1
|
Shen HC, Chen CC, Chen WC, Yu WK, Yang KY, Chen YM. Association of Late Radiographic Assessment of Lung Edema Score with Clinical Outcome in Patients with Influenza-Associated Acute Respiratory Distress Syndrome. Diagnostics (Basel) 2023; 13:3572. [PMID: 38066813 PMCID: PMC10706585 DOI: 10.3390/diagnostics13233572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 11/24/2023] [Accepted: 11/28/2023] [Indexed: 10/16/2024] Open
Abstract
Background: Influenza virus infection leads to acute pulmonary injury and acute respiratory distress syndrome (ARDS). The Radiographic Assessment of Lung Edema (RALE) score has been proposed as a reliable tool for the evaluation of the opacity of chest X-rays (CXRs). This study aimed to examine the RALE scores and outcomes in patients with influenza-associated ARDS. Methods: Patients who were newly diagnosed with influenza-associated ARDS from December 2015 to March 2016 were enrolled. Two independent reviewers scored the CXRs obtained on the day of ICU admission and on days 2 and 7 after intensive care unit (ICU) admission. Results: During the study, 47 patients had influenza-associated ARDS. Five died within 7 days of ICU admission. Of the remaining 42, non-survivors (N = 12) had higher Sequential Organ Failure Assessment scores (SOFA) at ICU admission and higher day 7 RALE scores than survivors (N = 30). The day 7 RALE score independently related to late in-hospital mortality (aOR = 1.121, 95% CI: 1.014-1.240, p = 0.025). Conclusions: The RALE score for the evaluation of opacity on CXRs is a highly reproducible tool. Moreover, RALE score on day 7 was an independent predictor of late in-hospital mortality in patients with influenza-associated ARDS.
Collapse
Affiliation(s)
- Hsiao-Chin Shen
- Department of Chest Medicine, Taipei Veterans General Hospital, Taipei 112, Taiwan; (H.-C.S.)
- Department of Medical Education, Taipei Veterans General Hospital, Taipei 112, Taiwan
| | - Chun-Chia Chen
- Department of Chest Medicine, Taipei Veterans General Hospital, Taipei 112, Taiwan; (H.-C.S.)
| | - Wei-Chih Chen
- Department of Chest Medicine, Taipei Veterans General Hospital, Taipei 112, Taiwan; (H.-C.S.)
- Faculty of Medicine, School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- Institute of Emergency and Critical Care Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Wen-Kuang Yu
- Department of Chest Medicine, Taipei Veterans General Hospital, Taipei 112, Taiwan; (H.-C.S.)
- Faculty of Medicine, School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Kuang-Yao Yang
- Department of Chest Medicine, Taipei Veterans General Hospital, Taipei 112, Taiwan; (H.-C.S.)
- Faculty of Medicine, School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- Institute of Emergency and Critical Care Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- Cancer Progression Research Center, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Yuh-Min Chen
- Department of Chest Medicine, Taipei Veterans General Hospital, Taipei 112, Taiwan; (H.-C.S.)
- Faculty of Medicine, School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| |
Collapse
|
2
|
Filippini DFL, Hagens LA, Heijnen NFL, Zimatore C, Atmowihardjo LN, Schnabel RM, Schultz MJ, Bergmans DCJJ, Bos LDJ, Smit MR. Prognostic Value of the Radiographic Assessment of Lung Edema Score in Mechanically Ventilated ICU Patients. J Clin Med 2023; 12:jcm12041252. [PMID: 36835791 PMCID: PMC9960783 DOI: 10.3390/jcm12041252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/19/2023] [Accepted: 01/31/2023] [Indexed: 02/09/2023] Open
Abstract
INTRODUCTION The Radiographic Assessment of Lung Edema (RALE) score provides a semi-quantitative measure of pulmonary edema. In patients with acute respiratory distress syndrome (ARDS), the RALE score is associated with mortality. In mechanically ventilated patients in the intensive care unit (ICU) with respiratory failure not due to ARDS, a variable degree of lung edema is observed as well. We aimed to evaluate the prognostic value of RALE in mechanically ventilated ICU patients. METHODS Secondary analysis of patients enrolled in the 'Diagnosis of Acute Respiratory Distress Syndrome' (DARTS) project with an available chest X-ray (CXR) at baseline. Where present, additional CXRs at day 1 were analysed. The primary endpoint was 30-day mortality. Outcomes were also stratified for ARDS subgroups (no ARDS, non-COVID-ARDS and COVID-ARDS). RESULTS 422 patients were included, of which 84 had an additional CXR the following day. Baseline RALE scores were not associated with 30-day mortality in the entire cohort (OR: 1.01, 95% CI: 0.98-1.03, p = 0.66), nor in subgroups of ARDS patients. Early changes in RALE score (baseline to day 1) were only associated with mortality in a subgroup of ARDS patients (OR: 1.21, 95% CI: 1.02-1.51, p = 0.04), after correcting for other known prognostic factors. CONCLUSIONS The prognostic value of the RALE score cannot be extended to mechanically ventilated ICU patients in general. Only in ARDS patients, early changes in RALE score were associated with mortality.
Collapse
Affiliation(s)
- Daan F. L. Filippini
- Department of Intensive Care, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
- Correspondence:
| | - Laura A. Hagens
- Department of Intensive Care, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Nanon F. L. Heijnen
- Department of Intensive Care, Maastricht UMC+, Maastricht University, 6229 HX Maastricht, The Netherlands
- School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Claudio Zimatore
- Department of Intensive Care, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
- Department of Emergency and Organ Transplantation, University of Bari Aldo Moro, 70124 Bari, Italy
| | - Leila N. Atmowihardjo
- Department of Intensive Care, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Ronny M. Schnabel
- Department of Intensive Care, Maastricht UMC+, Maastricht University, 6229 HX Maastricht, The Netherlands
| | - Marcus J. Schultz
- Department of Intensive Care, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
- Mahidol Oxford Tropical Medicine Research Unit (MORU), Mahidol University, Bangkok 10400, Thailand
- Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, UK
- Department of Research and Development, Hamilton Medical AG, 7402 Bonaduz, Switzerland
| | - Dennis C. J. J. Bergmans
- Department of Intensive Care, Maastricht UMC+, Maastricht University, 6229 HX Maastricht, The Netherlands
- School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Lieuwe D. J. Bos
- Department of Intensive Care, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
- Department of Pulmonology, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
- Laboratory of Experimental Intensive Care and Anesthesiology (L.E.I.C.A.), University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Marry R. Smit
- Department of Intensive Care, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| |
Collapse
|
3
|
Lu M, Drohan C, Bain W, Shah FA, Bittner M, Evankovich J, Prendergast N, Hensley M, Suber T, Fitzpatrick M, Ramanan R, Murray H, Schaefer C, Qin S, Wang X, Zhang Y, Nouraie SM, Gentry H, Kessinger C, Patel A, Macatangay BJ, Jacobs J, Mellors J, Lee JS, Ray P, Ray A, Methé B, Morris A, McVerry BJ, Kitsios GD. Trajectories of host-response biomarkers and inflammatory subphenotypes in COVID-19 patients across the spectrum of respiratory support. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2022:2022.11.28.22282858. [PMID: 36482978 PMCID: PMC9727768 DOI: 10.1101/2022.11.28.22282858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Purpose Enhanced understanding of the dynamic changes in the dysregulated inflammatory response in COVID-19 may help improve patient selection and timing for immunomodulatory therapies. Methods We enrolled 323 COVID-19 inpatients on different levels of baseline respiratory support: i) Low Flow Oxygen (37%), ii) Non-Invasive Ventilation or High Flow Oxygen (NIV_HFO, 29%), iii) Invasive Mechanical Ventilation (IMV, 27%), and iv) Extracorporeal Membrane Oxygenation (ECMO, 7%). We collected plasma samples upon enrollment and days 5 and 10 to measure host-response biomarkers. We classified subjects into inflammatory subphenotypes using two validated predictive models. We examined clinical, biomarker and subphenotype trajectories and outcomes during hospitalization. Results IL-6, procalcitonin, and Angiopoietin-2 were persistently elevated in patients at higher levels of respiratory support, whereas sRAGE displayed the inverse pattern. Patients on NIV_HFO at baseline had the most dynamic clinical trajectory, with 26% eventually requiring intubation and exhibiting worse 60-day mortality than IMV patients at baseline (67% vs. 35%, p<0.0001). sRAGE levels predicted NIV failure and worse 60-day mortality for NIV_HFO patients, whereas IL-6 levels were predictive in IMV or ECMO patients. Hyper-inflammatory subjects at baseline (<10% by both models) had worse 60-day survival (p<0.0001) and 50% of them remained classified as hyper-inflammatory on follow-up sampling at 5 days post-enrollment. Receipt of combined immunomodulatory therapies (steroids and anti-IL6 agents) was associated with markedly increased IL-6 and lower Angiopoietin-2 levels (p<0.05). Conclusions Longitudinal study of systemic host responses in COVID-19 revealed substantial and predictive inter-individual variability, influenced by baseline levels of respiratory support and concurrent immunomodulatory therapies.
Collapse
Affiliation(s)
- Michael Lu
- Internal Medicine Residency Program, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Callie Drohan
- Internal Medicine Residency Program, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - William Bain
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, PA, USA
| | - Faraaz A Shah
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, PA, USA
| | - Matthew Bittner
- Internal Medicine Residency Program, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - John Evankovich
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, PA, USA
| | - Niall Prendergast
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Matthew Hensley
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Tomeka Suber
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, PA, USA
| | - Meghan Fitzpatrick
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, PA, USA
| | - Raj Ramanan
- Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Holt Murray
- Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Caitlin Schaefer
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, PA, USA
| | - Shulin Qin
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Medicine and the Microbiome, University of Pittsburgh, Pittsburgh, PA, USA
| | - Xiaohong Wang
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Medicine and the Microbiome, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yingze Zhang
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, PA, USA
| | - Seyed M Nouraie
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, PA, USA
| | - Heather Gentry
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Cathy Kessinger
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Asha Patel
- Center for Medicine and the Microbiome, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Jana Jacobs
- Division of Infectious Diseases, University of Pittsburgh, Pittsburgh, PA, USA
| | - John Mellors
- Division of Infectious Diseases, University of Pittsburgh, Pittsburgh, PA, USA
| | - Janet S Lee
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, PA, USA
| | - Prabir Ray
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, PA, USA
| | - Anuradha Ray
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, PA, USA
| | - Barbara Methé
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Medicine and the Microbiome, University of Pittsburgh, Pittsburgh, PA, USA
| | - Alison Morris
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Medicine and the Microbiome, University of Pittsburgh, Pittsburgh, PA, USA
| | - Bryan J McVerry
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Medicine and the Microbiome, University of Pittsburgh, Pittsburgh, PA, USA
| | - Georgios D Kitsios
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Medicine and the Microbiome, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
4
|
Luo C, Du J, Cuker A, Lautenbach E, Asch DA, Poland GA, Tao C, Chen Y. Comparability of clinical trials and spontaneous reporting data regarding COVID-19 vaccine safety. Sci Rep 2022; 12:10946. [PMID: 35768434 PMCID: PMC9243073 DOI: 10.1038/s41598-022-13809-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 05/27/2022] [Indexed: 11/09/2022] Open
Abstract
Severe adverse events (AEs) after COVID-19 vaccination are not well studied in randomized controlled trials (RCTs) due to rarity and short follow-up. To monitor the safety of COVID-19 vaccines ("Pfizer" vaccine dose 1 and 2, "Moderna" vaccine dose 1 and 2, and "Janssen" vaccine single dose) in the U.S., especially regarding severe AEs, we compare the relative rankings of these vaccines using both RCT and the Vaccine Adverse Event Reporting System (VAERS) data. The risks of local and systemic AEs were assessed from the three pivotal COVID-19 vaccine trials and also calculated in the VAERS cohort consisting of 559,717 reports between December 14, 2020 and September 17, 2021. AE rankings of the five vaccine groups calculated separately by RCT and VAERS were consistent, especially for systemic AEs. For severe AEs reported in VAERS, the reported risks of thrombosis and GBS after Janssen vaccine were highest. The reported risk of shingles after the first dose of Moderna vaccine was highest, followed by the second dose of the Moderna vaccine. The reported risk of myocarditis was higher after the second dose of Pfizer and Moderna vaccines. The reported risk of anaphylaxis was higher after the first dose of Pfizer vaccine. Limitations of this study are the inherent biases of the spontaneous reporting system data, and only including three pivotal RCTs and no comparison with other active vaccine safety surveillance systems.
Collapse
Affiliation(s)
- Chongliang Luo
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Division of Public Health Sciences, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Jingcheng Du
- School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Adam Cuker
- Department of Medicine and Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ebbing Lautenbach
- Division of Infectious Diseases, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Center for Clinical Epidemiology and Biostatistics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - David A Asch
- Division of General Internal Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Leonard Davis Institute of Health Economics, Philadelphia, PA, USA
| | - Gregory A Poland
- Mayo Clinic Vaccine Research Group, Mayo Clinic, Rochester, MN, USA
| | - Cui Tao
- School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Yong Chen
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Leonard Davis Institute of Health Economics, Philadelphia, PA, USA.
| |
Collapse
|