1
|
Damette O, Mathonnat C, Goutte S. Meteorological factors against COVID-19 and the role of human mobility. PLoS One 2021; 16:e0252405. [PMID: 34086744 PMCID: PMC8177552 DOI: 10.1371/journal.pone.0252405] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 05/16/2021] [Indexed: 01/09/2023] Open
Abstract
In the vein of recent empirical literature, we reassessed the impact of weather factors on Covid-19 daily cases and fatalities in a panel of 37 OECD countries between 1st January and 27th July 2020. We considered five different meteorological factors. For the first time, we used a dynamic panel model and considered two different kinds of channels between climate and Covid-19 virus: direct/physical factors related to the survival and durability dynamics of the virus on surfaces and outdoors and indirect/social factors through human behaviour and individual mobility, such as walking or driving outdoors, to capture the impact of weather on social distancing and, thus, on Covid-19 cases and fatalities. Our work revealed that temperature, humidity and solar radiation, which has been clearly under considered in previous studies, significantly reduce the number of Covid-19 cases and fatalities. Indirect effects through human behaviour, i.e., correlations between temperature (or solar radiation) and human mobility, were significantly positive and should be considered to correctly assess the effects of climatic factors. Increasing temperature, humidity or solar radiation effects were positively correlated with increasing mobility effects on Covid-19 cases and fatalities. The net effect from weather on the Covid-19 outbreak will, thus, be the result of the physical/direct negative effect of temperature or solar radiation and the mobility/indirect positive effect due to the interaction between human mobility and those meterological variables. Reducing direct effects of temperature and solar radiation on Covid-19 cases and fatalities, when they were significant, were partly and slightly compensated for positive indirect effects through human mobility. Suitable control policies should be implemented to control mobility and social distancing even when the weather is favourable to reduce the spread of the Covid-19 virus.
Collapse
Affiliation(s)
- Olivier Damette
- Faculté de Droit et de Sciences Economiques et BETA, Université de Lorraine, Lorraine, France
- Climate Economic Chair Paris Dauphine, France
| | - Clément Mathonnat
- Faculté de Droit et de Sciences Economiques et BETA, Université de Lorraine, Lorraine, France
| | - Stéphane Goutte
- CEMOTEV, Université Versailles Saint-Quentin en Yvelines (Paris Saclay), Versailles, France
| |
Collapse
|
2
|
Hossain MS, Ahmed S, Uddin MJ. Impact of weather on COVID-19 transmission in south Asian countries: An application of the ARIMAX model. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 761:143315. [PMID: 33162141 PMCID: PMC7605795 DOI: 10.1016/j.scitotenv.2020.143315] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 10/12/2020] [Accepted: 10/16/2020] [Indexed: 05/24/2023]
Abstract
We aimed to examine the impact of weather on COVID-19 confirmed cases in South Asian countries, namely, Afghanistan, Bangladesh, India, Pakistan, and Sri Lanka. Data on daily confirmed cases, together with weather parameters, were collected from the first day of COVID confirmed cases in each country to 31 August 2020. The weather parameters were Rainfall (mm), relative humidity (%), maximum and minimum temperature (°C), surface pressure (kPa), maximum air pollutants matter PM 2.5 (μg/m3) and maximum wind speed (m/s). Data were analyzed for each investigated countries separately by using the Autoregressive Integrated Moving Average with Explanatory Variables (ARIMAX) model. We found that maximum wind speed had significant negative impact on COVID-19 transmission in India (-209.45, 95% confidence interval (CI): -369.13, -49.77) and Sri Lanka (-2.77, 95% CI: -4.77, -0.77). Apart from India, temperature had mixed effects (i.e., positive or negative) in four countries in South Asia. For example, maximum temperature had negative impact (-30.52, 95% CI: -60.24, -0.78) in Bangladesh and positive impact (5.10, 95% CI: 0.06, 10.14) in Afghanistan. Whereas rainfall had negative effects (-48.64, 95% CI: -80.17, -17.09) in India and mixed effects in Pakistan. Besides, maximum air pollutants matter PM 2.5 was negatively associated with the confirmed cases of COVID-19. In conclusion, maximum wind speed, rainfall, air pollutants (maximum PM 2.5) and temperature are four variables that could play a vital role in the transmission of COVID-19. Although there is a mixed conclusion regarding weather parameters and COVID-19 transmission, we recommend developing environmental policies regarding the transmission of COVID-19 in South Asian countries.
Collapse
Affiliation(s)
- Md Sabbir Hossain
- Department of Statistics, Shahjalal University of Science & Technology, Sylhet 3114, Bangladesh.
| | - Sulaiman Ahmed
- Department of Statistics, Shahjalal University of Science & Technology, Sylhet 3114, Bangladesh.
| | - Md Jamal Uddin
- Department of Statistics, Shahjalal University of Science & Technology, Sylhet 3114, Bangladesh.
| |
Collapse
|
3
|
Aboubakr HA, Sharafeldin TA, Goyal SM. Stability of SARS-CoV-2 and other coronaviruses in the environment and on common touch surfaces and the influence of climatic conditions: A review. Transbound Emerg Dis 2021. [PMID: 32603505 DOI: 10.1111/tbed.13707-35] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2023]
Abstract
Although the unprecedented efforts the world has been taking to control the spread of the human coronavirus disease (COVID-19) and its causative aetiology [severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)], the number of confirmed cases has been increasing drastically. Therefore, there is an urgent need for devising more efficient preventive measures, to limit the spread of the infection until an effective treatment or vaccine is available. The preventive measures depend mainly on the understanding of the transmission routes of this virus, its environmental stability, and its persistence on common touch surfaces. Due to the very limited knowledge about SARS-CoV-2, we can speculate its stability in the light of previous studies conducted on other human and animal coronaviruses. In this review, we present the available data on the stability of coronaviruses (CoVs), including SARS-CoV-2, from previous reports to help understand its environmental survival. According to available data, possible airborne transmission of SARS-CoV-2 has been suggested. SARS-CoV-2 and other human and animal CoVs have remarkably short persistence on copper, latex and surfaces with low porosity as compared to other surfaces like stainless steel, plastics, glass and highly porous fabrics. It has also been reported that SARS-CoV-2 is associated with diarrhoea and that it is shed in the faeces of COVID-19 patients. Some CoVs show persistence in human excrement, sewage and waters for a few days. These findings suggest a possible risk of faecal-oral, foodborne and waterborne transmission of SARS-CoV-2 in developing countries that often use sewage-polluted waters in irrigation and have poor water treatment systems. CoVs survive longer in the environment at lower temperatures and lower relative humidity. It has been suggested that large numbers of COVID-19 cases are associated with cold and dry climates in temperate regions of the world and that seasonality of the virus spread is suspected.
Collapse
Affiliation(s)
- Hamada A Aboubakr
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, MN, USA
- Department of Food Science and Technology, Faculty of Agriculture, Alexandria University, Alexandria, Egypt
| | - Tamer A Sharafeldin
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, MN, USA
| | - Sagar M Goyal
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, MN, USA
| |
Collapse
|
4
|
Thangariyal S, Rastogi A, Tomar A, Bhadoria AS, Baweja S. Impact of temperature and sunshine duration on daily new cases and death due to COVID-19. J Family Med Prim Care 2020; 9:6091-6101. [PMID: 33681046 PMCID: PMC7928129 DOI: 10.4103/jfmpc.jfmpc_1185_20] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 08/20/2020] [Accepted: 09/08/2020] [Indexed: 01/09/2023] Open
Abstract
Context: Control of COVID-19 has now become a critical issue for public health. Many ecological factors are proven to influence the transmission and survival of the virus. However, the association between different climatic factors and spread and mortality due to COVID-19 is unknown. Aim: To determine the association of different climatic factors with the spread and mortality due to COVID-19 during January 2020 to May 2020. Methods and Material: The climatic indicators included in the study were duration of sunshine, average minimum temperature, and average maximum temperature, with cumulative confirmed cases, deceased, and recovered cases. The data was performed for 138 different countries of the world, from January 2020 to May 2020. Statistical analysis used: Spearman's correlation analysis was used to assess the correlation between temperature and the spread and mortality of COVID-19 cases. Both univariate and multivariate analysis was performed for cumulative and month-wise analysis, using SPSS software. Results: Average maximum temperature and sunshine duration were significantly associated with COVID-19 confirmed cases, deceased, and recovered. For every 1° increase in average temperature, the confirmed, deceased, and recovered cases decreased by 2047 (P = 0.03), 157 (P = 0.016), and 743 (P = 0.005) individuals. The association remained significant even after adjusting for environmental as well as non-environmental variables. Average sunshine duration was inversely correlated with an increase in daily new cases (r = - 2261) and deaths (r = - 0.2985). Conclusion: Higher average temperature and longer sunshine duration are strongly associated with COVID-19 cases and deaths in 138 countries.
Collapse
Affiliation(s)
- Swati Thangariyal
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Aayushi Rastogi
- Department of Epidemiology, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Arvind Tomar
- Department of Pulmonary Medicine, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Ajeet S Bhadoria
- Department of Community and Family Medicine, All India Institute of Medical Sciences, Rishikesh, Uttarakhand, India
| | - Sukriti Baweja
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, New Delhi, India
| |
Collapse
|
5
|
Smit AJ, Fitchett JM, Engelbrecht FA, Scholes RJ, Dzhivhuho G, Sweijd NA. Winter Is Coming: A Southern Hemisphere Perspective of the Environmental Drivers of SARS-CoV-2 and the Potential Seasonality of COVID-19. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E5634. [PMID: 32764257 PMCID: PMC7459895 DOI: 10.3390/ijerph17165634] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/29/2020] [Accepted: 07/31/2020] [Indexed: 01/09/2023]
Abstract
SARS-CoV-2 virus infections in humans were first reported in December 2019, the boreal winter. The resulting COVID-19 pandemic was declared by the WHO in March 2020. By July 2020, COVID-19 was present in 213 countries and territories, with over 12 million confirmed cases and over half a million attributed deaths. Knowledge of other viral respiratory diseases suggests that the transmission of SARS-CoV-2 could be modulated by seasonally varying environmental factors such as temperature and humidity. Many studies on the environmental sensitivity of COVID-19 are appearing online, and some have been published in peer-reviewed journals. Initially, these studies raised the hypothesis that climatic conditions would subdue the viral transmission rate in places entering the boreal summer, and that southern hemisphere countries would experience enhanced disease spread. For the latter, the COVID-19 peak would coincide with the peak of the influenza season, increasing misdiagnosis and placing an additional burden on health systems. In this review, we assess the evidence that environmental drivers are a significant factor in the trajectory of the COVID-19 pandemic, globally and regionally. We critically assessed 42 peer-reviewed and 80 preprint publications that met qualifying criteria. Since the disease has been prevalent for only half a year in the northern, and one-quarter of a year in the southern hemisphere, datasets capturing a full seasonal cycle in one locality are not yet available. Analyses based on space-for-time substitutions, i.e., using data from climatically distinct locations as a surrogate for seasonal progression, have been inconclusive. The reported studies present a strong northern bias. Socio-economic conditions peculiar to the 'Global South' have been omitted as confounding variables, thereby weakening evidence of environmental signals. We explore why research to date has failed to show convincing evidence for environmental modulation of COVID-19, and discuss directions for future research. We conclude that the evidence thus far suggests a weak modulation effect, currently overwhelmed by the scale and rate of the spread of COVID-19. Seasonally modulated transmission, if it exists, will be more evident in 2021 and subsequent years.
Collapse
Affiliation(s)
- Albertus J. Smit
- Department of Biodiversity and Conservation Biology, University of the Western Cape, Cape Town 7535, South Africa
- Elwandle Coastal Node, South African Environmental Observation Network (SAEON), Port Elizabeth 6031, South Africa
| | - Jennifer M. Fitchett
- School of Geography, Archaeology and Environmental Studies, University of the Witwatersrand, Johannesburg 2050, South Africa;
| | - Francois A. Engelbrecht
- Global Change Institute, University of the Witwatersrand, Johannesburg 2050, South Africa; (F.A.E.); (R.J.S.)
| | - Robert J. Scholes
- Global Change Institute, University of the Witwatersrand, Johannesburg 2050, South Africa; (F.A.E.); (R.J.S.)
| | - Godfrey Dzhivhuho
- Department of Microbiology, Immunology and Cancer Biology, Myles H. Thaler Center for AIDS and Human Retrovirus Research, University of Virginia, Charlottesville, VA 22903, USA;
| | - Neville A. Sweijd
- Alliance for Collaboration on Climate and Earth Systems Science (ACCESS), Council for Scientific and Industrial Research (CSIR), Pretoria 0001, South Africa;
| |
Collapse
|
6
|
Briz-Redón Á, Serrano-Aroca Á. A spatio-temporal analysis for exploring the effect of temperature on COVID-19 early evolution in Spain. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 728:138811. [PMID: 32361118 PMCID: PMC7194829 DOI: 10.1016/j.scitotenv.2020.138811] [Citation(s) in RCA: 178] [Impact Index Per Article: 35.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 04/16/2020] [Accepted: 04/17/2020] [Indexed: 04/13/2023]
Abstract
The new SARS-CoV-2 coronavirus, which causes the COVID-19 disease, was reported in Wuhan, China, in December 2019. This new pathogen has spread rapidly around more than 200 countries, in which Spain has one of the world's highest mortality rates so far. Previous studies have supported an epidemiological hypothesis that weather conditions may affect the survival and spread of droplet-mediated viral diseases. However, some contradictory studies have also been reported in the same research line. In addition, many of these studies have been performed considering only meteorological factors, which can limit the reliability of the results. Herein, we report a spatio-temporal analysis for exploring the effect of daily temperature (mean, minimum and maximum) on the accumulated number of COVID-19 cases in the provinces of Spain. Non-meteorological factors such as population density, population by age, number of travellers and number of companies have also been considered for the analysis. No evidence suggesting a reduction in COVID-19 cases at warmer mean, minimum and maximum temperatures has been found. Nevertheless, these results need to be interpreted cautiously given the existing uncertainty about COVID-19 data, and should not be extrapolated to temperature ranges other than those analysed here for the early evolution period.
Collapse
Affiliation(s)
| | - Ángel Serrano-Aroca
- Centro de Investigación Traslacional San Alberto Magno, Universidad Católica de Valencia San Vicente Mártir, Spain.
| |
Collapse
|
7
|
Escobar LE, Molina-Cruz A, Barillas-Mury C. BCG vaccine protection from severe coronavirus disease 2019 (COVID-19). Proc Natl Acad Sci U S A 2020; 117:17720-17726. [PMID: 32647056 PMCID: PMC7395502 DOI: 10.1073/pnas.2008410117] [Citation(s) in RCA: 296] [Impact Index Per Article: 59.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 06/09/2020] [Indexed: 01/09/2023] Open
Abstract
A series of epidemiological explorations has suggested a negative association between national bacillus Calmette-Guérin (BCG) vaccination policy and the prevalence and mortality of coronavirus disease 2019 (COVID-19). However, these comparisons are difficult to validate due to broad differences between countries such as socioeconomic status, demographic structure, rural vs. urban settings, time of arrival of the pandemic, number of diagnostic tests and criteria for testing, and national control strategies to limit the spread of COVID-19. We review evidence for a potential biological basis of BCG cross-protection from severe COVID-19, and refine the epidemiological analysis to mitigate effects of potentially confounding factors (e.g., stage of the COVID-19 epidemic, development, rurality, population density, and age structure). A strong correlation between the BCG index, an estimation of the degree of universal BCG vaccination deployment in a country, and COVID-19 mortality in different socially similar European countries was observed (r2 = 0.88; P = 8 × 10-7), indicating that every 10% increase in the BCG index was associated with a 10.4% reduction in COVID-19 mortality. Results fail to confirm the null hypothesis of no association between BCG vaccination and COVID-19 mortality, and suggest that BCG could have a protective effect. Nevertheless, the analyses are restricted to coarse-scale signals and should be considered with caution. BCG vaccination clinical trials are required to corroborate the patterns detected here, and to establish causality between BCG vaccination and protection from severe COVID-19. Public health implications of a plausible BCG cross-protection from severe COVID-19 are discussed.
Collapse
Affiliation(s)
- Luis E Escobar
- Department of Fish and Wildlife Conservation, Virginia Polytechnic Institute and State University, Blacksburg, VA 24601;
| | - Alvaro Molina-Cruz
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Carolina Barillas-Mury
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|