an atypical [4,5-Δ-GlcAGalNAc(IdoAGalNAc)2], presenting a bisulfated CS disaccharide formed by 3-O-sulfate-4,5-Δ-GlcA and 6-O-sulfate-GalNAc moieties.
Collapse
Affiliation(s)
- Adrian C Robu
- Mass Spectrometry Laboratory, National Institute for Research and Development in Electrochemistry and Condensed Matter, RO-300224 Timisoara, Romania; Faculty of Physics, West University of Timisoara, RO-300223 Timisoara, Romania
| | - Laurentiu Popescu
- Mass Spectrometry Laboratory, National Institute for Research and Development in Electrochemistry and Condensed Matter, RO-300224 Timisoara, Romania; Faculty of Physics, West University of Timisoara, RO-300223 Timisoara, Romania
| | - Cristian V A Munteanu
- Department of Molecular Cell Biology, Institute of Biochemistry of the Romanian Academy, RO-060031 Bucharest, Romania
| | - Daniela G Seidler
- Institute for Physiological Chemistry and Pathobiochemistry, University of Münster, D-49149 Münster, Germany
| | - Alina D Zamfir
- Mass Spectrometry Laboratory, National Institute for Research and Development in Electrochemistry and Condensed Matter, RO-300224 Timisoara, Romania; Department of Chemical and Biological Sciences, "Aurel Vlaicu" University of Arad, RO-310130 Arad, Romania.
| |
Collapse
|
4
|
Olczyk P, Mencner Ł, Komosinska-Vassev K. The role of the extracellular matrix components in cutaneous wound healing. BIOMED RESEARCH INTERNATIONAL 2014; 2014:747584. [PMID: 24772435 PMCID: PMC3977088 DOI: 10.1155/2014/747584] [Citation(s) in RCA: 201] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Revised: 02/13/2014] [Accepted: 02/17/2014] [Indexed: 11/25/2022]
Abstract
Wound healing is the physiologic response to tissue trauma proceeding as a complex pathway of biochemical reactions and cellular events, secreted growth factors, and cytokines. Extracellular matrix constituents are essential components of the wound repair phenomenon. Firstly, they create a provisional matrix, providing a structural integrity of matrix during each stage of healing process. Secondly, matrix molecules regulate cellular functions, mediate the cell-cell and cell-matrix interactions, and serve as a reservoir and modulator of cytokines and growth factors' action. Currently known mechanisms, by which extracellular matrix components modulate each stage of the process of soft tissue remodeling after injury, have been discussed.
Collapse
Affiliation(s)
- Pawel Olczyk
- Department of Community Pharmacy, Medical University of Silesia, ul. Kasztanowa 3, 41-200 Sosnowiec, Poland
| | - Łukasz Mencner
- Department of Clinical Chemistry and Laboratory Diagnostics, Medical University of Silesia, ul. Jednosci 8, 41-200 Sosnowiec, Poland
| | - Katarzyna Komosinska-Vassev
- Department of Clinical Chemistry and Laboratory Diagnostics, Medical University of Silesia, ul. Jednosci 8, 41-200 Sosnowiec, Poland
| |
Collapse
|
5
|
Flangea C, Petrescu AJ, Seidler DG, Munteanu CVA, Zamfir AD. Identification of an unusually sulfated tetrasaccharide chondroitin/dermatan motif in mouse brain by combining chip-nanoelectrospray multistage MS2-MS4and high resolution MS. Electrophoresis 2013; 34:1581-92. [DOI: 10.1002/elps.201200704] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2012] [Revised: 01/31/2013] [Accepted: 02/04/2013] [Indexed: 01/06/2023]
Affiliation(s)
| | | | - Daniela G. Seidler
- Institute for Physiological Chemistry and Pathobiochemistry; University of Münster; Münster; Germany
| | | | | |
Collapse
|
6
|
Propolis induces chondroitin/dermatan sulphate and hyaluronic Acid accumulation in the skin of burned wound. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 2013:290675. [PMID: 23533471 PMCID: PMC3606753 DOI: 10.1155/2013/290675] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Accepted: 02/09/2013] [Indexed: 01/15/2023]
Abstract
Changes in extracellular matrix glycosaminoglycans during the wound repair allowed us to apply the burn model in which therapeutic efficacy of propolis and silver sulfadiazine was compared. Burns were inflicted on four pigs. Glycosaminoglycans isolated from healthy and burned skin were quantified using a hexuronic acid assay, electrophoretic fractionation, and densitometric analyses. Using the reverse-phase HPLC the profile of sulfated disaccharides released by chondroitinase ABC from chondroitin/dermatan sulfates was estimated. Chondroitin/dermatan sulfates and hyaluronic acid were found in all samples. Propolis stimulated significant changes in the content of particular glycosaminoglycan types during burn healing. Glycosaminoglycans alterations after silver sulfadiazine application were less expressed. Propolis maintained high contribution of 4-O-sulfated disaccharides to chondroitin/dermatan sulfates structure and low level of 6-O-sulfated ones throughout the observed period of healing. Propolis led to preservation of significant contribution of disulfated disaccharides especially 2,4-O-disulfated ones to chondroitin sulfates/dermatan sulfates structure throughout the observed period of healing. Our findings demonstrate that propolis accelerates the burned tissue repair by stimulation of the wound bed glycosaminoglycan accumulation needed for granulation, tissue growth, and wound closure. Moreover, propolis accelerates chondroitin/dermatan sulfates structure modification responsible for binding growth factors playing the crucial role in the tissue repair.
Collapse
|
7
|
Zhao X, Yang B, Solakyildirim K, Solakylidirim K, Joo EJ, Toida T, Higashi K, Linhardt RJ, Li L. Sequence analysis and domain motifs in the porcine skin decorin glycosaminoglycan chain. J Biol Chem 2013; 288:9226-37. [PMID: 23423381 DOI: 10.1074/jbc.m112.437236] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Decorin proteoglycan is comprised of a core protein containing a single O-linked dermatan sulfate/chondroitin sulfate glycosaminoglycan (GAG) chain. Although the sequence of the decorin core protein is determined by the gene encoding its structure, the structure of its GAG chain is determined in the Golgi. The recent application of modern MS to bikunin, a far simpler chondroitin sulfate proteoglycans, suggests that it has a single or small number of defined sequences. On this basis, a similar approach to sequence the decorin of porcine skin much larger and more structurally complex dermatan sulfate/chondroitin sulfate GAG chain was undertaken. This approach resulted in information on the consistency/variability of its linkage region at the reducing end of the GAG chain, its iduronic acid-rich domain, glucuronic acid-rich domain, and non-reducing end. A general motif for the porcine skin decorin GAG chain was established. A single small decorin GAG chain was sequenced using MS/MS analysis. The data obtained in the study suggest that the decorin GAG chain has a small or a limited number of sequences.
Collapse
Affiliation(s)
- Xue Zhao
- College of Food Science and Technology, Ocean University of China, Qingdao 266003, China
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Zamfir AD, Flangea C, Serb A, Zagrean AM, Rizzi AM, Sisu E. Separation and identification of glycoforms by capillary electrophoresis with electrospray ionization mass spectrometric detection. Methods Mol Biol 2013; 951:145-169. [PMID: 23296530 DOI: 10.1007/978-1-62703-146-2_11] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Capillary electrophoresis (CE) is a resourceful and versatile separation method for the analysis of complex carbohydrate mixtures. In combination with electrospray ionization (ESI) mass spectrometry (MS), CE enables fast, sensitive, and efficient separations for the accurate identification of a large variety of glycoform mixture types. In this chapter several reliable off- and on-line CE-based methods for the analysis of glycoforms with ESI MS/MS are presented. The first part of this chapter is dedicated to the application of off-line CE/ESI MS to complex mixtures of O-glycopeptides and mixtures of proteoglycan-derived O-glycans, i.e., glycosaminoglycans such as depolymerized hybrid chains of chondroitin sulfate (CS) and dermatan sulfate (DS). Procedures for off-line fractionation of these heterogeneous mixtures followed by ESI MS screening and sequencing of single glycoforms by collision-induced dissociation (CID) at low energies are also described. Ample sections are further devoted to on-line CE/ESI MS technique and its application to separation and identification of O-glycopeptides and CS/DS oligosaccharides. The concept and construction principles of two different sheathless CE/ESI MS interfaces together with the protocols to be applied for successful on-line analysis of O-glycopeptides and CS/DS oligosaccharides are presented in details in the last part of the chapter.
Collapse
Affiliation(s)
- Alina D Zamfir
- Department of Chemical and Biological Sciences, "Aurel Vlaicu" University of Arad, Timisoara, Romania.
| | | | | | | | | | | |
Collapse
|
9
|
Zamfir AD, Flangea C, Serb A, Sisu E, Zagrean L, Rizzi A, Seidler DG. Brain chondroitin/dermatan sulfate, from cerebral tissue to fine structure: extraction, preparation, and fully automated chip-electrospray mass spectrometric analysis. Methods Mol Biol 2012; 836:145-159. [PMID: 22252633 DOI: 10.1007/978-1-61779-498-8_10] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Chondroitin sulfate (CS) and dermatan sulfate (DS) glycosaminoglycans (GAGs) are covalently linked to proteins, building up a wide range of proteoglycans, with a prevalent expression in the extracellular matrix (ECM). In mammalian tissues, these GAG species are often found as hybrid CS/DS chains. Their structural diversity during chain elongation is produced by variability of sulfation in the repeating disaccharide units. In central nervous system, a large proportion of the ECM is composed of proteoglycans; therefore, CS/DS play a significant role in the functional diversity of neurons, brain development, and some brain diseases. A requirement for collecting consistent data on brain proteoglycan glycosylation is the development of adequate protocols for CS/DS extraction and detailed compositional and structure analysis. This chapter will present a strategy, which combines biochemical tools for brain CS/DS extraction, purification, and fractionation, with a modern analytical platform based on chip-nanoelectrospray multistage mass spectrometry (MS) able to provide information on the essential structural elements such as epimerization, chain length, sulfate content, and sulfation sites.
Collapse
Affiliation(s)
- Alina D Zamfir
- Department of Chemical and Biological Sciences, Aurel Vlaicu University of Arad, Arad, Romania
| | | | | | | | | | | | | |
Collapse
|
10
|
Seidler DG, Mohamed NA, Bocian C, Stadtmann A, Hermann S, Schäfers K, Schäfers M, Iozzo RV, Zarbock A, Götte M. The role for decorin in delayed-type hypersensitivity. THE JOURNAL OF IMMUNOLOGY 2011; 187:6108-19. [PMID: 22043007 DOI: 10.4049/jimmunol.1100373] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Decorin, a small leucine-rich proteoglycan, regulates extracellular matrix organization, growth factor-mediated signaling, and cell growth. Because decorin may directly modulate immune responses, we investigated its role in a mouse model of contact allergy (oxazolone-mediated delayed-type hypersensitivity [DTH]) in decorin-deficient (Dcn(-/-)) and wild-type mice. Dcn(-/-) mice showed a reduced ear swelling 24 h after oxazolone treatment with a concurrent attenuation of leukocyte infiltration. These findings were corroborated by reduced glucose metabolism, as determined by (18)fluordeoxyglucose uptake in positron emission tomography scans. Unexpectedly, polymorphonuclear leukocyte numbers in Dcn(-/-) blood vessels were significantly increased and accompanied by large numbers of flattened leukocytes adherent to the endothelium. Intravital microscopy and flow chamber and static adhesion assays confirmed increased adhesion and reduced transmigration of Dcn(-/-) leukocytes. Circulating blood neutrophil numbers were significantly increased in Dcn(-/-) mice 24 h after DTH elicitation, but they were only moderately increased in wild-type mice. Expression of the proinflammatory cytokine TNF-α was reduced, whereas syndecan-1 and ICAM-1 were overexpressed in inflamed ears of Dcn(-/-) mice, indicating that these adhesion molecules could be responsible for increased leukocyte adhesion. Decorin treatment of endothelial cells increased tyrosine phosphorylation and reduced syndecan-1 expression. Notably, absence of syndecan-1 in a genetic background lacking decorin rescued the attenuated DTH phenotype of Dcn(-/-) mice. Collectively, these results implicated a role for decorin in mediating DTH responses by influencing polymorphonuclear leukocyte attachment to the endothelium. This occurs via two nonmutually exclusive mechanisms that involve a direct antiadhesive effect on polymorphonuclear leukocytes and a negative regulation of ICAM-1 and syndecan-1 expression.
Collapse
Affiliation(s)
- Daniela G Seidler
- Institute of Physiological Chemistry and Pathobiochemistry, D-48149 Münster, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Abstract
The structure of the GAG (glycosaminoglycan) chain of recombinantly expressed decorin proteoglycan was examined using a combination of intact-chain analysis and domain compositional analysis. The GAG had a number-average molecular mass of 22 kDa as determined by PAGE. NMR spectroscopic analysis using two-dimensional correlation spectroscopy indicated that the ratio of glucuronic acid to iduronic acid in decorin peptidoglycan was 5 to 1. GAG domains terminated with a specific disaccharide obtained by enzymatic degradation of decorin GAG with highly specific endolytic and exolytic lyases were analysed by PAGE and further depolymerized with the enzymes. The disaccharide compositional profiles of the resulting domains were obtained using LC with mass spectrometric and photometric detection and compared with that of the polysaccharide. The information obtained through the disaccharide compositional profiling was combined with the NMR and PAGE data to construct a map of the decorin GAG sequence motifs.
Collapse
|
12
|
Modern developments in mass spectrometry of chondroitin and dermatan sulfate glycosaminoglycans. Amino Acids 2010; 41:235-56. [PMID: 20632047 DOI: 10.1007/s00726-010-0682-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2010] [Accepted: 06/29/2010] [Indexed: 12/16/2022]
Abstract
Chondroitin sulfate (CS) and dermatan sulfate (DS) are special types of glycosaminoglycan (GAG) oligosaccharides able to regulate vital biological functions that depend on precise motifs of their constituent hexose sequences and the extent and location of their sulfation. As a result, the need for better understanding of CS/DS biological role called for the elaboration and application of straightforward strategies for their composition and structure elucidation. Due to its high sensitivity, reproducibility, and the possibility to rapidly generate data on fine CS/DS structure determinants, mass spectrometry (MS) based on either electrospray ionization (ESI) or matrix-assisted laser desorption/ionization (MALDI) brought a major progress in the field. Here, modern developments in MS of CS/DS GAGs are gathered in a critical review covering the past 5 years. The first section is dedicated to protocols for CS/DS extraction from parent proteoglycan, digestion, and purification that are among critical prerequisites of a successful MS experiment. The second part highlights several MALDI MS aspects, the requirements, and applications of this ionization method to CS/DS investigation. An ample chapter is devoted to ESI MS strategies, which employ either capillary- or advanced chip-based sample infusion in combination with multistage MS (MS(n)) using either collision-induced (CID) or electron detachment dissociation (EDD). At last, the potential of two versatile separation techniques, capillary electrophoresis (CE), and liquid chromatography (LC) in off- and/or on-line coupling with ESI MS and MS(n), is discussed, alongside an assessment of particular buffer/solvent conditions and instrumental parameters required for CS/DS mixture separation followed by on-line mass analysis of individual components.
Collapse
|
13
|
Flangea C, Schiopu C, Sisu E, Serb A, Przybylski M, Seidler DG, Zamfir AD. Determination of sulfation pattern in brain glycosaminoglycans by chip-based electrospray ionization ion trap mass spectrometry. Anal Bioanal Chem 2009; 395:2489-98. [PMID: 19826794 DOI: 10.1007/s00216-009-3167-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2009] [Revised: 09/15/2009] [Accepted: 09/17/2009] [Indexed: 01/30/2023]
Abstract
Chondroitin sulfate (CS) and dermatan sulfate (DS) glycosaminoglycans display variability of sulfation in their constituent disaccharide repeats during chain elongation. Since a large proportion of the extracellular matrix of the central nervous system (CNS) is composed of proteoglycans, CS/DS disaccharide degree and profile of sulfation play important roles in the functional diversity of neurons, brain development, and some of its pathological states. To investigate the sulfation pattern of CS/DS structures expressed in CNS, we introduced here a novel method based on an advanced system encompassing fully automated chip nanoelectrospray ionization (nanoESI) in the negative ion mode and high capacity ion trap multistage mass spectrometry (MS(2)-MS(3)) by collision-induced dissociation (CID). This method, introduced here for the first time in glycomics of brain glycosaminoglycans, was particularly applied to structural investigation of disaccharides obtained by beta-elimination and digestion with chondroitin B and AC I lyase of hybrid CS/DS chains from wild-type mouse brain. Screening in the chip-MS mode of DS disaccharide fraction resulting after depolymerization with chondroitin B lyase revealed molecular ions assigned to monosulfated disaccharide species having a composition of 4,5-Delta-[IdoA-GalNAc]. By optimized CID MS(2)-MS(3), fragment ions supporting the localization of sulfate ester group at C4 within GalNAc were produced. Chip ESI MS profiling of CS disaccharide fraction obtained by depolymerization of the same CS/DS chain using chondroitin AC I lyase indicated the occurrence of mono- and bisulfated 4,5-Delta-[GlcA-GalNAc]. The site of oversulfation was determined by MS(2)-MS(3), which provided sequence patterns consistent with a rare GlcA-3-sulfate-GalNAc-6-sulfate structural motif. Figure Mouse brain GlcA-3-sulfate-GalNAc-6-sulfate structural motif.
Collapse
Affiliation(s)
- Corina Flangea
- Mass Spectrometry Laboratory, National Institute for Research and Development in Electrochemistry and Condensed Matter, Plautius Andronescu Str. 1, 300224, Timisoara, Romania
| | | | | | | | | | | | | |
Collapse
|
14
|
Zamfir AD, Flangea C, Sisu E, Serb AF, Dinca N, Bruckner P, Seidler DG. Analysis of novel over- and under-sulfated glycosaminoglycan sequences by enzyme cleavage and multiple stage MS. Proteomics 2009; 9:3435-44. [DOI: 10.1002/pmic.200800440] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
15
|
Zaia J. On-line separations combined with MS for analysis of glycosaminoglycans. MASS SPECTROMETRY REVIEWS 2009; 28:254-72. [PMID: 18956477 PMCID: PMC4119066 DOI: 10.1002/mas.20200] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The glycosaminoglycan (GAG) family of polysaccharides includes the unsulfated hyaluronan and the sulfated heparin, heparan sulfate, keratan sulfate, and chondroitin/dermatan sulfate. GAGs are biosynthesized by a series of enzymes, the activities of which are controlled by complex factors. Animal cells alter their responses to different growth conditions by changing the structures of GAGs expressed on their cell surfaces and in extracellular matrices. Because this variation is a means whereby the functions of the limited number of protein gene products in animal genomes is elaborated, the phenotypic and functional assessment of GAG structures expressed spatially and temporally is an important goal in glycomics. On-line mass spectrometric separations are essential for successful determination of expression patterns for the GAG compound classes due to their inherent complexity and heterogeneity. Options include size exclusion, anion exchange, reversed phase, reversed phase ion pairing, hydrophilic interaction, and graphitized carbon chromatographic modes and capillary electrophoresis. This review summarizes the application of these approaches to on-line MS analysis of the GAG classes.
Collapse
Affiliation(s)
- Joseph Zaia
- Department of Biochemistry, Center for Biomedical Mass Spectrometry, Mass Spectrometry Resource, Boston University School of Medicine, Boston, MA 02118, USA.
| |
Collapse
|
16
|
Amon S, Zamfir AD, Rizzi A. Glycosylation analysis of glycoproteins and proteoglycans using capillary electrophoresis-mass spectrometry strategies. Electrophoresis 2008; 29:2485-507. [PMID: 18512669 DOI: 10.1002/elps.200800105] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
This review highlights recent developments in glycosylation analysis by modern MS in combination with CE based preseparation. Focused on CE-MS strategies aimed for glycotyping, the review addresses the detailed glycoform analysis of glycoproteins, glycopeptides, and proteoglycans. Glycoform analysis in the context of modern glycoproteomics is briefly addressed, as well. CZE, CIEF, and frontal analysis CE approaches hyphenated to high-resolution multistage MS for the detailed analysis of protein-linked glycan structures are overviewed in a comprehensive way. Advantages and limitations of various methodological approaches and techniques as well as mass spectrometric instrumentation are discussed in the particular context of glycoanalysis.
Collapse
Affiliation(s)
- Sabine Amon
- Institute of Analytical Chemistry and Food Chemistry, University of Vienna, Vienna, Austria
| | | | | |
Collapse
|
17
|
Abstract
Complex natural polysaccharides, glycosaminoglycans (GAGs), are a class of ubiquitous macromolecules that exhibit a wide range of biological functions and participate and regulate multiple cellular events and (patho)physiological processes. They are generally present either as free chains (hyaluronic acid and bacterial acidic polysaccharides) or as side chains of proteoglycans (PGs; chondroitin/dermatan sulfate, heparin/heparan sulfate, and keratan sulfate) and are most often found in cell membranes and in the extracellular matrix. The recent emergence of modern analytical tools for their study has produced a virtual explosion in the field of glycomics. CE, due to its high resolving power and sensitivity, has been useful in the analysis of intact GAGs and GAG-derived oligosaccharides and disaccharides affording concentration and structural characterization data essential for understanding the biological functions of GAGs. In this review, novel off-line and on-line CE-MS and MS/MS methods for screening of GAG-derived oligosaccharides and disaccharides will be discussed.
Collapse
Affiliation(s)
- Nicola Volpi
- Department of Biologia Animale, Biological Chemistry Section, University of Modena and Reggio Emilia, Modena, Italy.
| | | | | |
Collapse
|