1
|
Ren J, Zhang Z, Xia Y, Zhao D, Li D, Zhang S. Research Progress on the Structure and Function, Immune Escape Mechanism, Antiviral Drug Development Methods, and Clinical Use of SARS-CoV-2 M pro. Molecules 2025; 30:351. [PMID: 39860219 PMCID: PMC11767629 DOI: 10.3390/molecules30020351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 01/12/2025] [Accepted: 01/14/2025] [Indexed: 01/27/2025] Open
Abstract
The three-year COVID-19 pandemic 'has' caused a wide range of medical, social, political, and financial implications. Since the end of 2020, various mutations and variations in SARS-CoV-2 strains, along with the immune escape phenomenon, have emerged. There is an urgent need to identify a relatively stable target for the development of universal vaccines and drugs that can effectively combat both SARS-CoV-2 strains and their mutants. Currently, the main focus in treating SARS-CoV-2 lies in disrupting the virus's life cycle. The main protease (Mpro) is closely associated with virus replication and maturation and plays a crucial role in the early stages of infection. Consequently, it has become an important target for the development of SARS-CoV-2-specific drugs. This review summarizes the recent research progress on the novel coronavirus's main proteases, including the pivotal role of Mpro in the virus's life cycle, the structure and catalytic mechanism of Mpro, the self-maturation mechanism of Mpro, the role of Mpro in virus immune escape, the current methods of developing antiviral drugs targeting Mpro, and the key drugs that have successfully entered clinical trials. The aim is to provide researchers involved in the development of antiviral drugs targeting Mpro with systematic and comprehensive information.
Collapse
Affiliation(s)
| | | | | | | | - Dingqin Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China; (J.R.); (Z.Z.); (Y.X.); (D.Z.)
| | - Shujun Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China; (J.R.); (Z.Z.); (Y.X.); (D.Z.)
| |
Collapse
|
2
|
Le UNP, Chang YJ, Lu CH, Chen Y, Su WC, Chao ST, Baltina LA, Petrova SF, Li SR, Hung MC, Lai MMC, Baltina LA, Lin CW. Glycyrrhizic acid conjugates with amino acid methyl esters target the main protease, exhibiting antiviral activity against wild-type and nirmatrelvir-resistant SARS-CoV-2 variants. Antiviral Res 2024; 227:105920. [PMID: 38821317 DOI: 10.1016/j.antiviral.2024.105920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/10/2024] [Accepted: 05/28/2024] [Indexed: 06/02/2024]
Abstract
COVID-19 pandemic is predominantly caused by SARS-CoV-2, with its main protease, Mpro, playing a pivotal role in viral replication and serving as a potential target for inhibiting different variants. In this study, potent Mpro inhibitors were identified from glycyrrhizic acid (GL) derivatives with amino acid methyl/ethyl esters. Out of the 17 derivatives semisynthesized, Compounds 2, 6, 9, and 15, with methionine methyl esters, D-tyrosine methyl esters, glutamic acid methyl esters, and methionines in the carbohydrate moiety, respectively, significantly inhibited wild-type SARS-CoV-2 Mpro-mediated proteolysis, with IC50 values ranging from 0.06 μM to 0.84 μM. They also demonstrated efficacy in inhibiting trans-cleavage by mutant Mpro variants (Mpro_P132H, Mpro_E166V, Mpro_P168A, Mpro_Q189I), with IC50 values ranging from 0.05 to 0.92 μM, surpassing nirmatrelvir (IC50: 1.17-152.9 μM). Molecular modeling revealed stronger interactions with Valine166 in the structural complex of Mpro_E166V with the compounds compared to nirmatrelvir. Moreover, these compounds efficiently inhibited the post-entry viral processes of wild-type SARS-CoV-2 single-round infectious particles (SRIPs), mitigating viral cytopathic effects and reducing replicon-driven GFP reporter signals, as well as in vitro infectivity of wild-type, Mpro_E166V, and Mpro_Q189I SRIPs, with EC50 values ranging from 0.02 to 0.53 μM. However, nirmatrelvir showed a significant decrease in inhibiting the replication of mutant SARS-CoV-2 SRIPs carrying Mpro_E166V (EC50: >20 μM) and Mpro_Q189I (EC50: 13.2 μM) compared to wild-type SRIPs (EC50: 0.06 μM). Overall, this study identifies four GL derivatives as promising lead compounds for developing treatments against various SARS-CoV-2 strains, including Omicron, and nirmatrelvir-resistant variants.
Collapse
Affiliation(s)
- Uyen Nguyen Phuong Le
- Graduate Institute of Biological Science and Technology, China Medical University, Taichung, Taiwan; Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung, Taiwan
| | - Yu-Jen Chang
- The Ph.D. Program of Biotechnology and Biomedical Industry, China Medical University, Taichung, Taiwan
| | - Chih-Hao Lu
- The Ph.D. Program of Biotechnology and Biomedical Industry, China Medical University, Taichung, Taiwan; Institute of Bioinformatics and Systems Biology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan; Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Yeh Chen
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung, 402, Taiwan
| | - Wen-Chi Su
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| | - Shao-Ting Chao
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung, Taiwan
| | - Lia A Baltina
- Ufa Institute of Chemistry, Ufa Federal Research Center of the Russian Academy of Sciences, Russia
| | - Svetlana F Petrova
- Ufa Institute of Chemistry, Ufa Federal Research Center of the Russian Academy of Sciences, Russia
| | - Sin-Rong Li
- Department of Laboratory Medicine, China Medical University Hospital, Taichung, 404327, Taiwan
| | - Mien-Chie Hung
- Research Center for Cancer Biology, China Medical University, Taichung, 404327, Taiwan; Center for Molecular Medicine, China Medical University Hospital, Taichung, 404327, Taiwan
| | - Michael M C Lai
- Institute of Molecular Biology, Academia Sinica, Taipei, 115201, Taiwan
| | - Lidia A Baltina
- Ufa Institute of Chemistry, Ufa Federal Research Center of the Russian Academy of Sciences, Russia.
| | - Cheng-Wen Lin
- Graduate Institute of Biological Science and Technology, China Medical University, Taichung, Taiwan; Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung, Taiwan; The Ph.D. Program of Biotechnology and Biomedical Industry, China Medical University, Taichung, Taiwan; Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan; Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung, Taiwan.
| |
Collapse
|
3
|
Chaurasiya A, Shome A, Chawla PA. Molecular docking analysis of peptide-based antiviral agents against SARS-CoV-2 main protease: an approach towards drug repurposing. EXPLORATION OF MEDICINE 2023. [DOI: 10.37349/emed.2023.00123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023] Open
Abstract
Aim:
Utilizing the therapeutic potentials of previously approved medications against a new target or pharmacological response is known as drug repurposing. The health and scientific communities are under continual pressure to discover new compounds with antiviral potential due to the rising reports of viral resistance and the occurrence and re-emergence of viral outbreaks. The use of antiviral peptides has emerged as an intriguing option in this search. Here, this article includes the current United States Food and Drug Administration (FDA)-approved antiviral peptides that might be enforced for the treatment of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and carried out docking study of the viral protease inhibitors.
Methods:
In silico techniques like molecular docking was carried out using Autodock Vina software.
Results:
The molecular docking studies of peptide-based antiviral agents against SARS-CoV-2 [Protein Data Bank (PDB) ID: 7P35] using docking software AutoDockTools 1.5.6. Among all the docked ligands, compound velpatasvir showed interaction with residues ILE213, GLN256, LEU141, GLN189, GLU166, HIS41, CYS145, and ASN142, and displayed the highest docking score of –8.2 kcal/mol. This medication could be a novel treatment lead or candidate for treating SARS-CoV-2.
Conclusions:
To conclude, a docking study of peptide based antiviral compounds for their binding mode in the catalytic domain of SARS-CoV-2 receptor is reported. On molecular docking, the compounds have showed remarkable binding affinity with the amino acids of receptor chain A. The compounds occupied the same binding cavity as the reference compound maintaining the interactions with conserved amino acid residues essential for significant inhibitory potential, especially for compound velpatasvir with binding score of –8.2 kcal/mol.
Collapse
Affiliation(s)
- Abhishek Chaurasiya
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga 142001, India
| | - Abhimannu Shome
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga 142001, India
| | - Pooja A. Chawla
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga 142001, India
| |
Collapse
|
4
|
Mengist HM, Khalid Z, Adane F. In silico Screening of Potential SARS-CoV-2 Main Protease Inhibitors from Thymus schimperi. Adv Appl Bioinform Chem 2023; 16:1-13. [PMID: 36699952 PMCID: PMC9868284 DOI: 10.2147/aabc.s393084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 01/11/2023] [Indexed: 01/19/2023] Open
Abstract
Background COVID-19 is still instigating significant social and economic chaos worldwide; however, there is no approved antiviral drug yet. Here, we used in silico analysis to screen potential SARS-CoV-2 main protease (Mpro) inhibitors extracted from the essential oil of Thymus schimperi which could contribute to the discovery of potent anti-SARS-CoV-2 phytochemicals. Methods The absorption, distribution, metabolism, excretion, and toxicity (ADMET) profiles of compounds were determined through SwissADME and ProToxII servers. AutoDock tools were used for molecular docking analysis studies, while Chimera, DS studio, and LigPlot were used for post-docking studies. Molecular dynamic simulations were performed for 200 ns under constant pressure. Results All compounds exhibited a bioavailability score of ≥0.55 entailing that at least 55% of the drugs can be absorbed unchanged. Only five (9%), nine (16%) and two (3.6%) of the compounds showed active hepatotoxicity, carcinogenicity, and immunotoxicity, respectively. Except for flourazophore P, which showed a little mutagenicity, all other compounds did not show mutagenic properties. On the other hand, only pinene beta was found to have a little cytotoxicity. Five compounds demonstrated effective binding to the catalytic dyad of the SARS-CoV-2 Mpro substrate binding pocket, while two of them (geranylisobutanoate and 3-octane) are found to be the best hits that formed hydrogen bonds with Glu166 and Ser144 of SARS-CoV-2 Mpro. Conclusion Based on our in silico analysis, top hits from Thymus schimperi may serve as potential anti-SARS-CoV-2 compounds. Further in vitro and in vivo studies are recommended to characterize these compounds for clinical applications.
Collapse
Affiliation(s)
- Hylemariam Mihiretie Mengist
- Department of Medical Laboratory Science, College of Medical and Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Zunera Khalid
- School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science & Technology of China, Langfang, People’s Republic of China
| | - Fentahun Adane
- Department of Biomedical Sciences, College of Medical and Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| |
Collapse
|
5
|
Amin SA, Banerjee S, Singh S, Qureshi IA, Gayen S, Jha T. First structure-activity relationship analysis of SARS-CoV-2 virus main protease (Mpro) inhibitors: an endeavor on COVID-19 drug discovery. Mol Divers 2021; 25:1827-1838. [PMID: 33400085 PMCID: PMC7782049 DOI: 10.1007/s11030-020-10166-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 11/28/2020] [Indexed: 11/10/2022]
Abstract
Main protease (Mpro) of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) intervenes in the replication and transcription processes of the virus. Hence, it is a lucrative target for anti-viral drug development. In this study, molecular modeling analyses were performed on the structure activity data of recently reported diverse SARS-CoV-2 Mpro inhibitors to understand the structural requirements for higher inhibitory activity. The classification-based quantitative structure-activity relationship (QSAR) models were generated between SARS-CoV-2 Mpro inhibitory activities and different descriptors. Identification of structural fingerprints to increase or decrease in the inhibitory activity was mapped for possible inclusion/exclusion of these fingerprints in the lead optimization process. Challenges in ADME properties of protease inhibitors were also discussed to overcome the problems of oral bioavailability. Further, depending on the modeling results, we have proposed novel as well as potent SARS-CoV-2 Mpro inhibitors.
Collapse
Affiliation(s)
- Sk Abdul Amin
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, India
| | - Suvankar Banerjee
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, India
| | - Samayaditya Singh
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, Telangana, India
| | - Insaf Ahmed Qureshi
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, Telangana, India
| | - Shovanlal Gayen
- Laboratory of Drug Design and Discovery, Department of Pharmaceutical Sciences, Dr. Harisingh Gour University, Sagar, 470003, MP, India.
| | - Tarun Jha
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, India.
| |
Collapse
|
6
|
Fernandes HS, Sousa SF, Cerqueira NMFSA. New insights into the catalytic mechanism of the SARS-CoV-2 main protease: an ONIOM QM/MM approach. Mol Divers 2021; 26:1373-1381. [PMID: 34169450 PMCID: PMC8224256 DOI: 10.1007/s11030-021-10259-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 06/15/2021] [Indexed: 11/26/2022]
Abstract
SARS-CoV-2 Mpro, also known as the main protease or 3C-like protease, is a key enzyme involved in the replication process of the virus that is causing the COVID-19 pandemic. It is also the most promising antiviral drug target targeting SARS-CoV-2 virus. In this work, the catalytic mechanism of Mpro was studied using the full model of the enzyme and a computational QM/MM methodology with a 69/72-atoms QM region treated at DLPNO-CCSD(T)/CBS//B3LYP/6-31G(d,p):AMBER level and including the catalytic important oxyanion-hole residues. The transition state of each step was fully characterized and described together with the related reactants and products. The rate-limiting step of the catalytic process is the hydrolysis of the thioester-enzyme adduct, and the calculated barrier closely agrees with the available kinetic data. The calculated Gibbs free energy profile, together with the full atomistic detail of the structures involved in catalysis, can now serve as valuable models for the rational drug design of transition state analogs as new inhibitors targeting the SARS-CoV-2 virus.
Collapse
Affiliation(s)
- Henrique S Fernandes
- UCIBIO@REQUIMTE, BioSIM, Departamento de Biomedicina, Faculdade de Medicina da Universidade do Porto, Alameda Professor Hernâni Monteiro, 4200-319, Porto, Portugal
| | - Sérgio F Sousa
- UCIBIO@REQUIMTE, BioSIM, Departamento de Biomedicina, Faculdade de Medicina da Universidade do Porto, Alameda Professor Hernâni Monteiro, 4200-319, Porto, Portugal
| | - Nuno M F S A Cerqueira
- UCIBIO@REQUIMTE, BioSIM, Departamento de Biomedicina, Faculdade de Medicina da Universidade do Porto, Alameda Professor Hernâni Monteiro, 4200-319, Porto, Portugal.
| |
Collapse
|
7
|
Sperga A, Melngaile R, Kazia A, Belyakov S, Veliks J. Optimized Monofluoromethylsulfonium Reagents for Fluoromethylene-Transfer Chemistry. J Org Chem 2021; 86:3196-3212. [PMID: 33502201 DOI: 10.1021/acs.joc.0c02561] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An investigation of the properties and reactivity of fluoromethylsulfonium salts resulted in the redesign of the reagents for fluoromethylene transfer chemistry. The model reaction, fluorocyclopropanation of nitrostyrene, turned out to be a suitable platform for the discovery of more streamlined fluoromethylene transfer reagents. The incorporation of halides on one aryl ring increased the reactivity, and 2,4-dimethyl substitution on the other aryl ring provided a balance between the reactivity/crystallinity of the reagent as well as the atom economy. The utility of new reagents was demonstrated by the development of an efficient fluorocyclopropanation protocol to access a range of monofluorinated cyclopropane derivatives.
Collapse
Affiliation(s)
- Arturs Sperga
- Latvian Institute of Organic Synthesis, Aizkraukles 21, LV-1006 Riga, Latvia
| | - Renate Melngaile
- Latvian Institute of Organic Synthesis, Aizkraukles 21, LV-1006 Riga, Latvia
| | - Armands Kazia
- Latvian Institute of Organic Synthesis, Aizkraukles 21, LV-1006 Riga, Latvia
| | - Sergey Belyakov
- Latvian Institute of Organic Synthesis, Aizkraukles 21, LV-1006 Riga, Latvia
| | - Janis Veliks
- Latvian Institute of Organic Synthesis, Aizkraukles 21, LV-1006 Riga, Latvia
| |
Collapse
|
8
|
Bonam SR, Kotla NG, Bohara RA, Rochev Y, Webster TJ, Bayry J. Potential immuno-nanomedicine strategies to fight COVID-19 like pulmonary infections. NANO TODAY 2021; 36:101051. [PMID: 33519949 PMCID: PMC7834523 DOI: 10.1016/j.nantod.2020.101051] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 10/15/2020] [Accepted: 11/30/2020] [Indexed: 05/08/2023]
Abstract
COVID-19, coronavirus disease 2019, caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has become a pandemic. At the time of writing this (October 14, 2020), more than 38.4 million people have become affected, and 1.0 million people have died across the world. The death rate is undoubtedly correlated with the cytokine storm and other pathological pulmonary characteristics, as a result of which the lungs cannot provide sufficient oxygen to the body's vital organs. While diversified drugs have been tested as a first line therapy, the complexity of fatal cases has not been reduced so far, and the world is looking for a treatment to combat the virus. However, to date, and despite such promise, we have received very limited information about the potential of nanomedicine to fight against COVID-19 or as an adjunct therapy in the treatment regimen. Over the past two decades, various therapeutic strategies, including direct-acting antiviral drugs, immunomodulators, a few non-specific drugs (simple to complex), have been explored to treat Acute Respiratory Distress Syndrome (ARDS), Severe Acute Respiratory Syndrome (SARS) and Middle East Respiratory Syndrome (MERS), influenza, and sometimes the common flu, thus, correlating and developing specific drugs centric to COVID-19 is possible. This review article focuses on the pulmonary pathology caused by SARS-CoV-2 and other viral pathogens, highlighting possible nanomedicine therapeutic strategies that should be further tested immediately.
Collapse
Affiliation(s)
- Srinivasa Reddy Bonam
- Institut National de la Santé et de la Recherche Médicale; Centre de Recherche des Cordeliers, Equipe-Immunopathologie et Immunointervention Thérapeutique, Sorbonne Université, Université de Paris, Paris F-75006, France
| | - Niranjan G Kotla
- CÚRAM, SFI Research Centre for Medical Devices, National University of Ireland Galway, Ireland
| | - Raghvendra A Bohara
- CÚRAM, SFI Research Centre for Medical Devices, National University of Ireland Galway, Ireland
- Centre for Interdisciplinary Research, D. Y. Patil Education Society (Institution Deemed to be University), Kolhapur (MS), India
| | - Yury Rochev
- CÚRAM, SFI Research Centre for Medical Devices, National University of Ireland Galway, Ireland
- Sechenov First Moscow State Medical University, Institute for Regenerative Medicine, Moscow 119992, Russia
| | - Thomas J Webster
- Department of Chemical Engineering, Northeastern University, Boston, MA 02115, USA
| | - Jagadeesh Bayry
- Institut National de la Santé et de la Recherche Médicale; Centre de Recherche des Cordeliers, Equipe-Immunopathologie et Immunointervention Thérapeutique, Sorbonne Université, Université de Paris, Paris F-75006, France
- Indian Institute of Technology Palakkad, Kozhippara, Palakkad 678557, India
| |
Collapse
|
9
|
Mengist HM, Mekonnen D, Mohammed A, Shi R, Jin T. Potency, Safety, and Pharmacokinetic Profiles of Potential Inhibitors Targeting SARS-CoV-2 Main Protease. Front Pharmacol 2021; 11:630500. [PMID: 33597888 PMCID: PMC7883113 DOI: 10.3389/fphar.2020.630500] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 12/30/2020] [Indexed: 12/20/2022] Open
Abstract
Effective, safe, and pharmacokinetically suitable drugs are urgently needed to curb the ongoing COVID-19 pandemic. The main protease or 3C-like protease (Mpro or 3CLpro) of SARS-CoV-2 is considered an important target to formulate potent drugs corresponding to its crucial role in virus replication and maturation in addition to its relatively conserved active site. Promising baseline data on the potency and safety of drugs targeting SARS-CoV-2 Mpro are currently available. However, preclinical and clinical data on the pharmacokinetic profiles of these drugs are very limited. This review discusses the potency, safety, and pharmacokinetic profiles of potential inhibitors of SARS-CoV-2 Mpro and forward directions on the development of future studies focusing on COVID-19 therapeutics.
Collapse
Affiliation(s)
- Hylemariam Mihiretie Mengist
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Hefei National Laboratory for Physical Sciences at Microscale, Division of Life Sciences and Medicine, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, University of Science and Technology of China, Hefei, China
- Department of Medical Laboratory Science, College of Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Daniel Mekonnen
- Hefei National Laboratory for Physical Sciences at Microscale, Division of Life Sciences and Medicine, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, University of Science and Technology of China, Hefei, China
- Department of Medical Laboratory Science, College of Health Science and Medicine, Bahir Dar University, Bahir Dar, Ethiopia
| | - Ahmed Mohammed
- Hefei National Laboratory for Physical Sciences at Microscale, Division of Life Sciences and Medicine, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, University of Science and Technology of China, Hefei, China
| | - Ronghua Shi
- Hefei National Laboratory for Physical Sciences at Microscale, Division of Life Sciences and Medicine, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, University of Science and Technology of China, Hefei, China
| | - Tengchuan Jin
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Hefei National Laboratory for Physical Sciences at Microscale, Division of Life Sciences and Medicine, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, University of Science and Technology of China, Hefei, China
- CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Science, Shanghai, China
| |
Collapse
|
10
|
Deeks HM, Walters RK, Barnoud J, Glowacki DR, Mulholland AJ. Interactive Molecular Dynamics in Virtual Reality Is an Effective Tool for Flexible Substrate and Inhibitor Docking to the SARS-CoV-2 Main Protease. J Chem Inf Model 2020; 60:5803-5814. [PMID: 33174415 PMCID: PMC7671099 DOI: 10.1021/acs.jcim.0c01030] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Indexed: 01/19/2023]
Abstract
The main protease (Mpro) of the SARS-CoV-2 virus is one focus of drug development efforts for COVID-19. Here, we show that interactive molecular dynamics in virtual reality (iMD-VR) is a useful and effective tool for creating Mpro complexes. We make these tools and models freely available. iMD-VR provides an immersive environment in which users can interact with MD simulations and so build protein complexes in a physically rigorous and flexible way. Recently, we have demonstrated that iMD-VR is an effective method for interactive, flexible docking of small molecule drugs into their protein targets (Deeks et al. PLoS One 2020, 15, e0228461). Here, we apply this approach to both an Mpro inhibitor and an oligopeptide substrate, using experimentally determined crystal structures. For the oligopeptide, we test against a crystallographic structure of the original SARS Mpro. Docking with iMD-VR gives models in agreement with experimentally observed (crystal) structures. The docked structures are also tested in MD simulations and found to be stable. Different protocols for iMD-VR docking are explored, e.g., with and without restraints on protein backbone, and we provide recommendations for its use. We find that it is important for the user to focus on forming binding interactions, such as hydrogen bonds, and not to rely on using simple metrics (such as RMSD), in order to create realistic, stable complexes. We also test the use of apo (uncomplexed) crystal structures for docking and find that they can give good results. This is because of the flexibility and dynamic response allowed by the physically rigorous, atomically detailed simulation approach of iMD-VR. We make our models (and interactive simulations) freely available. The software framework that we use, Narupa, is open source, and uses commodity VR hardware, so these tools are readily accessible to the wider research community working on Mpro (and other COVID-19 targets). These should be widely useful in drug development, in education applications, e.g., on viral enzyme structure and function, and in scientific communication more generally.
Collapse
Affiliation(s)
- Helen M. Deeks
- Intangible Realities Laboratory,
School of Chemistry, University of Bristol,
Cantock’s Close, Bristol BS8 1TS, United
Kingdom
- Centre for Computational Chemistry,
School of Chemistry, University of Bristol,
Cantock’s Close, Bristol BS8 1TS, United
Kingdom
- Department of Computer Science, Merchant
Venturers Building, University of Bristol,
Woodland Road, Bristol BS8 1UB, United
Kingdom
| | - Rebecca K. Walters
- Intangible Realities Laboratory,
School of Chemistry, University of Bristol,
Cantock’s Close, Bristol BS8 1TS, United
Kingdom
- Centre for Computational Chemistry,
School of Chemistry, University of Bristol,
Cantock’s Close, Bristol BS8 1TS, United
Kingdom
- Department of Computer Science, Merchant
Venturers Building, University of Bristol,
Woodland Road, Bristol BS8 1UB, United
Kingdom
| | - Jonathan Barnoud
- Intangible Realities Laboratory,
School of Chemistry, University of Bristol,
Cantock’s Close, Bristol BS8 1TS, United
Kingdom
- Centre for Computational Chemistry,
School of Chemistry, University of Bristol,
Cantock’s Close, Bristol BS8 1TS, United
Kingdom
| | - David R. Glowacki
- Intangible Realities Laboratory,
School of Chemistry, University of Bristol,
Cantock’s Close, Bristol BS8 1TS, United
Kingdom
- Centre for Computational Chemistry,
School of Chemistry, University of Bristol,
Cantock’s Close, Bristol BS8 1TS, United
Kingdom
- Department of Computer Science, Merchant
Venturers Building, University of Bristol,
Woodland Road, Bristol BS8 1UB, United
Kingdom
| | - Adrian J. Mulholland
- Centre for Computational Chemistry,
School of Chemistry, University of Bristol,
Cantock’s Close, Bristol BS8 1TS, United
Kingdom
| |
Collapse
|
11
|
Delre P, Caporuscio F, Saviano M, Mangiatordi GF. Repurposing Known Drugs as Covalent and Non-covalent Inhibitors of the SARS-CoV-2 Papain-Like Protease. Front Chem 2020; 8:594009. [PMID: 33304884 PMCID: PMC7701290 DOI: 10.3389/fchem.2020.594009] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 10/08/2020] [Indexed: 12/11/2022] Open
Abstract
In the absence of an approved vaccine, developing effective severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antivirals is essential to tackle the current pandemic health crisis due to the coronavirus disease 2019 (COVID-19) spread. As any traditional drug discovery program is a time-consuming and costly process requiring more than one decade to be completed, in silico repurposing of existing drugs is the preferred way for rapidly selecting promising clinical candidates. We present a virtual screening campaign to identify covalent and non-covalent inhibitors of the SARS-CoV-2 papain-like protease (PLpro) showing potential multitarget activities (i.e., a desirable polypharmacology profile) for the COVID-19 treatment. A dataset including 688 phase III and 1,702 phase IV clinical trial drugs was downloaded from ChEMBL (version 27.1) and docked to the recently released crystal structure of PLpro in complex with a covalently bound peptide inhibitor. The obtained results were analyzed by combining protein-ligand interaction fingerprint similarities, conventional docking scores, and MM-GBSA-binding free energies and allowed the identification of some interesting candidates for further in vitro testing. To the best of our knowledge, this study represents the first attempt to repurpose drugs for a covalent inhibition of PLpro and could pave the way for new therapeutic strategies against COVID-19.
Collapse
Affiliation(s)
- Pietro Delre
- Department of Chemistry, University of Bari “Aldo Moro”, Bari, Italy
- National Research Council (CNR) – Institute of Crystallography, Bari, Italy
| | - Fabiana Caporuscio
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Michele Saviano
- National Research Council (CNR) – Institute of Crystallography, Bari, Italy
| | | |
Collapse
|
12
|
Zhou QA, Kato-Weinstein J, Li Y, Deng Y, Granet R, Garner L, Liu C, Polshakov D, Gessner C, Watkins S. Potential Therapeutic Agents and Associated Bioassay Data for COVID-19 and Related Human Coronavirus Infections. ACS Pharmacol Transl Sci 2020; 3:813-834. [PMID: 33062950 PMCID: PMC7447080 DOI: 10.1021/acsptsci.0c00074] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Indexed: 02/07/2023]
Abstract
The COVID-19 pandemic, caused by the novel coronavirus SARS-CoV-2, has led to several million confirmed cases and hundreds of thousands of deaths worldwide. To support the ongoing research and development of COVID-19 therapeutics, this report provides an overview of protein targets and corresponding potential drug candidates with bioassay and structure-activity relationship data found in the scientific literature and patents for COVID-19 or related virus infections. Highlighted are several sets of small molecules and biologics that act on specific targets, including 3CLpro, PLpro, RdRp, S-protein-ACE2 interaction, helicase/NTPase, TMPRSS2, and furin, which are involved in the viral life cycle or in other aspects of the disease pathophysiology. We hope this report will be valuable to the ongoing drug repurposing efforts and the discovery of new therapeutics with the potential for treating COVID-19.
Collapse
Affiliation(s)
- Qiongqiong Angela Zhou
- CAS, a division
of the American Chemical Society, 2540 Olentangy River Road, Columbus, Ohio 43210-3012, United States
| | | | - Yingzhu Li
- CAS, a division
of the American Chemical Society, 2540 Olentangy River Road, Columbus, Ohio 43210-3012, United States
| | - Yi Deng
- CAS, a division
of the American Chemical Society, 2540 Olentangy River Road, Columbus, Ohio 43210-3012, United States
| | - Roger Granet
- CAS, a division
of the American Chemical Society, 2540 Olentangy River Road, Columbus, Ohio 43210-3012, United States
| | - Linda Garner
- CAS, a division
of the American Chemical Society, 2540 Olentangy River Road, Columbus, Ohio 43210-3012, United States
| | - Cynthia Liu
- CAS, a division
of the American Chemical Society, 2540 Olentangy River Road, Columbus, Ohio 43210-3012, United States
| | - Dmitrii Polshakov
- CAS, a division
of the American Chemical Society, 2540 Olentangy River Road, Columbus, Ohio 43210-3012, United States
| | - Chris Gessner
- CAS, a division
of the American Chemical Society, 2540 Olentangy River Road, Columbus, Ohio 43210-3012, United States
| | - Steven Watkins
- CAS, a division
of the American Chemical Society, 2540 Olentangy River Road, Columbus, Ohio 43210-3012, United States
| |
Collapse
|
13
|
Chen CZ, Shinn P, Itkin Z, Eastman RT, Bostwick R, Rasmussen L, Huang R, Shen M, Hu X, Wilson KM, Brooks B, Guo H, Zhao T, Klump-Thomas C, Simeonov A, Michael SG, Lo DC, Hall MD, Zheng W. Drug Repurposing Screen for Compounds Inhibiting the Cytopathic Effect of SARS-CoV-2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020:2020.08.18.255877. [PMID: 32839771 PMCID: PMC7444282 DOI: 10.1101/2020.08.18.255877] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Drug repurposing is a rapid approach to identifying therapeutics for the treatment of emerging infectious diseases such as COVID-19. To address the urgent need for treatment options, we carried out a quantitative high-throughput screen using a SARS-CoV-2 cytopathic assay with a compound collection of 8,810 approved and investigational drugs, mechanism-based bioactive compounds, and natural products. Three hundred and nineteen compounds with anti-SARS-CoV-2 activities were identified and confirmed, including 91 approved drug and 49 investigational drugs. Among these confirmed compounds, the anti-SARS-CoV-2 activities of 230 compounds, including 38 approved drugs, have not been previously reported. Chlorprothixene, methotrimeprazine, and piperacetazine were the three most potent FDA approved drugs with anti-SARS-CoV-2 activities. These three compounds have not been previously reported to have anti-SARS-CoV-2 activities, although their antiviral activities against SARS-CoV and Ebola virus have been reported. These results demonstrate that this comprehensive data set of drug repurposing screen for SARS-CoV-2 is useful for drug repurposing efforts including design of new drug combinations for clinical trials.
Collapse
Affiliation(s)
- Catherine Z. Chen
- National Center for Advancing Translational Sciences, 9800 Medical Center Drive, Rockville, MD, 20850
| | - Paul Shinn
- National Center for Advancing Translational Sciences, 9800 Medical Center Drive, Rockville, MD, 20850
| | - Zina Itkin
- National Center for Advancing Translational Sciences, 9800 Medical Center Drive, Rockville, MD, 20850
| | - Richard T. Eastman
- National Center for Advancing Translational Sciences, 9800 Medical Center Drive, Rockville, MD, 20850
| | - Robert Bostwick
- Southern Research, 2000 Ninth Avenue South, Birmingham, Alabama, 35205
| | - Lynn Rasmussen
- Southern Research, 2000 Ninth Avenue South, Birmingham, Alabama, 35205
| | - Ruili Huang
- National Center for Advancing Translational Sciences, 9800 Medical Center Drive, Rockville, MD, 20850
| | - Min Shen
- National Center for Advancing Translational Sciences, 9800 Medical Center Drive, Rockville, MD, 20850
| | - Xin Hu
- National Center for Advancing Translational Sciences, 9800 Medical Center Drive, Rockville, MD, 20850
| | - Kelli M. Wilson
- National Center for Advancing Translational Sciences, 9800 Medical Center Drive, Rockville, MD, 20850
| | - Brianna Brooks
- National Center for Advancing Translational Sciences, 9800 Medical Center Drive, Rockville, MD, 20850
| | - Hui Guo
- National Center for Advancing Translational Sciences, 9800 Medical Center Drive, Rockville, MD, 20850
| | - Tongan Zhao
- National Center for Advancing Translational Sciences, 9800 Medical Center Drive, Rockville, MD, 20850
| | - Carleen Klump-Thomas
- National Center for Advancing Translational Sciences, 9800 Medical Center Drive, Rockville, MD, 20850
| | - Anton Simeonov
- National Center for Advancing Translational Sciences, 9800 Medical Center Drive, Rockville, MD, 20850
| | - Samuel G. Michael
- National Center for Advancing Translational Sciences, 9800 Medical Center Drive, Rockville, MD, 20850
| | - Donald C. Lo
- National Center for Advancing Translational Sciences, 9800 Medical Center Drive, Rockville, MD, 20850
| | - Matthew D. Hall
- National Center for Advancing Translational Sciences, 9800 Medical Center Drive, Rockville, MD, 20850
| | - Wei Zheng
- National Center for Advancing Translational Sciences, 9800 Medical Center Drive, Rockville, MD, 20850
| |
Collapse
|
14
|
Zhu W, Xu M, Chen CZ, Guo H, Shen M, Hu X, Shinn P, Klumpp-Thomas C, Michael SG, Zheng W. Identification of SARS-CoV-2 3CL Protease Inhibitors by a Quantitative High-throughput Screening. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020:2020.07.17.207019. [PMID: 32803196 PMCID: PMC7427131 DOI: 10.1101/2020.07.17.207019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The outbreak of coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has emphasized the urgency to develop effective therapeutics. Drug repurposing screening is regarded as one of the most practical and rapid approaches for the discovery of such therapeutics. The 3C like protease (3CL pro ), or main protease (M pro ) of SARS-CoV-2 is a valid drug target as it is a specific viral enzyme and plays an essential role in viral replication. We performed a quantitative high throughput screening (qHTS) of 10,755 compounds consisting of approved and investigational drugs, and bioactive compounds using a SARS-CoV-2 3CL pro assay. Twenty-three small molecule inhibitors of SARS-CoV-2 3CL pro have been identified with IC50s ranging from 0.26 to 28.85 μM. Walrycin B (IC 50 = 0.26 µM), Hydroxocobalamin (IC 50 = 3.29 µM), Suramin sodium (IC 50 = 6.5 µM), Z-DEVD-FMK (IC 50 = 6.81 µM), LLL-12 (IC 50 = 9.84 µM), and Z-FA-FMK (IC 50 = 11.39 µM) are the most potent 3CL pro inhibitors. The activities of anti-SARS-CoV-2 viral infection was confirmed in 7 of 23 compounds using a SARS-CoV-2 cytopathic effect assay. The results demonstrated a set of SARS-CoV-2 3CL pro inhibitors that may have potential for further clinical evaluation as part of drug combination therapies to treating COVID-19 patients, and as starting points for chemistry optimization for new drug development.
Collapse
Affiliation(s)
| | | | - Catherine Z. Chen
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA
| | - Hui Guo
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA
| | - Min Shen
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA
| | - Xin Hu
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA
| | - Paul Shinn
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA
| | - Carleen Klumpp-Thomas
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA
| | - Samuel G. Michael
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA
| | - Wei Zheng
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA
| |
Collapse
|
15
|
Wang Z, Yang L. Turning the Tide: Natural Products and Natural-Product-Inspired Chemicals as Potential Counters to SARS-CoV-2 Infection. Front Pharmacol 2020; 11:1013. [PMID: 32714193 PMCID: PMC7343773 DOI: 10.3389/fphar.2020.01013] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 06/23/2020] [Indexed: 12/13/2022] Open
Abstract
The novel and highly pathogenic severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which causes coronavirus disease 2019 (COVID-19), has become a continued focus of global attention due to the serious threat it poses to public health. There are no specific drugs available to combat SARS-CoV-2 infection. Natural products (carolacton, homoharringtonine, emetine, and cepharanthine) and natural product-inspired small molecules (ivermectin, GS-5734, EIDD-2801, and ebselen) are potential anti-SARS-CoV-2 agents that have attracted significant attention due to their broad-spectrum antiviral activities. Here, we review the research on potential landmark anti-SARS-CoV-2 agents, systematically discussing the importance of natural products and natural-product-inspired small molecules in the research and development of safe and effective antiviral agents.
Collapse
Affiliation(s)
- Zhonglei Wang
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, China
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| | - Liyan Yang
- School of Physics and Engineering, Qufu Normal University, Qufu, China
| |
Collapse
|