1
|
Eyoh EE, Failla MD, Williams ZJ, Schwartz KL, Cutting LE, Landman BA, Cascio CJ. Brief Report: The Characterization of Medical Comorbidity Prior to Autism Diagnosis in Children Before Age Two. J Autism Dev Disord 2023; 53:2540-2547. [PMID: 34853956 PMCID: PMC9156724 DOI: 10.1007/s10803-021-05380-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/16/2021] [Indexed: 01/07/2023]
Abstract
In autism spectrum disorder (ASD), medical conditions in infancy could be predictive markers for later ASD diagnosis. In this study, electronic medical records of 579 autistic individuals and 1897 matched controls prior to age 2 were analyzed for potential predictive conditions. Using a novel tool, the relative association of each condition in the autistic group was compared to the control group using logistic regressions across medical records. Generalized convulsive epilepsy, nystagmus, lack of normal physiological development, delayed milestones, and strabismus were more likely in those later diagnosed with ASD while perinatal jaundice was less likely to be associated. Lesser-known conditions, such as strabismus and nystagmus, may point to novel predictive co-occurring condition profiles which could improve screening practices for ASD.
Collapse
Affiliation(s)
- Ekomobong E Eyoh
- Department of Psychiatry and Behavioral Science, Vanderbilt University Medical Center, Nashville, TN, USA.
- Institute of Child Development, University of Minnesota, 51 East River Rd, Minneapolis, MN, 55455, USA.
| | | | - Zachary J Williams
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA
- Frist Center for Autism and Innovation, Vanderbilt University, Nashville, TN, USA
- Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Kyle L Schwartz
- Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Laurie E Cutting
- Department of Special Education, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Kennedy Center, Vanderbilt University, Nashville, TN, USA
| | - Bennett A Landman
- Department of Psychiatry and Behavioral Science, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Kennedy Center, Vanderbilt University, Nashville, TN, USA
- Departments of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN, USA
| | - Carissa J Cascio
- Department of Psychiatry and Behavioral Science, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA
- Frist Center for Autism and Innovation, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Kennedy Center, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
2
|
Chi WY, Li YD, Huang HC, Chan TEH, Chow SY, Su JH, Ferrall L, Hung CF, Wu TC. COVID-19 vaccine update: vaccine effectiveness, SARS-CoV-2 variants, boosters, adverse effects, and immune correlates of protection. J Biomed Sci 2022; 29:82. [PMID: 36243868 PMCID: PMC9569411 DOI: 10.1186/s12929-022-00853-8] [Citation(s) in RCA: 114] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 09/01/2022] [Indexed: 12/23/2022] Open
Abstract
Coronavirus Disease 2019 (COVID-19) has been the most severe public health challenge in this century. Two years after its emergence, the rapid development and deployment of effective COVID-19 vaccines have successfully controlled this pandemic and greatly reduced the risk of severe illness and death associated with COVID-19. However, due to its ability to rapidly evolve, the SARS-CoV-2 virus may never be eradicated, and there are many important new topics to work on if we need to live with this virus for a long time. To this end, we hope to provide essential knowledge for researchers who work on the improvement of future COVID-19 vaccines. In this review, we provided an up-to-date summary for current COVID-19 vaccines, discussed the biological basis and clinical impact of SARS-CoV-2 variants and subvariants, and analyzed the effectiveness of various vaccine booster regimens against different SARS-CoV-2 strains. Additionally, we reviewed potential mechanisms of vaccine-induced severe adverse events, summarized current studies regarding immune correlates of protection, and finally, discussed the development of next-generation vaccines.
Collapse
Affiliation(s)
- Wei-Yu Chi
- Physiology, Biophysics and Systems Biology Graduate Program, Weill Cornell Medicine, New York, NY, USA
| | - Yen-Der Li
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
| | - Hsin-Che Huang
- Tri-Institutional PhD Program in Chemical Biology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Timothy En Haw Chan
- International Max Planck Research School for Immunobiology, Epigenetics and Metabolism (IMPRS-IEM), Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
- Department of Urology, Medical Center, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Sih-Yao Chow
- Downstream Process Science, EirGenix Inc., Zhubei, Hsinchu, Taiwan R.O.C
| | - Jun-Han Su
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
| | - Louise Ferrall
- Department of Pathology, Johns Hopkins University, Baltimore, MD, USA
| | - Chien-Fu Hung
- Department of Pathology, Johns Hopkins University, Baltimore, MD, USA
- Department of Oncology, Johns Hopkins University, Baltimore, MD, USA
- Department of Obstetrics and Gynecology, Johns Hopkins University, Baltimore, MD, USA
| | - T-C Wu
- Department of Pathology, Johns Hopkins University, Baltimore, MD, USA.
- Department of Oncology, Johns Hopkins University, Baltimore, MD, USA.
- Department of Obstetrics and Gynecology, Johns Hopkins University, Baltimore, MD, USA.
- Department of Microbiology and Immunology, Johns Hopkins University, Baltimore, MD, USA.
- The Johns Hopkins Medical Institutions, CRB II Room 309, 1550 Orleans St, MD, 21231, Baltimore, USA.
| |
Collapse
|
3
|
Fang L, Zhou L, Tamm M, Roth M. OM-85 Broncho-Vaxom ®, a Bacterial Lysate, Reduces SARS-CoV-2 Binding Proteins on Human Bronchial Epithelial Cells. Biomedicines 2021; 9:1544. [PMID: 34829773 PMCID: PMC8615539 DOI: 10.3390/biomedicines9111544] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 10/22/2021] [Accepted: 10/23/2021] [Indexed: 12/21/2022] Open
Abstract
In clinical studies, OM-85 Broncho-Vaxom®, a bacterial lysate, reduced viral respiratory tract infection. Infection of epithelial cells by SARS-CoV-2 depends on the interaction of its spike-protein (S-protein) with host cell membrane proteins. In this study, we investigated the effect of OM-85 on the expression of S-protein binding proteins by human bronchial epithelial cells. Human bronchial epithelial cells were treated with OM-85 over 5 days. The expression of SARS-CoV-2 receptor angiotensin converting enzyme 2 (ACE2), transmembrane protease serine subtype 2 (TMPRSS2), dipeptidyl peptidase-4 (DPP4), and a disintegrin and metalloprotease 17 (ADAM17) were determined by Western blotting and quantitative RT-PCR. Soluble (s)ACE2, heparan sulfate, heparanase, and hyaluronic acid were assessed by ELISA. OM-85 significantly reduced the expression of ACE2 (p < 0.001), TMPRSS2 (p < 0.001), DPP4 (p < 0.005), and cellular heparan sulfate (p < 0.01), while ADAM17 (p < 0.02) expression was significantly upregulated. Furthermore, OM-85 increased the level of sACE2 (p < 0.05), hyaluronic acid (p < 0.002), and hyaluronan synthase 1 (p < 0.01). Consequently, the infection by a SARS-CoV-2 spike protein pseudo-typed lentivirus was reduced in cells pretreated with OM-85. All effects of OM-85 were concentration- and time-dependent. The results suggest that OM-85 might reduce the binding of SARS-CoV-2 S-protein to epithelial cells by modification of host cell membrane proteins and specific glycosaminoglycans. Thus, OM-85 might be considered as an add-on for COVID-19 therapy.
Collapse
Affiliation(s)
- Lei Fang
- Pulmonary Cell Research, Department of Biomedicine & Internal Medicine, University Hospital Basel, CH-4031 Basel, Switzerland
| | - Liang Zhou
- Pulmonary Cell Research, Department of Biomedicine & Internal Medicine, University Hospital Basel, CH-4031 Basel, Switzerland
| | - Michael Tamm
- Pulmonary Cell Research, Department of Biomedicine & Internal Medicine, University Hospital Basel, CH-4031 Basel, Switzerland
| | - Michael Roth
- Pulmonary Cell Research, Department of Biomedicine & Internal Medicine, University Hospital Basel, CH-4031 Basel, Switzerland
| |
Collapse
|
4
|
Affiliation(s)
- Sophie Caillard
- Department of Nephrology and Transplantation, University Hospitals of Strasbourg, INSERM Unit 1109, Strasbourg, France.
| | - Olivier Thaunat
- Department of Transplantation Nephrology and Clinical Immunology Hospices Civils de Lyon, Claude Bernard Lyon I University, INSERM Unit 1111, Lyon, France.
| |
Collapse
|