1
|
Van Coillie J, Pongracz T, Rahmöller J, Chen HJ, Geyer CE, van Vught LA, Buhre JS, Šuštić T, van Osch TLJ, Steenhuis M, Hoepel W, Wang W, Lixenfeld AS, Nouta J, Keijzer S, Linty F, Visser R, Larsen MD, Martin EL, Künsting I, Lehrian S, von Kopylow V, Kern C, Lunding HB, de Winther M, van Mourik N, Rispens T, Graf T, Slim MA, Minnaar RP, Bomers MK, Sikkens JJ, Vlaar AP, van der Schoot CE, den Dunnen J, Wuhrer M, Ehlers M, Vidarsson G. The BNT162b2 mRNA SARS-CoV-2 vaccine induces transient afucosylated IgG1 in naive but not in antigen-experienced vaccinees. EBioMedicine 2022; 87:104408. [PMID: 36529104 PMCID: PMC9756879 DOI: 10.1016/j.ebiom.2022.104408] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 11/18/2022] [Accepted: 11/25/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Afucosylated IgG1 responses have only been found against membrane-embedded epitopes, including anti-S in SARS-CoV-2 infections. These responses, intrinsically protective through enhanced FcγRIIIa binding, can also trigger exacerbated pro-inflammatory responses in severe COVID-19. We investigated if the BNT162b2 SARS-CoV-2 mRNA also induced afucosylated IgG responses. METHODS Blood from vaccinees during the first vaccination wave was collected. Liquid chromatography-Mass spectrometry (LC-MS) was used to study anti-S IgG1 Fc glycoprofiles. Responsiveness of alveolar-like macrophages to produce proinflammatory cytokines in presence of sera and antigen was tested. Antigen-specific B cells were characterized and glycosyltransferase levels were investigated by Fluorescence-Activated Cell Sorting (FACS). FINDINGS Initial transient afucosylated anti-S IgG1 responses were found in naive vaccinees, but not in antigen-experienced ones. All vaccinees had increased galactosylated and sialylated anti-S IgG1. Both naive and antigen-experienced vaccinees showed relatively low macrophage activation potential, as expected, due to the low antibody levels for naive individuals with afucosylated IgG1, and low afucosylation levels for antigen-experienced individuals with high levels of anti-S. Afucosylation levels correlated with FUT8 expression in antigen-specific plasma cells in naive individuals. Interestingly, low fucosylation of anti-S IgG1 upon seroconversion correlated with high anti-S IgG levels after the second dose. INTERPRETATION Here, we show that BNT162b2 mRNA vaccination induces transient afucosylated anti-S IgG1 responses in naive individuals. This observation warrants further studies to elucidate the clinical context in which potent afucosylated responses would be preferred. FUNDING LSBR1721, 1908; ZonMW10430012010021, 09150161910033, 10430012010008; DFG398859914, 400912066, 390884018; PMI; DOI4-Nr. 3; H2020-MSCA-ITN 721815.
Collapse
Affiliation(s)
- Julie Van Coillie
- Department of Experimental Immunohematology, Sanquin Research, Amsterdam, the Netherlands,Department of Biomolecular Mass Spectrometry and Proteomics, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, the Netherlands
| | - Tamas Pongracz
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, the Netherlands
| | - Johann Rahmöller
- Laboratories of Immunology and Antibody Glycan Analysis, Institute of Nutritional Medicine, University of Lübeck and University Medical Center of Schleswig-Holstein, Lübeck, Germany,Department of Anesthesiology and Intensive Care, University of Lübeck and University Medical Center of Schleswig-Holstein, Lübeck, Germany
| | - Hung-Jen Chen
- Department of Medical Biochemistry, Experimental Vascular Biology, Amsterdam Cardiovascular Sciences, Amsterdam Infection and Immunity, Amsterdam UMC, University of Amsterdam, the Netherlands
| | - Chiara Elisabeth Geyer
- Center for Experimental and Molecular Medicine, Amsterdam Infection & Immunity Institute, Amsterdam, the Netherlands
| | - Lonneke A. van Vught
- Center for Experimental and Molecular Medicine, Amsterdam Infection & Immunity Institute, Amsterdam, the Netherlands,Department of Intensive Care, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands
| | - Jana Sophia Buhre
- Laboratories of Immunology and Antibody Glycan Analysis, Institute of Nutritional Medicine, University of Lübeck and University Medical Center of Schleswig-Holstein, Lübeck, Germany
| | - Tonći Šuštić
- Department of Experimental Immunohematology, Sanquin Research, Amsterdam, the Netherlands,Department of Biomolecular Mass Spectrometry and Proteomics, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, the Netherlands
| | - Thijs Luc Junior van Osch
- Department of Experimental Immunohematology, Sanquin Research, Amsterdam, the Netherlands,Department of Biomolecular Mass Spectrometry and Proteomics, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, the Netherlands
| | - Maurice Steenhuis
- Department of Biomolecular Mass Spectrometry and Proteomics, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, the Netherlands,Department of Immunopathology, Sanquin Research, Amsterdam, the Netherlands
| | - Willianne Hoepel
- Department of Experimental Immunology, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands,Department of Rheumatology and Clinical Immunology, Amsterdam UMC, Amsterdam Rheumatology and Immunology Center, Amsterdam, the Netherlands
| | - Wenjun Wang
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, the Netherlands
| | - Anne Sophie Lixenfeld
- Laboratories of Immunology and Antibody Glycan Analysis, Institute of Nutritional Medicine, University of Lübeck and University Medical Center of Schleswig-Holstein, Lübeck, Germany
| | - Jan Nouta
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, the Netherlands
| | - Sofie Keijzer
- Department of Biomolecular Mass Spectrometry and Proteomics, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, the Netherlands,Department of Immunopathology, Sanquin Research, Amsterdam, the Netherlands
| | - Federica Linty
- Department of Experimental Immunohematology, Sanquin Research, Amsterdam, the Netherlands,Department of Biomolecular Mass Spectrometry and Proteomics, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, the Netherlands
| | - Remco Visser
- Department of Experimental Immunohematology, Sanquin Research, Amsterdam, the Netherlands,Department of Biomolecular Mass Spectrometry and Proteomics, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, the Netherlands
| | - Mads Delbo Larsen
- Department of Experimental Immunohematology, Sanquin Research, Amsterdam, the Netherlands,Department of Biomolecular Mass Spectrometry and Proteomics, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, the Netherlands
| | - Emily Lara Martin
- Laboratories of Immunology and Antibody Glycan Analysis, Institute of Nutritional Medicine, University of Lübeck and University Medical Center of Schleswig-Holstein, Lübeck, Germany
| | - Inga Künsting
- Laboratories of Immunology and Antibody Glycan Analysis, Institute of Nutritional Medicine, University of Lübeck and University Medical Center of Schleswig-Holstein, Lübeck, Germany
| | - Selina Lehrian
- Laboratories of Immunology and Antibody Glycan Analysis, Institute of Nutritional Medicine, University of Lübeck and University Medical Center of Schleswig-Holstein, Lübeck, Germany
| | - Vera von Kopylow
- Laboratories of Immunology and Antibody Glycan Analysis, Institute of Nutritional Medicine, University of Lübeck and University Medical Center of Schleswig-Holstein, Lübeck, Germany
| | - Carsten Kern
- Laboratories of Immunology and Antibody Glycan Analysis, Institute of Nutritional Medicine, University of Lübeck and University Medical Center of Schleswig-Holstein, Lübeck, Germany
| | - Hanna Bele Lunding
- Laboratories of Immunology and Antibody Glycan Analysis, Institute of Nutritional Medicine, University of Lübeck and University Medical Center of Schleswig-Holstein, Lübeck, Germany
| | - Menno de Winther
- Department of Medical Biochemistry, Experimental Vascular Biology, Amsterdam Cardiovascular Sciences, Amsterdam Infection and Immunity, Amsterdam UMC, University of Amsterdam, the Netherlands
| | - Niels van Mourik
- Center for Experimental and Molecular Medicine, Amsterdam Infection & Immunity Institute, Amsterdam, the Netherlands,Department of Intensive Care, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands
| | - Theo Rispens
- Department of Biomolecular Mass Spectrometry and Proteomics, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, the Netherlands,Department of Immunopathology, Sanquin Research, Amsterdam, the Netherlands
| | - Tobias Graf
- Medical Department 2, University Heart Center of Schleswig-Holstein, Lübeck, Germany
| | - Marleen Adriana Slim
- Center for Experimental and Molecular Medicine, Amsterdam Infection & Immunity Institute, Amsterdam, the Netherlands,Department of Intensive Care, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands
| | | | - Marije Kristianne Bomers
- Department of Internal Medicine, Amsterdam Infection and Immunity Institute, Amsterdam UMC, Vrije Universiteit Amsterdam, the Netherlands
| | - Jonne Jochum Sikkens
- Department of Internal Medicine, Amsterdam Infection and Immunity Institute, Amsterdam UMC, Vrije Universiteit Amsterdam, the Netherlands
| | - Alexander P.J. Vlaar
- Department of Intensive Care, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands
| | - C. Ellen van der Schoot
- Department of Experimental Immunohematology, Sanquin Research, Amsterdam, the Netherlands,Department of Biomolecular Mass Spectrometry and Proteomics, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, the Netherlands
| | - Jeroen den Dunnen
- Center for Experimental and Molecular Medicine, Amsterdam Infection & Immunity Institute, Amsterdam, the Netherlands
| | - Manfred Wuhrer
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, the Netherlands,Corresponding author.
| | - Marc Ehlers
- Laboratories of Immunology and Antibody Glycan Analysis, Institute of Nutritional Medicine, University of Lübeck and University Medical Center of Schleswig-Holstein, Lübeck, Germany,Airway Research Center North, University of Lübeck, German Center for Lung Research (DZL), Lübeck, Germany,Corresponding author.
| | - Gestur Vidarsson
- Department of Experimental Immunohematology, Sanquin Research, Amsterdam, the Netherlands,Department of Biomolecular Mass Spectrometry and Proteomics, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, the Netherlands,Corresponding author.
| | | | | |
Collapse
|
2
|
Van Coillie J, Schulz MA, Bentlage AEH, de Haan N, Ye Z, Geerdes DM, van Esch WJE, Hafkenscheid L, Miller RL, Narimatsu Y, Vakhrushev SY, Yang Z, Vidarsson G, Clausen H. Role of N-Glycosylation in FcγRIIIa interaction with IgG. Front Immunol 2022; 13:987151. [PMID: 36189205 PMCID: PMC9524020 DOI: 10.3389/fimmu.2022.987151] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 08/16/2022] [Indexed: 01/09/2023] Open
Abstract
Immunoglobulins G (IgG) and their Fc gamma receptors (FcγRs) play important roles in our immune system. The conserved N-glycan in the Fc region of IgG1 impacts interaction of IgG with FcγRs and the resulting effector functions, which has led to the design of antibody therapeutics with greatly improved antibody-dependent cell cytotoxicity (ADCC) activities. Studies have suggested that also N-glycosylation of the FcγRIII affects receptor interactions with IgG, but detailed studies of the interaction of IgG1 and FcγRIIIa with distinct N-glycans have been hindered by the natural heterogeneity in N-glycosylation. In this study, we employed comprehensive genetic engineering of the N-glycosylation capacities in mammalian cell lines to express IgG1 and FcγRIIIa with different N-glycan structures to more generally explore the role of N-glycosylation in IgG1:FcγRIIIa binding interactions. We included FcγRIIIa variants of both the 158F and 158V allotypes and investigated the key N-glycan features that affected binding affinity. Our study confirms that afucosylated IgG1 has the highest binding affinity to oligomannose FcγRIIIa, a glycan structure commonly found on Asn162 on FcγRIIIa expressed by NK cells but not monocytes or recombinantly expressed FcγRIIIa.
Collapse
Affiliation(s)
- Julie Van Coillie
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Experimental Immunohematology, Sanquin Research, Amsterdam, Netherlands
- Department of Biomolecular Mass Spectrometry and Proteomics, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, Netherlands
| | - Morten A. Schulz
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Arthur E. H. Bentlage
- Department of Experimental Immunohematology, Sanquin Research, Amsterdam, Netherlands
- Department of Biomolecular Mass Spectrometry and Proteomics, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, Netherlands
| | - Noortje de Haan
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Zilu Ye
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | | | - Lise Hafkenscheid
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Rebecca L. Miller
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Yoshiki Narimatsu
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
- GlycoDisplay ApS, Copenhagen, Denmark
| | - Sergey Y. Vakhrushev
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Zhang Yang
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
- GlycoDisplay ApS, Copenhagen, Denmark
| | - Gestur Vidarsson
- Department of Experimental Immunohematology, Sanquin Research, Amsterdam, Netherlands
- Department of Biomolecular Mass Spectrometry and Proteomics, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, Netherlands
| | - Henrik Clausen
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|