1
|
Colston JM, Hinson P, Nguyen NLH, Chen YT, Badr HS, Kerr GH, Gardner LM, Martin DN, Quispe AM, Schiaffino F, Kosek MN, Zaitchik BF. Effects of hydrometeorological and other factors on SARS-CoV-2 reproduction number in three contiguous countries of tropical Andean South America: a spatiotemporally disaggregated time series analysis. IJID REGIONS 2023; 6:29-41. [PMID: 36437857 PMCID: PMC9675637 DOI: 10.1016/j.ijregi.2022.11.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 11/14/2022] [Accepted: 11/15/2022] [Indexed: 06/09/2023]
Abstract
Background The COVID-19 pandemic has caused societal disruption globally, and South America has been hit harder than other lower-income regions. This study modeled the effects of six weather variables on district-level SARS-CoV-2 reproduction numbers (Rt ) in three contiguous countries of tropical Andean South America (Colombia, Ecuador, and Peru), adjusting for environmental, policy, healthcare infrastructural and other factors. Methods Daily time-series data on SARS-CoV-2 infections were sourced from the health authorities of the three countries at the smallest available administrative level. Rt values were calculated and merged by date and unit ID with variables from a unified COVID-19 dataset and other publicly available sources for May-December, 2020. Generalized additive models were fitted. Findings Relative humidity and solar radiation were inversely associated with SARS-CoV-2 Rt . Days with radiation above 1000 kJ/m2 saw a 1.3% reduction in Rt , and those with humidity above 50% recorded a 0.9% reduction in Rt . Transmission was highest in densely populated districts, and lowest in districts with poor healthcare access and on days with lowest population mobility. Wind speed, temperature, region, aggregate government policy response, and population age structure had little impact. The fully adjusted model explained 4.3% of Rt variance. Interpretation Dry atmospheric conditions of low humidity increase district-level SARS-CoV-2 reproduction numbers, while higher levels of solar radiation decrease district-level SARS-CoV-2 reproduction numbers - effects that are comparable in magnitude to population factors like lockdown compliance. Weather monitoring could be incorporated into disease surveillance and early warning systems in conjunction with more established risk indicators and surveillance measures. Funding NASA's Group on Earth Observations Work Programme (16-GEO16-0047).
Collapse
Affiliation(s)
- Josh M. Colston
- Division of Infectious Diseases and International Health, University of Virginia School of Medicine, Charlottesville, VA, 22903, USA
| | - Patrick Hinson
- College of Arts and Sciences, University of Virginia, VA, USA
| | | | - Yen Ting Chen
- Department of Emergency Medicine, Chi-Mei Medical Center, Tainan, Taiwan
| | - Hamada S. Badr
- Department of Earth and Planetary Sciences, Johns Hopkins Krieger School of Arts and Sciences, Baltimore, MD, 21218, USA
| | - Gaige H. Kerr
- Department of Environmental and Occupational Health, Milken Institute School of Public Health, George Washington University, Washington, DC, USA
| | - Lauren M. Gardner
- Department of Civil and Systems Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - David N. Martin
- Claude Moore Health Sciences Library, University of Virginia School of Medicine, VA, USA
| | | | - Francesca Schiaffino
- Faculty of Veterinary Medicine, Universidad Peruana Cayetano Heredia, Lima, Peru
- Division of Infectious Diseases and International Health and Public Health Sciences, University of Virginia School of Medicine, Charlottesville, VA, 22903, USA
| | - Margaret N. Kosek
- Division of Infectious Diseases and International Health and Public Health Sciences, University of Virginia School of Medicine, Charlottesville, VA, 22903, USA
| | - Benjamin F. Zaitchik
- Department of Environmental and Occupational Health, Milken Institute School of Public Health, George Washington University, Washington, DC, USA
| |
Collapse
|
2
|
Rittweger J, Gilardi L, Baltruweit M, Dally S, Erbertseder T, Mittag U, Naeem M, Schmid M, Schmitz MT, Wüst S, Dech S, Jordan J, Antoni T, Bittner M. Temperature and particulate matter as environmental factors associated with seasonality of influenza incidence - an approach using Earth observation-based modeling in a health insurance cohort study from Baden-Württemberg (Germany). Environ Health 2022; 21:131. [PMID: 36527040 PMCID: PMC9755806 DOI: 10.1186/s12940-022-00927-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 10/21/2022] [Indexed: 05/04/2023]
Abstract
BACKGROUND Influenza seasonality has been frequently studied, but its mechanisms are not clear. Urban in-situ studies have linked influenza to meteorological or pollutant stressors. Few studies have investigated rural and less polluted areas in temperate climate zones. OBJECTIVES We examined influences of medium-term residential exposure to fine particulate matter (PM2.5), NO2, SO2, air temperature and precipitation on influenza incidence. METHODS To obtain complete spatial coverage of Baden-Württemberg, we modeled environmental exposure from data of the Copernicus Atmosphere Monitoring Service and of the Copernicus Climate Change Service. We computed spatiotemporal aggregates to reflect quarterly mean values at post-code level. Moreover, we prepared health insurance data to yield influenza incidence between January 2010 and December 2018. We used generalized additive models, with Gaussian Markov random field smoothers for spatial input, whilst using or not using quarter as temporal input. RESULTS In the 3.85 million cohort, 513,404 influenza cases occurred over the 9-year period, with 53.6% occurring in quarter 1 (January to March), and 10.2%, 9.4% and 26.8% in quarters 2, 3 and 4, respectively. Statistical modeling yielded highly significant effects of air temperature, precipitation, PM2.5 and NO2. Computation of stressor-specific gains revealed up to 3499 infections per 100,000 AOK clients per year that are attributable to lowering ambient mean air temperature from 18.71 °C to 2.01 °C. Stressor specific gains were also substantial for fine particulate matter, yielding up to 502 attributable infections per 100,000 clients per year for an increase from 7.49 μg/m3 to 15.98 μg/m3. CONCLUSIONS Whilst strong statistical association of temperature with other stressors makes it difficult to distinguish between direct and mediated temperature effects, results confirm genuine effects by fine particulate matter on influenza infections for both rural and urban areas in a temperate climate. Future studies should attempt to further establish the mediating mechanisms to inform public health policies.
Collapse
Affiliation(s)
- Jörn Rittweger
- Institute of Aerospace Medicine, German Aerospace Center (DLR), 51147, Cologne, Germany.
- Department of Pediatrics and Adolescent Medicine, University Hospital Cologne, Cologne, Germany.
| | - Lorenza Gilardi
- German Remote Sensing Data Center, German Aerospace Center (DLR), Oberpfaffenhofen, Germany
| | - Maxana Baltruweit
- Allgemeine Ortskrankenkasse Baden-Württemberg (AOK-BW), Stuttgart, Germany
| | - Simon Dally
- Allgemeine Ortskrankenkasse Baden-Württemberg (AOK-BW), Stuttgart, Germany
| | - Thilo Erbertseder
- German Remote Sensing Data Center, German Aerospace Center (DLR), Oberpfaffenhofen, Germany
| | - Uwe Mittag
- Institute of Aerospace Medicine, German Aerospace Center (DLR), 51147, Cologne, Germany
| | - Muhammad Naeem
- Kohat University of Science and Technology, Kohat, Pakistan
| | - Matthias Schmid
- Institute of Medical Biometry, Informatics and Epidemiology, University Hospital Bonn, Bonn, Germany
| | - Marie-Therese Schmitz
- Institute of Aerospace Medicine, German Aerospace Center (DLR), 51147, Cologne, Germany
- Institute of Medical Biometry, Informatics and Epidemiology, University Hospital Bonn, Bonn, Germany
| | - Sabine Wüst
- German Remote Sensing Data Center, German Aerospace Center (DLR), Oberpfaffenhofen, Germany
| | - Stefan Dech
- German Remote Sensing Data Center, German Aerospace Center (DLR), Oberpfaffenhofen, Germany
| | - Jens Jordan
- Institute of Aerospace Medicine, German Aerospace Center (DLR), 51147, Cologne, Germany
- Medical Faculty, University of Cologne, Cologne, Germany
| | - Tobias Antoni
- Allgemeine Ortskrankenkasse Baden-Württemberg (AOK-BW), Stuttgart, Germany
| | - Michael Bittner
- German Remote Sensing Data Center, German Aerospace Center (DLR), Oberpfaffenhofen, Germany
| |
Collapse
|
3
|
Abkar L, Zimmermann K, Dixit F, Kheyrandish A, Mohseni M. COVID-19 pandemic lesson learned- critical parameters and research needs for UVC inactivation of viral aerosols. JOURNAL OF HAZARDOUS MATERIALS ADVANCES 2022; 8:100183. [PMID: 36619826 PMCID: PMC9553962 DOI: 10.1016/j.hazadv.2022.100183] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/28/2022] [Accepted: 10/10/2022] [Indexed: 11/28/2022]
Abstract
The COVID-19 pandemic highlighted public awareness of airborne disease transmission in indoor settings and emphasized the need for reliable air disinfection technologies. This increased awareness will carry in the post-pandemic era along with the ever-emerging SARS-CoV variants, necessitating effective and well-defined protocols, methods, and devices for air disinfection. Ultraviolet (UV)-based air disinfection demonstrated promising results in inactivating viral bioaerosols. However, the reported data diversity on the required UVC doses has hindered determining the best UVC practices and led to confusion among the public and regulators. This article reviews available information on critical parameters influencing the efficacy of a UVC air disinfection system and, consequently, the required dose including the system's components as well as operational and environmental factors. There is a consensus in the literature that the interrelation of humidity and air temperature has a significant impact on the UVC susceptibility, which translate to changing the UVC efficacy of commercialized devices in indoor settings under varying conditions. Sampling and aerosolization techniques reported to have major influence on the result interpretation and it is recommended to use several sampling methods simultaneously to generate comparable and conclusive data. We also considered the safety concerns and the potential safe alternative of UVC, far-UVC. Finally, the gaps in each critical parameter and the future research needs of the field are represented. This paper is the first step to consolidating literature towards developing a standard validation protocol for UVC air disinfection devices which is determined as the one of the research needs.
Collapse
Key Words
- Aerosolization of pathogens
- Air sampling methods
- Airborne transmission
- CDC, centre for disease control and prevention (USA)
- CMD, count median diameter
- DNA, deoxyribonucleic acid
- DSB, double strand break
- Far-UVC
- Far-UVC, ultraviolet irradiation in the ‘far’ range of 200–230 nm
- GTC, growth tube collectors
- LED, light emitting diode
- LPUV, low-pressure ultraviolet lamp
- NIOSH, national institute for occupational safety and health
- PBS, phosphate buffered saline
- PRRS, porcine reproductive and respiratory syndrome
- Particle size distribution
- REL, recommended exposure limit
- RH, relative humidity
- RNA, ribonucleic acid
- ROS, reactive oxygen species
- SARS-CoV-2, severe acute respiratory syndrome coronavirus-2
- SSB, single strand break
- Suspending media
- UV, ultraviolet irradiation
- UV-LED, light emitting diode in the ultraviolet range
- UVC, ultraviolet irradiation in the ‘C’, or germicidal, spectrum from 200 to 290 nm
- UVGI, ultraviolet germicidal irradiation
- Viral UVC susceptibility
- dsDNA, double-stranded deoxyribonucleic acid
- ssRNA, single-stranded ribonucleic acid
Collapse
|
4
|
Nagpal D, Nagpal S, Kaushik D, Kathuria H. Current clinical status of new COVID-19 vaccines and immunotherapy. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:70772-70807. [PMID: 36063274 PMCID: PMC9442597 DOI: 10.1007/s11356-022-22661-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 08/18/2022] [Indexed: 04/15/2023]
Abstract
COVID-19, caused by SARS-CoV-2, is a positive-strand RNA belonging to Coronaviridae family, along with MERS and SARS. Since its first report in 2019 in Wuhan, China, it has affected over 530 million people and led to 6.3 million deaths worldwide until June 2022. Despite eleven vaccines being used worldwide already, new variants are of concern. Therefore, the governing bodies are re-evaluating the strategies for achieving universal vaccination. Initially, the WHO expected that vaccines showing around 50-80% efficacy would develop in 1-2 years. However, US-FDA announced emergency approval of the two m-RNA vaccines within 11 months of vaccine development, which enabled early vaccination for healthcare workers in many countries. Later, in January 2021, 63 vaccine candidates were under human clinical trials and 172 under preclinical development. Currently, the number of such clinical studies is still increasing. In this review, we have summarized the updates on the clinical status of the COVID-19 and the available treatments. Additionally, COVID-19 had created negative impacts on world's economy; affected agriculture, industries, and tourism service sectors; and majorly affected low-income countries. The review discusses the clinical outcomes, latest statistics, socio-economic impacts of pandemic and treatment approaches against SARS-CoV-2, and strategies against the new variant of concern. The review will help understand the current status of vaccines and other therapies while also providing insights about upcoming vaccines and therapies for COVID-19 management.
Collapse
Affiliation(s)
- Diksha Nagpal
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, Haryana 124001 India
| | - Shakti Nagpal
- Department of Pharmacy, National University of Singapore, Singapore, 117543 Republic of Singapore
| | - Deepak Kaushik
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, Haryana 124001 India
| | - Himanshu Kathuria
- Department of Pharmacy, National University of Singapore, Singapore, 117543 Republic of Singapore
- Nusmetics Pte Ltd, Makerspace, i4 building, 3 Research Link, Singapore, 117602 Republic of Singapore
| |
Collapse
|
5
|
Donzelli G, Biggeri A, Tobias A, Nottmeyer LN, Sera F. Role of meteorological factors on SARS-CoV-2 infection incidence in Italy and Spain before the vaccination campaign. A multi-city time series study. ENVIRONMENTAL RESEARCH 2022; 211:113134. [PMID: 35307374 PMCID: PMC8928740 DOI: 10.1016/j.envres.2022.113134] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/15/2022] [Accepted: 03/15/2022] [Indexed: 05/07/2023]
Abstract
Numerous studies have been conducted worldwide to investigate if an association exists between meteorological factors and the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection incidence. Although research studies provide conflicting results, which can be partially explained by different methods used, some clear trends emerge on the role of weather conditions and SARS-CoV-2 infection, especially for temperature and humidity. This study sheds more light on the relationship between meteorological factors and SARS-CoV-2 infection incidence in 23 Italian and 52 Spanish cities. For the purposes of this study, daily air temperature, absolute and relative humidity, wind speed, ultraviolet radiation, and rainfall are considered exposure variables. We conducted a two-stage meta-regression. In the first stage, we estimated the exposure-response association through time series regression analysis at the municipal level. In the second stage, we pooled the association parameters using a meta-analytic model. The study demonstrates an association between meteorological factors and SARS-CoV-2 infection incidence. Specifically, low levels of ambient temperatures and absolute humidity were associated with an increased relative risk. On the other hand, low and high levels of relative humidity and ultraviolet radiation were associated with a decreased relative risk. Concerning wind speed and rainfall, higher values contributed to the reduction of the risk of infection. Overall, our results contribute to a better understanding of how the meteorological factors influence the spread of the SARS-CoV-2 and should be considered in a wider context of existing robust literature that highlight the importance of measures such as social distancing, improved hygiene, face masks and vaccination campaign.
Collapse
Affiliation(s)
- Gabriele Donzelli
- Department of Statistics, Computer Science and Applications "G. Parenti", University of Florence, Florence, Italy.
| | - Annibale Biggeri
- Department of Cardio, Thoracic, Vascular Sciences and Public Health, University of Padua, Padua, Italy.
| | - Aurelio Tobias
- Institute of Environmental Assessment and Water Research (IDAEA), Spanish Council for Scientific Research (CSIC), Barcelona, Spain; School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki, Japan.
| | - Luise N Nottmeyer
- Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, London, United Kingdom.
| | - Francesco Sera
- Department of Statistics, Computer Science and Applications "G. Parenti", University of Florence, Florence, Italy.
| |
Collapse
|
6
|
Caldwell JM, de Lara-Tuprio E, Teng TR, Estuar MRJE, Sarmiento RFR, Abayawardana M, Leong RNF, Gray RT, Wood JG, Le LV, McBryde ES, Ragonnet R, Trauer JM. Understanding COVID-19 dynamics and the effects of interventions in the Philippines: A mathematical modelling study. THE LANCET REGIONAL HEALTH. WESTERN PACIFIC 2021; 14:100211. [PMID: 34308400 PMCID: PMC8279002 DOI: 10.1016/j.lanwpc.2021.100211] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 06/10/2021] [Accepted: 06/24/2021] [Indexed: 01/08/2023]
Abstract
BACKGROUND COVID-19 initially caused less severe outbreaks in many low- and middle-income countries (LMIC) compared with many high-income countries, possibly because of differing demographics, socioeconomics, surveillance, and policy responses. Here, we investigate the role of multiple factors on COVID-19 dynamics in the Philippines, a LMIC that has had a relatively severe COVID-19 outbreak. METHODS We applied an age-structured compartmental model that incorporated time-varying mobility, testing, and personal protective behaviors (through a "Minimum Health Standards" policy, MHS) to represent the first wave of the Philippines COVID-19 epidemic nationally and for three highly affected regions (Calabarzon, Central Visayas, and the National Capital Region). We estimated effects of control measures, key epidemiological parameters, and interventions. FINDINGS Population age structure, contact rates, mobility, testing, and MHS were sufficient to explain the Philippines epidemic based on the good fit between modelled and reported cases, hospitalisations, and deaths. The model indicated that MHS reduced the probability of transmission per contact by 13-27%. The February 2021 case detection rate was estimated at ~8%, population recovered at ~9%, and scenario projections indicated high sensitivity to MHS adherence. INTERPRETATION COVID-19 dynamics in the Philippines are driven by age, contact structure, mobility, and MHS adherence. Continued compliance with low-cost MHS should help the Philippines control the epidemic until vaccines are widely distributed, but disease resurgence may be occurring due to a combination of low population immunity and detection rates and new variants of concern.
Collapse
Affiliation(s)
| | | | - Timothy Robin Teng
- Department of Mathematics, Ateneo de Manila University, Quezon City, Philippines
| | | | | | - Milinda Abayawardana
- School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Robert Neil F. Leong
- School of Population Health and Community Medicine, University of New South Wales, Sydney, Australia
| | - Richard T. Gray
- The Kirby Institute, University of New South Wales Sydney, Sydney, Australia
| | - James G. Wood
- School of Population Health and Community Medicine, University of New South Wales, Sydney, Australia
| | - Linh-Vi Le
- World Health Organization Regional Office for the Western Pacific, Manila, Philippines
| | - Emma S. McBryde
- Australian Institute of Tropical Health and Medicine, James Cook University, Queensland, Australia
| | - Romain Ragonnet
- School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - James M. Trauer
- School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| |
Collapse
|
7
|
Abstract
Purpose for Review Since the coronavirus SARS-CoV-2 outbreak in China in late 2019 turned into a global pandemic, numerous studies have reported associations between environmental factors, such as weather conditions and a range of air pollutants (particulate matter, nitrogen dioxide, ozone, etc.) and the first wave of COVID-19 cases. This review aims to offer a critical assessment of the role of environmental exposure risk factors on SARS-CoV-2 infections and COVID-19 disease severity. Recent Findings In this review, we provide a critical assessment of COVID-19 risk factors, identify gaps in our knowledge (e.g., indoor air pollution), and discuss methodological challenges of association and causation and the impact lockdowns had on air quality. In addition, we will draw attention to ethnic and socioeconomic factors driving viral transmission related to COVID-19. The complex role angiotensin-converting enzyme 2 (ACE2) plays in COVID-19 and future promising avenues of research are discussed. Summary To demonstrate causality, we stress the need for future epidemiologic studies integrating personal air pollution exposures, detailed clinical COVID-19 data, and a range of socioeconomic factors, as well as in vitro and in vivo mechanistic studies.
Collapse
|
8
|
|