1
|
Wu G, Zhang N, Matarasso A, Heck I, Li H, Lu W, Phaup JG, Schneider M, Wu Y, Weng Z, Sun H, Gao Z, Zhang X, Sandberg SG, Parvin D, Seaholm E, Islam SK, Wang X, Phillips PEM, Castro DC, Ding S, Li DP, Bruchas MR, Zhang Y. Implantable Aptamer-Graphene Microtransistors for Real-Time Monitoring of Neurochemical Release in Vivo. NANO LETTERS 2022; 22:3668-3677. [PMID: 35439419 PMCID: PMC9420334 DOI: 10.1021/acs.nanolett.2c00289] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The real-time monitoring of neurochemical release in vivo plays a critical role in understanding the biochemical process of the complex nervous system. Current technologies for such applications, including microdialysis and fast-scan cyclic voltammetry, suffer from limited spatiotemporal resolution or poor selectivity. Here, we report a soft implantable aptamer-graphene microtransistor probe for real-time monitoring of neurochemical release. As a demonstration, we show the monitoring of dopamine with nearly cellular-scale spatial resolution, high selectivity (dopamine sensor >19-fold over norepinephrine), and picomolar sensitivity, simultaneously. Systematic benchtop evaluations, ex vivo experiments, and in vivo studies in mice models highlight the key features and demonstrate the capability of capturing the dopamine release dynamics evoked by pharmacological stimulation, suggesting the potential applications in basic neuroscience studies and studying neurological disease-related processes. The developed system can be easily adapted for monitoring other neurochemicals and drugs by simply replacing the aptamers functionalized on the graphene microtransistors.
Collapse
Affiliation(s)
- Guangfu Wu
- Department of Biomedical Engineering and the Institute of Materials Science, University of Connecticut, Storrs, CT 06269, USA
| | - Nannan Zhang
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO 65211, USA
| | - Avi Matarasso
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
| | - Ian Heck
- Department of Biomedical, Biological, and Chemical Engineering, University of Missouri, Columbia, MO 65211, USA
| | - Huijie Li
- Department of Biomedical Engineering and the Institute of Materials Science, University of Connecticut, Storrs, CT 06269, USA
| | - Wei Lu
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208, USA
| | - J. Glenn Phaup
- Center for Precision Medicine, University of Missouri, Columbia, MO 65212, USA
| | - Michael Schneider
- Department of Biomedical Engineering and the Institute of Materials Science, University of Connecticut, Storrs, CT 06269, USA
| | - Yixin Wu
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Zhengyan Weng
- Department of Biomedical Engineering and the Institute of Materials Science, University of Connecticut, Storrs, CT 06269, USA
| | - He Sun
- Department of Biomedical Engineering and the Institute of Materials Science, University of Connecticut, Storrs, CT 06269, USA
| | - Zan Gao
- Department of Biomedical Engineering and the Institute of Materials Science, University of Connecticut, Storrs, CT 06269, USA
| | - Xincheng Zhang
- Department of Biomedical Engineering and the Institute of Materials Science, University of Connecticut, Storrs, CT 06269, USA
| | - Stefan G. Sandberg
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA 98195, USA
| | - Dilruba Parvin
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO 65211, USA
| | - Elena Seaholm
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
| | - Syed Kamrul Islam
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO 65211, USA
| | - Xueju Wang
- Department of Materials Science and Engineering and the Institute of Materials Science, University of Connecticut, Storrs, CT 06269, USA
| | - Paul E. M. Phillips
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA 98195, USA
| | - Daniel C. Castro
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA 98195, USA
- Center for Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, WA 98195, USA
- Department of Pharmacology, University of Washington, Seattle, WA 98195, USA
| | - Shinghua Ding
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO 65211, USA
- Department of Biomedical, Biological, and Chemical Engineering, University of Missouri, Columbia, MO 65211, USA
| | - De-Pei Li
- Center for Precision Medicine, University of Missouri, Columbia, MO 65212, USA
| | - Michael R. Bruchas
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA 98195, USA
- Center for Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, WA 98195, USA
- Department of Pharmacology, University of Washington, Seattle, WA 98195, USA
| | - Yi Zhang
- Department of Biomedical Engineering and the Institute of Materials Science, University of Connecticut, Storrs, CT 06269, USA
| |
Collapse
|
2
|
Liu AP, Appel EA, Ashby PD, Baker BM, Franco E, Gu L, Haynes K, Joshi NS, Kloxin AM, Kouwer PHJ, Mittal J, Morsut L, Noireaux V, Parekh S, Schulman R, Tang SKY, Valentine MT, Vega SL, Weber W, Stephanopoulos N, Chaudhuri O. The living interface between synthetic biology and biomaterial design. NATURE MATERIALS 2022; 21:390-397. [PMID: 35361951 PMCID: PMC10265650 DOI: 10.1038/s41563-022-01231-3] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 03/07/2022] [Indexed: 06/14/2023]
Abstract
Recent far-reaching advances in synthetic biology have yielded exciting tools for the creation of new materials. Conversely, advances in the fundamental understanding of soft-condensed matter, polymers and biomaterials offer new avenues to extend the reach of synthetic biology. The broad and exciting range of possible applications have substantial implications to address grand challenges in health, biotechnology and sustainability. Despite the potentially transformative impact that lies at the interface of synthetic biology and biomaterials, the two fields have, so far, progressed mostly separately. This Perspective provides a review of recent key advances in these two fields, and a roadmap for collaboration at the interface between the two communities. We highlight the near-term applications of this interface to the development of hierarchically structured biomaterials, from bioinspired building blocks to 'living' materials that sense and respond based on the reciprocal interactions between materials and embedded cells.
Collapse
Affiliation(s)
- Allen P Liu
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, USA.
| | - Eric A Appel
- Department of Materials Science & Engineering, Stanford University, Stanford, CA, USA
| | - Paul D Ashby
- Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Brendon M Baker
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Elisa Franco
- Department of Mechanical and Aerospace Engineering, University of California, Los Angeles, Los Angeles, CA, USA
| | - Luo Gu
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Karmella Haynes
- Wallace H. Coulter Department of Biomedical Engineering, Emory University, Atlanta, GA, USA
| | - Neel S Joshi
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA, USA
| | - April M Kloxin
- Department of Chemical and Biomolecular Engineering and Materials Science and Engineering, University of Delaware, Newark, DE, USA
| | - Paul H J Kouwer
- Institute for Molecules and Materials, Radboud University, Nijmegen, the Netherlands
| | - Jeetain Mittal
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX, USA
| | - Leonardo Morsut
- Department of Stem Cell Biology and Regenerative Medicine, University of Southern California, Los Angeles, CA, USA
| | - Vincent Noireaux
- School of Physics and Astronomy, University of Minnesota, Minneapolis, MN, USA
| | - Sapun Parekh
- Department of Biomedical Engineering, University of Texas, Austin, Austin, TX, USA
| | - Rebecca Schulman
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Sindy K Y Tang
- Department of Mechanical Engineering, Stanford University, Stanford, CA, USA
| | - Megan T Valentine
- Department of Mechanical Engineering, University of California, Santa Barbara, Santa Barbara, CA, USA
| | - Sebastián L Vega
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ, USA
| | - Wilfried Weber
- Faculty of Biology and Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | | | - Ovijit Chaudhuri
- Department of Mechanical Engineering, Stanford University, Stanford, CA, USA.
| |
Collapse
|
3
|
Reis M, Gusev F, Taylor NG, Chung SH, Verber MD, Lee YZ, Isayev O, Leibfarth FA. Machine-Learning-Guided Discovery of 19F MRI Agents Enabled by Automated Copolymer Synthesis. J Am Chem Soc 2021; 143:17677-17689. [PMID: 34637304 PMCID: PMC10833148 DOI: 10.1021/jacs.1c08181] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Modern polymer science suffers from the curse of multidimensionality. The large chemical space imposed by including combinations of monomers into a statistical copolymer overwhelms polymer synthesis and characterization technology and limits the ability to systematically study structure-property relationships. To tackle this challenge in the context of 19F magnetic resonance imaging (MRI) agents, we pursued a computer-guided materials discovery approach that combines synergistic innovations in automated flow synthesis and machine learning (ML) method development. A software-controlled, continuous polymer synthesis platform was developed to enable iterative experimental-computational cycles that resulted in the synthesis of 397 unique copolymer compositions within a six-variable compositional space. The nonintuitive design criteria identified by ML, which were accomplished by exploring <0.9% of the overall compositional space, lead to the identification of >10 copolymer compositions that outperformed state-of-the-art materials.
Collapse
Affiliation(s)
- Marcus Reis
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Filipp Gusev
- Department of Chemistry, Mellon College of Science, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Nicholas G Taylor
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Sang Hun Chung
- Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Matthew D Verber
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Yueh Z Lee
- Department of Radiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Olexandr Isayev
- Department of Chemistry, Mellon College of Science, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Frank A Leibfarth
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
4
|
Correa S, Grosskopf AK, Lopez Hernandez H, Chan D, Yu AC, Stapleton LM, Appel EA. Translational Applications of Hydrogels. Chem Rev 2021; 121:11385-11457. [PMID: 33938724 PMCID: PMC8461619 DOI: 10.1021/acs.chemrev.0c01177] [Citation(s) in RCA: 449] [Impact Index Per Article: 112.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Indexed: 12/17/2022]
Abstract
Advances in hydrogel technology have unlocked unique and valuable capabilities that are being applied to a diverse set of translational applications. Hydrogels perform functions relevant to a range of biomedical purposes-they can deliver drugs or cells, regenerate hard and soft tissues, adhere to wet tissues, prevent bleeding, provide contrast during imaging, protect tissues or organs during radiotherapy, and improve the biocompatibility of medical implants. These capabilities make hydrogels useful for many distinct and pressing diseases and medical conditions and even for less conventional areas such as environmental engineering. In this review, we cover the major capabilities of hydrogels, with a focus on the novel benefits of injectable hydrogels, and how they relate to translational applications in medicine and the environment. We pay close attention to how the development of contemporary hydrogels requires extensive interdisciplinary collaboration to accomplish highly specific and complex biological tasks that range from cancer immunotherapy to tissue engineering to vaccination. We complement our discussion of preclinical and clinical development of hydrogels with mechanical design considerations needed for scaling injectable hydrogel technologies for clinical application. We anticipate that readers will gain a more complete picture of the expansive possibilities for hydrogels to make practical and impactful differences across numerous fields and biomedical applications.
Collapse
Affiliation(s)
- Santiago Correa
- Materials
Science & Engineering, Stanford University, Stanford, California 94305, United States
| | - Abigail K. Grosskopf
- Chemical
Engineering, Stanford University, Stanford, California 94305, United States
| | - Hector Lopez Hernandez
- Materials
Science & Engineering, Stanford University, Stanford, California 94305, United States
| | - Doreen Chan
- Chemistry, Stanford University, Stanford, California 94305, United States
| | - Anthony C. Yu
- Materials
Science & Engineering, Stanford University, Stanford, California 94305, United States
| | | | - Eric A. Appel
- Materials
Science & Engineering, Stanford University, Stanford, California 94305, United States
- Bioengineering, Stanford University, Stanford, California 94305, United States
- Pediatric
Endocrinology, Stanford University School
of Medicine, Stanford, California 94305, United States
- ChEM-H Institute, Stanford
University, Stanford, California 94305, United States
- Woods
Institute for the Environment, Stanford
University, Stanford, California 94305, United States
| |
Collapse
|
5
|
Artigues M, Gilabert-Porres J, Texidó R, Borrós S, Abellà J, Colominas S. Analytical Parameters of a Novel Glucose Biosensor Based on Grafted PFM as a Covalent Immobilization Technique. SENSORS (BASEL, SWITZERLAND) 2021; 21:4185. [PMID: 34207185 PMCID: PMC8235154 DOI: 10.3390/s21124185] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 05/31/2021] [Accepted: 06/15/2021] [Indexed: 12/17/2022]
Abstract
Bioanalytical methods, in particular electrochemical biosensors, are increasingly used in different industrial sectors due to their simplicity, low cost, and fast response. However, to be able to reliably use this type of device, it is necessary to undertake in-depth evaluation of their fundamental analytical parameters. In this work, analytical parameters of an amperometric biosensor based on covalent immobilization of glucose oxidase (GOx) were evaluated. GOx was immobilized using plasma-grafted pentafluorophenyl methacrylate (pgPFM) as an anchor onto a tailored HEMA-co-EGDA hydrogel that coats a titanium dioxide nanotubes array (TiO2NTAs). Finally, chitosan was used to protect the enzyme molecules. The biosensor offered outstanding analytical parameters: repeatability (RSD = 1.7%), reproducibility (RSD = 1.3%), accuracy (deviation = 4.8%), and robustness (RSD = 2.4%). In addition, the Ti/TiO2NTAs/ppHEMA-co-EGDA/pgPFM/GOx/Chitosan biosensor showed good long-term stability; after 20 days, it retained 89% of its initial sensitivity. Finally, glucose concentrations of different food samples were measured and compared using an official standard method (HPLC). Deviation was lower than 10% in all measured samples. Therefore, the developed biosensor can be considered to be a reliable analytical tool for quantification measurements.
Collapse
Affiliation(s)
- Margalida Artigues
- Electrochemical Methods Laboratory-Analytical and Applied Chemistry Department at Institut Químic de Sarrià, Universitat Ramon Llull, Via Augusta, 390, 08017 Barcelona, Spain; (M.A.); (J.A.)
| | - Joan Gilabert-Porres
- Tractivus SL, Via Augusta, 394, 08017 Barcelona, Spain; (J.G.-P.); (R.T.); (S.B.)
- Grup d’Enginyeria de Materials (GEMAT) at Institut Químic de Sarrià, Universitat Ramon Llull, Via Augusta, 390, 08017 Barcelona, Spain
| | - Robert Texidó
- Tractivus SL, Via Augusta, 394, 08017 Barcelona, Spain; (J.G.-P.); (R.T.); (S.B.)
- Grup d’Enginyeria de Materials (GEMAT) at Institut Químic de Sarrià, Universitat Ramon Llull, Via Augusta, 390, 08017 Barcelona, Spain
| | - Salvador Borrós
- Tractivus SL, Via Augusta, 394, 08017 Barcelona, Spain; (J.G.-P.); (R.T.); (S.B.)
- Grup d’Enginyeria de Materials (GEMAT) at Institut Químic de Sarrià, Universitat Ramon Llull, Via Augusta, 390, 08017 Barcelona, Spain
- CIBER-BBN, Networking Center on Bioengineering, Biomaterials and Nanomedicine, 500018 Zaragoza, Spain
| | - Jordi Abellà
- Electrochemical Methods Laboratory-Analytical and Applied Chemistry Department at Institut Químic de Sarrià, Universitat Ramon Llull, Via Augusta, 390, 08017 Barcelona, Spain; (M.A.); (J.A.)
| | - Sergi Colominas
- Electrochemical Methods Laboratory-Analytical and Applied Chemistry Department at Institut Químic de Sarrià, Universitat Ramon Llull, Via Augusta, 390, 08017 Barcelona, Spain; (M.A.); (J.A.)
| |
Collapse
|