1
|
Varona JF, Landete P, Lopez-Martin JA, Estrada V, Paredes R, Guisado-Vasco P, Fernandez de Orueta L, Torralba M, Fortun J, Vates R, Barberan J, Clotet B, Ancochea J, Carnevali D, Cabello N, Porras L, Gijon P, Monereo A, Abad D, Zuñiga S, Sola I, Rodon J, Vergara-Alert J, Izquierdo-Useros N, Fudio S, Pontes MJ, de Rivas B, Giron de Velasco P, Nieto A, Gomez J, Aviles P, Lubomirov R, Belgrano A, Sopesen B, White KM, Rosales R, Yildiz S, Reuschl AK, Thorne LG, Jolly C, Towers GJ, Zuliani-Alvarez L, Bouhaddou M, Obernier K, McGovern BL, Rodriguez ML, Enjuanes L, Fernandez-Sousa JM, Krogan NJ, Jimeno JM, Garcia-Sastre A. Preclinical and randomized phase I studies of plitidepsin in adults hospitalized with COVID-19. Life Sci Alliance 2022; 5:e202101200. [PMID: 35012962 PMCID: PMC8761492 DOI: 10.26508/lsa.202101200] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 12/24/2021] [Accepted: 12/28/2021] [Indexed: 12/16/2022] Open
Abstract
Plitidepsin, a marine-derived cyclic-peptide, inhibits SARS-CoV-2 replication at nanomolar concentrations by targeting the host protein eukaryotic translation elongation factor 1A. Here, we show that plitidepsin distributes preferentially to lung over plasma, with similar potency against across several SARS-CoV-2 variants in preclinical studies. Simultaneously, in this randomized, parallel, open-label, proof-of-concept study (NCT04382066) conducted in 10 Spanish hospitals between May and November 2020, 46 adult hospitalized patients with confirmed SARS-CoV-2 infection received either 1.5 mg (n = 15), 2.0 mg (n = 16), or 2.5 mg (n = 15) plitidepsin once daily for 3 d. The primary objective was safety; viral load kinetics, mortality, need for increased respiratory support, and dose selection were secondary end points. One patient withdrew consent before starting procedures; 45 initiated treatment; one withdrew because of hypersensitivity. Two Grade 3 treatment-related adverse events were observed (hypersensitivity and diarrhea). Treatment-related adverse events affecting more than 5% of patients were nausea (42.2%), vomiting (15.6%), and diarrhea (6.7%). Mean viral load reductions from baseline were 1.35, 2.35, 3.25, and 3.85 log10 at days 4, 7, 15, and 31. Nonmechanical invasive ventilation was required in 8 of 44 evaluable patients (16.0%); six patients required intensive care support (13.6%), and three patients (6.7%) died (COVID-19-related). Plitidepsin has a favorable safety profile in patients with COVID-19.
Collapse
Affiliation(s)
- Jose F Varona
- Departamento de Medicina Interna, Hospital Universitario HM Monteprincipe, HM Hospitales, Madrid, Spain
- Facultad de Medicina, Universidad San Pablo-CEU, Madrid, Spain
| | - Pedro Landete
- Hospital Universitario La Princesa, Madrid, Spain
- Universidad Autónoma de Madrid, Madrid, Spain
| | | | - Vicente Estrada
- Hospital Clínico San Carlos, Madrid, Spain
- Universidad Complutense de Madrid, Madrid, Spain
| | - Roger Paredes
- Infectious Diseases Department, IrsiCaixa AIDS Research Institute, Barcelona, Spain
- Hospital Germans Trias I Pujol, Barcelona, Spain
| | - Pablo Guisado-Vasco
- Hospital Universitario Quironsalud Madrid, Madrid, Spain
- Universidad Europea, Madrid, Spain
| | - Lucia Fernandez de Orueta
- Universidad Europea, Madrid, Spain
- Internal Medicine Department, Hospital Universitario de Getafe, Madrid, Spain
| | - Miguel Torralba
- Health Sciences Faculty, University of Alcalá, Madrid, Spain
- Guadalajara University Hospital, Guadalajara, Spain
| | - Jesus Fortun
- Hospital Universitario Ramón y Cajal, Madrid, Spain
| | - Roberto Vates
- Internal Medicine Department, Hospital Universitario de Getafe, Madrid, Spain
| | - Jose Barberan
- Departamento de Medicina Interna, Hospital Universitario HM Monteprincipe, HM Hospitales, Madrid, Spain
- Facultad de Medicina, Universidad San Pablo-CEU, Madrid, Spain
| | - Bonaventura Clotet
- Infectious Diseases Department, IrsiCaixa AIDS Research Institute, Barcelona, Spain
- Hospital Germans Trias I Pujol, Barcelona, Spain
- Universitat Autònoma de Barcelona, Barcelona, Spain
- Universitat de Vic, Universitat Central de Catalunya, Barcelona, Spain
| | - Julio Ancochea
- Hospital Universitario La Princesa, Madrid, Spain
- Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Investigación en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Daniel Carnevali
- Hospital Universitario Quironsalud Madrid, Madrid, Spain
- Universidad Europea, Madrid, Spain
| | - Noemi Cabello
- Infectious Diseases Department, Clinico San Carlos University Hospital, Madrid, Spain
| | - Lourdes Porras
- Internal Medicine, Hospital General de Ciudad Real, Ciudad Real, Spain
| | - Paloma Gijon
- Clinical Microbiology and Infectious Diseases Department, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | - Alfonso Monereo
- Internal Medicine Department, Hospital Universitario de Getafe, Madrid, Spain
| | - Daniel Abad
- Universidad Europea, Madrid, Spain
- Internal Medicine Department, Hospital Universitario de Getafe, Madrid, Spain
| | - Sonia Zuñiga
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | - Isabel Sola
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | - Jordi Rodon
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la UAB, Bellaterra, Spain
| | - Julia Vergara-Alert
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la UAB, Bellaterra, Spain
| | - Nuria Izquierdo-Useros
- IrsiCaixa AIDS Research Institute, Barcelona, Spain
- Germans Trias I Pujol Research Institute (IGTP), Badalona, Spain
| | | | | | | | | | | | | | | | | | | | - Belen Sopesen
- Virology and Inflammation Unit, PharmaMar, SA, Madrid, Spain
- Sylentis, SAU, Madrid, Spain
- Biocross, SL, Valladolid, Spain
| | - Kris M White
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Global Health Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Romel Rosales
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Global Health Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Soner Yildiz
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Global Health Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Lucy G Thorne
- Division of Infection and Immunity, University College London, London, UK
| | - Clare Jolly
- Division of Infection and Immunity, University College London, London, UK
| | - Greg J Towers
- Division of Infection and Immunity, University College London, London, UK
| | - Lorena Zuliani-Alvarez
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA
- J David Gladstone Institutes, San Francisco, CA, USA
- QBI, Coronavirus Research Group (QCRG), San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA
| | - Mehdi Bouhaddou
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA
- J David Gladstone Institutes, San Francisco, CA, USA
- QBI, Coronavirus Research Group (QCRG), San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA
| | - Kirsten Obernier
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA
- J David Gladstone Institutes, San Francisco, CA, USA
- QBI, Coronavirus Research Group (QCRG), San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA
| | - Briana L McGovern
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Global Health Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - M Luis Rodriguez
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Global Health Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Luis Enjuanes
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | | | - Nevan J Krogan
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA
- J David Gladstone Institutes, San Francisco, CA, USA
- QBI, Coronavirus Research Group (QCRG), San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA
| | - Jose M Jimeno
- Virology and Inflammation Unit, PharmaMar, SA, Madrid, Spain
| | - Adolfo Garcia-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Global Health Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tish Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
2
|
Ricci D, Etna MP, Rizzo F, Sandini S, Severa M, Coccia EM. Innate Immune Response to SARS-CoV-2 Infection: From Cells to Soluble Mediators. Int J Mol Sci 2021; 22:7017. [PMID: 34209845 PMCID: PMC8268312 DOI: 10.3390/ijms22137017] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/22/2021] [Accepted: 06/23/2021] [Indexed: 02/07/2023] Open
Abstract
The vulnerability of humankind to SARS-CoV-2 in the absence of a pre-existing immunity, the unpredictability of the infection outcome, and the high transmissibility, broad tissue tropism, and ability to exploit and subvert the immune response pose a major challenge and are likely perpetuating the COVID-19 pandemic. Nevertheless, this peculiar infectious scenario provides researchers with a unique opportunity for studying, with the latest immunological techniques and understandings, the immune response in SARS-CoV-2 naïve versus recovered subjects as well as in SARS-CoV-2 vaccinees. Interestingly, the current understanding of COVID-19 indicates that the combined action of innate immune cells, cytokines, and chemokines fine-tunes the outcome of SARS-CoV-2 infection and the related immunopathogenesis. Indeed, the emerging picture clearly shows that the excessive inflammatory response against this virus is among the main causes of disease severity in COVID-19 patients. In this review, the innate immune response to SARS-CoV-2 infection is described not only in light of its capacity to influence the adaptive immune response towards a protective phenotype but also with the intent to point out the multiple strategies exploited by SARS-CoV-2 to antagonize host antiviral response and, finally, to outline inborn errors predisposing individuals to COVID-19 disease severity.
Collapse
Affiliation(s)
| | | | | | | | | | - Eliana Marina Coccia
- Department of Infectious Diseases, Istituto Superiore di Sanità, 00161 Rome, Italy; (D.R.); (M.P.E.); (F.R.); (S.S.); (M.S.)
| |
Collapse
|
3
|
Thorne LG, Bouhaddou M, Reuschl AK, Zuliani-Alvarez L, Polacco B, Pelin A, Batra J, Whelan MV, Ummadi M, Rojc A, Turner J, Obernier K, Braberg H, Soucheray M, Richards A, Chen KH, Harjai B, Memon D, Hosmillo M, Hiatt J, Jahun A, Goodfellow IG, Fabius JM, Shokat K, Jura N, Verba K, Noursadeghi M, Beltrao P, Swaney DL, Garcia-Sastre A, Jolly C, Towers GJ, Krogan NJ. Evolution of enhanced innate immune evasion by the SARS-CoV-2 B.1.1.7 UK variant. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2021.06.06.446826. [PMID: 34127972 PMCID: PMC8202424 DOI: 10.1101/2021.06.06.446826] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Emergence of SARS-CoV-2 variants, including the globally successful B.1.1.7 lineage, suggests viral adaptations to host selective pressures resulting in more efficient transmission. Although much effort has focused on Spike adaptation for viral entry and adaptive immune escape, B.1.1.7 mutations outside Spike likely contribute to enhance transmission. Here we used unbiased abundance proteomics, phosphoproteomics, mRNA sequencing and viral replication assays to show that B.1.1.7 isolates more effectively suppress host innate immune responses in airway epithelial cells. We found that B.1.1.7 isolates have dramatically increased subgenomic RNA and protein levels of Orf9b and Orf6, both known innate immune antagonists. Expression of Orf9b alone suppressed the innate immune response through interaction with TOM70, a mitochondrial protein required for RNA sensing adaptor MAVS activation, and Orf9b binding and activity was regulated via phosphorylation. We conclude that B.1.1.7 has evolved beyond the Spike coding region to more effectively antagonise host innate immune responses through upregulation of specific subgenomic RNA synthesis and increased protein expression of key innate immune antagonists. We propose that more effective innate immune antagonism increases the likelihood of successful B.1.1.7 transmission, and may increase in vivo replication and duration of infection.
Collapse
Affiliation(s)
- Lucy G Thorne
- Division of Infection and Immunity, University College London, London, WC1E 6BT, United Kingdom
| | - Mehdi Bouhaddou
- Quantitative Biosciences Institute (QBI) Coronavirus Research Group (QCRG), San Francisco, CA 94158, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, 94158, USA
- J. David Gladstone Institutes, San Francisco, CA 94158, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Ann-Kathrin Reuschl
- Division of Infection and Immunity, University College London, London, WC1E 6BT, United Kingdom
| | - Lorena Zuliani-Alvarez
- Quantitative Biosciences Institute (QBI) Coronavirus Research Group (QCRG), San Francisco, CA 94158, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, 94158, USA
- J. David Gladstone Institutes, San Francisco, CA 94158, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Ben Polacco
- Quantitative Biosciences Institute (QBI) Coronavirus Research Group (QCRG), San Francisco, CA 94158, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, 94158, USA
- J. David Gladstone Institutes, San Francisco, CA 94158, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Adrian Pelin
- Quantitative Biosciences Institute (QBI) Coronavirus Research Group (QCRG), San Francisco, CA 94158, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, 94158, USA
- J. David Gladstone Institutes, San Francisco, CA 94158, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Jyoti Batra
- Quantitative Biosciences Institute (QBI) Coronavirus Research Group (QCRG), San Francisco, CA 94158, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, 94158, USA
- J. David Gladstone Institutes, San Francisco, CA 94158, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Matthew V.X. Whelan
- Division of Infection and Immunity, University College London, London, WC1E 6BT, United Kingdom
| | - Manisha Ummadi
- Quantitative Biosciences Institute (QBI) Coronavirus Research Group (QCRG), San Francisco, CA 94158, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, 94158, USA
- J. David Gladstone Institutes, San Francisco, CA 94158, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Ajda Rojc
- Quantitative Biosciences Institute (QBI) Coronavirus Research Group (QCRG), San Francisco, CA 94158, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, 94158, USA
- J. David Gladstone Institutes, San Francisco, CA 94158, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Jane Turner
- Division of Infection and Immunity, University College London, London, WC1E 6BT, United Kingdom
| | - Kirsten Obernier
- Quantitative Biosciences Institute (QBI) Coronavirus Research Group (QCRG), San Francisco, CA 94158, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, 94158, USA
- J. David Gladstone Institutes, San Francisco, CA 94158, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Hannes Braberg
- Quantitative Biosciences Institute (QBI) Coronavirus Research Group (QCRG), San Francisco, CA 94158, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, 94158, USA
- J. David Gladstone Institutes, San Francisco, CA 94158, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Margaret Soucheray
- Quantitative Biosciences Institute (QBI) Coronavirus Research Group (QCRG), San Francisco, CA 94158, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, 94158, USA
- J. David Gladstone Institutes, San Francisco, CA 94158, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Alicia Richards
- Quantitative Biosciences Institute (QBI) Coronavirus Research Group (QCRG), San Francisco, CA 94158, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, 94158, USA
- J. David Gladstone Institutes, San Francisco, CA 94158, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Kuei-Ho Chen
- Quantitative Biosciences Institute (QBI) Coronavirus Research Group (QCRG), San Francisco, CA 94158, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, 94158, USA
- J. David Gladstone Institutes, San Francisco, CA 94158, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Bhavya Harjai
- Quantitative Biosciences Institute (QBI) Coronavirus Research Group (QCRG), San Francisco, CA 94158, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, 94158, USA
- J. David Gladstone Institutes, San Francisco, CA 94158, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Danish Memon
- European Molecular Biology Laboratory (EMBL), European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Myra Hosmillo
- Division of Virology, Department of Pathology, University of Cambridge, Addenbrooke’s Hospital, Hills Road, Cambridge CB2 2QQ, UK
| | - Joseph Hiatt
- Quantitative Biosciences Institute (QBI) Coronavirus Research Group (QCRG), San Francisco, CA 94158, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, 94158, USA
- J. David Gladstone Institutes, San Francisco, CA 94158, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Aminu Jahun
- Division of Virology, Department of Pathology, University of Cambridge, Addenbrooke’s Hospital, Hills Road, Cambridge CB2 2QQ, UK
| | - Ian G. Goodfellow
- Division of Virology, Department of Pathology, University of Cambridge, Addenbrooke’s Hospital, Hills Road, Cambridge CB2 2QQ, UK
| | - Jacqueline M. Fabius
- Quantitative Biosciences Institute (QBI) Coronavirus Research Group (QCRG), San Francisco, CA 94158, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, 94158, USA
- J. David Gladstone Institutes, San Francisco, CA 94158, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Kevan Shokat
- Quantitative Biosciences Institute (QBI) Coronavirus Research Group (QCRG), San Francisco, CA 94158, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, 94158, USA
- J. David Gladstone Institutes, San Francisco, CA 94158, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
- Howard Hughes Medical Institute, San Francisco, CA 94158, USA
| | - Natalia Jura
- Quantitative Biosciences Institute (QBI) Coronavirus Research Group (QCRG), San Francisco, CA 94158, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, 94158, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
- Cardiovascular Research Institute, University of California - San Francisco, San Francisco, CA 94158, U.S.A
| | - Klim Verba
- Quantitative Biosciences Institute (QBI) Coronavirus Research Group (QCRG), San Francisco, CA 94158, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, 94158, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Mahdad Noursadeghi
- Division of Infection and Immunity, University College London, London, WC1E 6BT, United Kingdom
| | - Pedro Beltrao
- Quantitative Biosciences Institute (QBI) Coronavirus Research Group (QCRG), San Francisco, CA 94158, USA
- European Molecular Biology Laboratory (EMBL), European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Danielle L. Swaney
- Quantitative Biosciences Institute (QBI) Coronavirus Research Group (QCRG), San Francisco, CA 94158, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, 94158, USA
- J. David Gladstone Institutes, San Francisco, CA 94158, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Adolfo Garcia-Sastre
- Quantitative Biosciences Institute (QBI) Coronavirus Research Group (QCRG), San Francisco, CA 94158, USA
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Clare Jolly
- Division of Infection and Immunity, University College London, London, WC1E 6BT, United Kingdom
| | - Greg J. Towers
- Division of Infection and Immunity, University College London, London, WC1E 6BT, United Kingdom
| | - Nevan J. Krogan
- Quantitative Biosciences Institute (QBI) Coronavirus Research Group (QCRG), San Francisco, CA 94158, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, 94158, USA
- J. David Gladstone Institutes, San Francisco, CA 94158, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| |
Collapse
|
4
|
Reuschl AK, Thorne LG, Zuliani-Alvarez L, Bouhaddou M, Obernier K, Hiatt J, Soucheray M, Turner J, Fabius JM, Nguyen GT, Swaney DL, Rosales R, White KM, Avilés P, Kirby IT, Melnyk JE, Shi Y, Zhang Z, Shokat KM, García-Sastre A, Jolly C, Towers GJ, Krogan NJ. Host-directed therapies against early-lineage SARS-CoV-2 retain efficacy against B.1.1.7 variant. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2021.01.24.427991. [PMID: 33501437 PMCID: PMC7836107 DOI: 10.1101/2021.01.24.427991] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has resulted in millions of deaths worldwide and massive societal and economic burden. Recently, a new variant of SARS-CoV-2, known as B.1.1.7, was first detected in the United Kingdom and is spreading in several other countries, heightening public health concern and raising questions as to the resulting effectiveness of vaccines and therapeutic interventions. We and others previously identified host-directed therapies with antiviral efficacy against SARS-CoV-2 infection. Less prone to the development of therapy resistance, host-directed drugs represent promising therapeutic options to combat emerging viral variants as host genes possess a lower propensity to mutate compared to viral genes. Here, in the first study of the full-length B.1.1.7 variant virus , we find two host-directed drugs, plitidepsin (aplidin; inhibits translation elongation factor eEF1A) and ralimetinib (inhibits p38 MAP kinase cascade), as well as remdesivir, to possess similar antiviral activity against both the early-lineage SARS-CoV-2 and the B.1.1.7 variant, evaluated in both human gastrointestinal and lung epithelial cell lines. We find that plitidepsin is over an order of magnitude more potent than remdesivir against both viruses. These results highlight the importance of continued development of host-directed therapeutics to combat current and future coronavirus variant outbreaks.
Collapse
Affiliation(s)
- Ann-Kathrin Reuschl
- Division of Infection and Immunity, University College London, London, WC1E 6BT, United Kingdom
| | - Lucy G. Thorne
- Division of Infection and Immunity, University College London, London, WC1E 6BT, United Kingdom
| | - Lorena Zuliani-Alvarez
- Quantitative Biosciences Institute (QBI) Coronavirus Research Group (QCRG), San Francisco, CA 94158, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, 94158, USA
- J. David Gladstone Institutes, San Francisco, CA 94158, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Mehdi Bouhaddou
- Quantitative Biosciences Institute (QBI) Coronavirus Research Group (QCRG), San Francisco, CA 94158, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, 94158, USA
- J. David Gladstone Institutes, San Francisco, CA 94158, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Kirsten Obernier
- Quantitative Biosciences Institute (QBI) Coronavirus Research Group (QCRG), San Francisco, CA 94158, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, 94158, USA
- J. David Gladstone Institutes, San Francisco, CA 94158, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Joseph Hiatt
- Quantitative Biosciences Institute (QBI) Coronavirus Research Group (QCRG), San Francisco, CA 94158, USA
- J. David Gladstone Institutes, San Francisco, CA 94158, USA
- Medical Scientist Training Program, University of California, San Francisco, CA 94143, USA
- Department of Microbiology and Immunology, University of California, San Francisco, CA 94143, USA
- Biomedical Sciences Graduate Program, University of California, San Francisco,CA 94143, USA
| | - Margaret Soucheray
- Quantitative Biosciences Institute (QBI) Coronavirus Research Group (QCRG), San Francisco, CA 94158, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, 94158, USA
- J. David Gladstone Institutes, San Francisco, CA 94158, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Jane Turner
- Division of Infection and Immunity, University College London, London, WC1E 6BT, United Kingdom
| | - Jacqueline M. Fabius
- Quantitative Biosciences Institute (QBI) Coronavirus Research Group (QCRG), San Francisco, CA 94158, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, 94158, USA
| | - Gina T. Nguyen
- Quantitative Biosciences Institute (QBI) Coronavirus Research Group (QCRG), San Francisco, CA 94158, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, 94158, USA
| | - Danielle L. Swaney
- Quantitative Biosciences Institute (QBI) Coronavirus Research Group (QCRG), San Francisco, CA 94158, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, 94158, USA
- J. David Gladstone Institutes, San Francisco, CA 94158, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Romel Rosales
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Kris M. White
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Pablo Avilés
- PharmaMar, Research and Development Department, 28770 Colmenar Viejo, Madrid, Spain
| | - Ilsa T. Kirby
- Quantitative Biosciences Institute (QBI) Coronavirus Research Group (QCRG), San Francisco, CA 94158, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, 94158, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
- Howard Hughes Medical Institute, San Francisco, CA 94158, USA
| | - James E. Melnyk
- Quantitative Biosciences Institute (QBI) Coronavirus Research Group (QCRG), San Francisco, CA 94158, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, 94158, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
- Howard Hughes Medical Institute, San Francisco, CA 94158, USA
| | - Ying Shi
- Quantitative Biosciences Institute (QBI) Coronavirus Research Group (QCRG), San Francisco, CA 94158, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, 94158, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
- Howard Hughes Medical Institute, San Francisco, CA 94158, USA
| | - Ziyang Zhang
- Quantitative Biosciences Institute (QBI) Coronavirus Research Group (QCRG), San Francisco, CA 94158, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, 94158, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
- Howard Hughes Medical Institute, San Francisco, CA 94158, USA
| | - Kevan M. Shokat
- Quantitative Biosciences Institute (QBI) Coronavirus Research Group (QCRG), San Francisco, CA 94158, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, 94158, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
- Howard Hughes Medical Institute, San Francisco, CA 94158, USA
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Clare Jolly
- Division of Infection and Immunity, University College London, London, WC1E 6BT, United Kingdom
| | - Gregory J. Towers
- Division of Infection and Immunity, University College London, London, WC1E 6BT, United Kingdom
| | - Nevan J. Krogan
- Quantitative Biosciences Institute (QBI) Coronavirus Research Group (QCRG), San Francisco, CA 94158, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, 94158, USA
- J. David Gladstone Institutes, San Francisco, CA 94158, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|