1
|
Puray-Chavez M, Lee N, Tenneti K, Wang Y, Vuong HR, Liu Y, Horani A, Huang T, Gunsten SP, Case JB, Yang W, Diamond MS, Brody SL, Dougherty J, Kutluay SB. The Translational Landscape of SARS-CoV-2-infected Cells Reveals Suppression of Innate Immune Genes. mBio 2022; 13:e0081522. [PMID: 35604092 PMCID: PMC9239271 DOI: 10.1128/mbio.00815-22] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 05/04/2022] [Indexed: 12/13/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) utilizes a number of strategies to modulate viral and host mRNA translation. Here, we used ribosome profiling in SARS-CoV-2-infected model cell lines and primary airway cells grown at an air-liquid interface to gain a deeper understanding of the translationally regulated events in response to virus replication. We found that SARS-CoV-2 mRNAs dominate the cellular mRNA pool but are not more efficiently translated than cellular mRNAs. SARS-CoV-2 utilized a highly efficient ribosomal frameshifting strategy despite notable accumulation of ribosomes within the slippery sequence on the frameshifting element. In a highly permissive cell line model, although SARS-CoV-2 infection induced the transcriptional upregulation of numerous chemokine, cytokine, and interferon-stimulated genes, many of these mRNAs were not translated efficiently. The impact of SARS-CoV-2 on host mRNA translation was more subtle in primary cells, with marked transcriptional and translational upregulation of inflammatory and innate immune responses and downregulation of processes involved in ciliated cell function. Together, these data reveal the key role of mRNA translation in SARS-CoV-2 replication and highlight unique mechanisms for therapeutic development. IMPORTANCE SARS-CoV-2 utilizes a number of strategies to modulate host responses to ensure efficient propagation. Here, we used ribosome profiling in SARS-CoV-2-infected cells to gain a deeper understanding of the translationally regulated events in infected cells. We found that although viral mRNAs are abundantly expressed, they are not more efficiently translated than cellular mRNAs. SARS-CoV-2 utilized a highly efficient ribosomal frameshifting strategy and alternative translation initiation sites that help increase the coding potential of its RNAs. In permissive cells, SARS-CoV-2 infection induced the translational repression of numerous innate immune mediators. Though the impact of SARS-CoV-2 on host mRNA translation was more subtle in primary airway cell cultures, we noted marked transcriptional and translational upregulation of inflammatory and innate immune responses and downregulation of processes involved in ciliated cell function. Together, these data provide new insight into how SARS-CoV-2 modulates innate host responses and highlight unique mechanisms for therapeutic intervention.
Collapse
Affiliation(s)
- Maritza Puray-Chavez
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Nakyung Lee
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Kasyap Tenneti
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Yiqing Wang
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Hung R. Vuong
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Yating Liu
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Amjad Horani
- Department of Pediatrics, Allergy, Immunology and Pulmonary Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Tao Huang
- Department of Medicine, Pulmonary and Critical Care Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Sean P. Gunsten
- Department of Medicine, Pulmonary and Critical Care Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - James B. Case
- Department of Medicine, Infectious Disease Division, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Wei Yang
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Michael S. Diamond
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Medicine, Infectious Disease Division, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Steven L. Brody
- Department of Medicine, Pulmonary and Critical Care Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Joseph Dougherty
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Sebla B. Kutluay
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
2
|
Puray-Chavez M, Lee N, Tenneti K, Wang Y, Vuong HR, Liu Y, Horani A, Huang T, Gunsten SP, Case JB, Yang W, Diamond MS, Brody SL, Dougherty J, Kutluay SB. The translational landscape of SARS-CoV-2 and infected cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2020.11.03.367516. [PMID: 33173862 PMCID: PMC7654850 DOI: 10.1101/2020.11.03.367516] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
SARS-CoV-2 utilizes a number of strategies to modulate viral and host mRNA translation. Here, we used ribosome profiling in SARS-CoV-2 infected model cell lines and primary airway cells grown at the air-liquid interface to gain a deeper understanding of the translationally regulated events in response to virus replication. We find that SARS-CoV-2 mRNAs dominate the cellular mRNA pool but are not more efficiently translated than cellular mRNAs. SARS-CoV-2 utilized a highly efficient ribosomal frameshifting strategy in comparison to HIV-1, suggesting utilization of distinct structural elements. In the highly permissive cell models, although SARS-CoV-2 infection induced the transcriptional upregulation of numerous chemokines, cytokines and interferon stimulated genes, many of these mRNAs were not translated efficiently. Impact of SARS-CoV-2 on host mRNA translation was more subtle in primary cells, with marked transcriptional and translational upregulation of inflammatory and innate immune responses and downregulation of processes involved in ciliated cell function. Together, these data reveal the key role of mRNA translation in SARS-CoV-2 replication and highlight unique mechanisms for therapeutic development.
Collapse
Affiliation(s)
- Maritza Puray-Chavez
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Nakyung Lee
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Kasyap Tenneti
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Yiqing Wang
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Hung R Vuong
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Yating Liu
- Department of Genetics, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Amjad Horani
- Department of Pediatrics, Allergy, Immunology and Pulmonary Medicine, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Tao Huang
- Department of Medicine, Pulmonary and Critical Care Medicine, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Sean P Gunsten
- Department of Medicine, Pulmonary and Critical Care Medicine, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - James B Case
- Department of Medicine, Infectious Disease Division, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Wei Yang
- Department of Genetics, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Michael S Diamond
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO 63110, USA
- Department of Medicine, Infectious Disease Division, Washington University School of Medicine, Saint Louis, MO 63110, USA
- Department of Pathology & Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Steven L Brody
- Department of Medicine, Pulmonary and Critical Care Medicine, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Joseph Dougherty
- Department of Genetics, Washington University School of Medicine, Saint Louis, MO 63110, USA
- Department of Psychiatry, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Sebla B Kutluay
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| |
Collapse
|
3
|
Finkel Y, Gluck A, Nachshon A, Winkler R, Fisher T, Rozman B, Mizrahi O, Lubelsky Y, Zuckerman B, Slobodin B, Yahalom-Ronen Y, Tamir H, Ulitsky I, Israely T, Paran N, Schwartz M, Stern-Ginossar N. SARS-CoV-2 uses a multipronged strategy to impede host protein synthesis. Nature 2021; 594:240-245. [PMID: 33979833 DOI: 10.1038/s41586-021-03610-3] [Citation(s) in RCA: 174] [Impact Index Per Article: 43.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 05/04/2021] [Indexed: 02/07/2023]
Abstract
The coronavirus SARS-CoV-2 is the cause of the ongoing pandemic of COVID-191. Coronaviruses have developed a variety of mechanisms to repress host mRNA translation to allow the translation of viral mRNA, and concomitantly block the cellular innate immune response2,3. Although several different proteins of SARS-CoV-2 have previously been implicated in shutting off host expression4-7, a comprehensive picture of the effects of SARS-CoV-2 infection on cellular gene expression is lacking. Here we combine RNA sequencing, ribosome profiling and metabolic labelling of newly synthesized RNA to comprehensively define the mechanisms that are used by SARS-CoV-2 to shut off cellular protein synthesis. We show that infection leads to a global reduction in translation, but that viral transcripts are not preferentially translated. Instead, we find that infection leads to the accelerated degradation of cytosolic cellular mRNAs, which facilitates viral takeover of the mRNA pool in infected cells. We reveal that the translation of transcripts that are induced in response to infection (including innate immune genes) is impaired. We demonstrate this impairment is probably mediated by inhibition of nuclear mRNA export, which prevents newly transcribed cellular mRNA from accessing ribosomes. Overall, our results uncover a multipronged strategy that is used by SARS-CoV-2 to take over the translation machinery and to suppress host defences.
Collapse
Affiliation(s)
- Yaara Finkel
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Avi Gluck
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Aharon Nachshon
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Roni Winkler
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Tal Fisher
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Batsheva Rozman
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Orel Mizrahi
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Yoav Lubelsky
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Binyamin Zuckerman
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Boris Slobodin
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Yfat Yahalom-Ronen
- Department of Infectious Diseases, Israel Institute for Biological, Chemical and Environmental Sciences, Ness Ziona, Israel
| | - Hadas Tamir
- Department of Infectious Diseases, Israel Institute for Biological, Chemical and Environmental Sciences, Ness Ziona, Israel
| | - Igor Ulitsky
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Tomer Israely
- Department of Infectious Diseases, Israel Institute for Biological, Chemical and Environmental Sciences, Ness Ziona, Israel
| | - Nir Paran
- Department of Infectious Diseases, Israel Institute for Biological, Chemical and Environmental Sciences, Ness Ziona, Israel
| | - Michal Schwartz
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel.
| | - Noam Stern-Ginossar
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
4
|
Tidu A, Janvier A, Schaeffer L, Sosnowski P, Kuhn L, Hammann P, Westhof E, Eriani G, Martin F. The viral protein NSP1 acts as a ribosome gatekeeper for shutting down host translation and fostering SARS-CoV-2 translation. RNA (NEW YORK, N.Y.) 2020; 27:rna.078121.120. [PMID: 33268501 PMCID: PMC7901841 DOI: 10.1261/rna.078121.120] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 11/29/2020] [Indexed: 05/10/2023]
Abstract
SARS-CoV-2 coronavirus is responsible for Covid-19 pandemic. In the early phase of infection, the single-strand positive RNA genome is translated into non-structural proteins (NSP). One of the first proteins produced during viral infection, NSP1, binds to the host ribosome and blocks the mRNA entry channel. This triggers translation inhibition of cellular translation. In spite of the presence of NSP1 on the ribosome, viral translation proceeds however. The molecular mechanism of the so-called viral evasion to NSP1 inhibition remains elusive. Here, we confirm that viral translation is maintained in the presence of NSP1. The evasion to NSP1-inhibition is mediated by the cis-acting RNA hairpin SL1 in the 5'UTR of SARS-CoV-2. NSP1-evasion can be transferred on a reporter transcript by SL1 transplantation. The apical part of SL1 is only required for viral translation. We show that NSP1 remains bound on the ribosome during viral translation. We suggest that the interaction between NSP1 and SL1 frees the mRNA accommodation channel while maintaining NSP1 bound to the ribosome. Thus, NSP1 acts as a ribosome gatekeeper, shutting down host translation or fostering SARS-CoV-2 translation depending on the presence of the SL1 5'UTR hairpin. SL1 is also present and necessary for translation of sub-genomic RNAs in the late phase of the infectious program. Consequently, therapeutic strategies targeting SL1 should affect viral translation at early and late stages of infection. Therefore, SL1 might be seen as a genuine 'Achille heel' of the virus.
Collapse
Affiliation(s)
- Antonin Tidu
- Institut de Biologie Moleculaire et Cellulaire, Architecture et Reactivite de l ARN CNRS UPR9002, Universite de Strasbourg, 2, allee Konrad Roentgen, F-67084 Strasbourg (France)
| | - Aurelie Janvier
- Institut de Biologie Moleculaire et Cellulaire, Architecture et Reactivite de l ARN CNRS UPR9002, Universite de Strasbourg, 2, allee Konrad Roentgen, F-67084 Strasbourg (France)
| | - Laure Schaeffer
- Institut de Biologie Moleculaire et Cellulaire, Architecture et Reactivite de l ARN CNRS UPR9002, Universite de Strasbourg, 2, allee Konrad Roentgen F-67084 Strasbourg (France)
| | - Piotr Sosnowski
- Institut de Biologie Moleculaire et Cellulaire, Architecture et Reactivite de l ARN CNRS UPR9002, Universite de Strasbourg, 2, allee Konrad Roentgen, F-67084 Strasbourg (France)
| | - Lauriane Kuhn
- Institut de Biologie Moleculaire et Cellulaire, Plateforme Proteomique Strasbourg Esplanade, CNRS FRC1589, Universite de Strasbourg, 2, allee Konrad Roentgen, F-67084 Strasbourg (France)
| | - Philippe Hammann
- Institut de Biologie Moleculaire et Cellulaire, Plateforme Proteomique Strasbourg Esplanade, CNRS FRC1589, Universite de Strasbourg, 2, allee Konrad Roentgen, F-67084 Strasbourg (France)
| | - Eric Westhof
- Institut de Biologie Moleculaire et Cellulaire, Architecture et Reactivite de l ARN CNRS UPR9002, Universite de Strasbourg, 2, allee Konrad Roentgen, F-67084 Strasbourg (France)
| | - Gilbert Eriani
- Institut de Biologie Moleculaire et Cellulaire, Architecture et Reactivite de l ARN CNRS UPR9002, Universite de Strasbourg, 2, allee Konrad Roentgen, F-67084 Strasbourg (France)
| | - Franck Martin
- Institut de Biologie Moleculaire et Cellulaire, Architecture et Reactivite de l ARN CNRS UPR9002, Universite de Strasbourg, 2, allee Konrad Roentgen, F-67084 Strasbourg (France);
| |
Collapse
|