1
|
Badet T, Tralamazza SM, Feurtey A, Croll D. Recent reactivation of a pathogenicity-associated transposable element is associated with major chromosomal rearrangements in a fungal wheat pathogen. Nucleic Acids Res 2024; 52:1226-1242. [PMID: 38142443 PMCID: PMC10853768 DOI: 10.1093/nar/gkad1214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 11/30/2023] [Accepted: 12/11/2023] [Indexed: 12/26/2023] Open
Abstract
Transposable elements (TEs) are key drivers of genomic variation contributing to recent adaptation in most species. Yet, the evolutionary origins and insertion dynamics within species remain poorly understood. We recapitulate the spread of the pathogenicity-associated Styx element across five species that last diverged ∼11 000 years ago. We show that the element likely originated in the Zymoseptoria fungal pathogen genus and underwent multiple independent reactivation events. Using a global 900-genome panel of the wheat pathogen Zymoseptoria tritici, we assess Styx copy number variation and identify renewed transposition activity in Oceania and South America. We show that the element can mobilize to create additional Styx copies in a four-generation pedigree. Importantly, we find that new copies of the element are not affected by genomic defenses suggesting minimal control against the element. Styx copies are preferentially located in recombination breakpoints and likely triggered multiple types of large chromosomal rearrangements. Taken together, we establish the origin, diversification and reactivation of a highly active TE with likely major consequences for chromosomal integrity and the expression of disease.
Collapse
Affiliation(s)
- Thomas Badet
- Laboratory of Evolutionary Genetics, Institute of Biology, University of Neuchâtel, CH-2000 Neuchâtel, Switzerland
| | - Sabina Moser Tralamazza
- Laboratory of Evolutionary Genetics, Institute of Biology, University of Neuchâtel, CH-2000 Neuchâtel, Switzerland
| | - Alice Feurtey
- Laboratory of Evolutionary Genetics, Institute of Biology, University of Neuchâtel, CH-2000 Neuchâtel, Switzerland
- Plant Pathology, D-USYS, ETH Zurich, CH-8092 Zurich, Switzerland
| | - Daniel Croll
- Laboratory of Evolutionary Genetics, Institute of Biology, University of Neuchâtel, CH-2000 Neuchâtel, Switzerland
| |
Collapse
|
2
|
Koonin EV, Gootenberg JS, Abudayyeh OO. Discovery of Diverse CRISPR-Cas Systems and Expansion of the Genome Engineering Toolbox. Biochemistry 2023; 62:3465-3487. [PMID: 37192099 PMCID: PMC10734277 DOI: 10.1021/acs.biochem.3c00159] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/23/2023] [Indexed: 05/18/2023]
Abstract
CRISPR systems mediate adaptive immunity in bacteria and archaea through diverse effector mechanisms and have been repurposed for versatile applications in therapeutics and diagnostics thanks to their facile reprogramming with RNA guides. RNA-guided CRISPR-Cas targeting and interference are mediated by effectors that are either components of multisubunit complexes in class 1 systems or multidomain single-effector proteins in class 2. The compact class 2 CRISPR systems have been broadly adopted for multiple applications, especially genome editing, leading to a transformation of the molecular biology and biotechnology toolkit. The diversity of class 2 effector enzymes, initially limited to the Cas9 nuclease, was substantially expanded via computational genome and metagenome mining to include numerous variants of Cas12 and Cas13, providing substrates for the development of versatile, orthogonal molecular tools. Characterization of these diverse CRISPR effectors uncovered many new features, including distinct protospacer adjacent motifs (PAMs) that expand the targeting space, improved editing specificity, RNA rather than DNA targeting, smaller crRNAs, staggered and blunt end cuts, miniature enzymes, promiscuous RNA and DNA cleavage, etc. These unique properties enabled multiple applications, such as harnessing the promiscuous RNase activity of the type VI effector, Cas13, for supersensitive nucleic acid detection. class 1 CRISPR systems have been adopted for genome editing, as well, despite the challenge of expressing and delivering the multiprotein class 1 effectors. The rich diversity of CRISPR enzymes led to rapid maturation of the genome editing toolbox, with capabilities such as gene knockout, base editing, prime editing, gene insertion, DNA imaging, epigenetic modulation, transcriptional modulation, and RNA editing. Combined with rational design and engineering of the effector proteins and associated RNAs, the natural diversity of CRISPR and related bacterial RNA-guided systems provides a vast resource for expanding the repertoire of tools for molecular biology and biotechnology.
Collapse
Affiliation(s)
- Eugene V. Koonin
- National
Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894, United States
| | - Jonathan S. Gootenberg
- McGovern
Institute for Brain Research at MIT, Massachusetts
Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Omar O. Abudayyeh
- McGovern
Institute for Brain Research at MIT, Massachusetts
Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
3
|
Altae-Tran H, Shmakov SA, Makarova KS, Wolf YI, Kannan S, Zhang F, Koonin EV. Diversity, evolution, and classification of the RNA-guided nucleases TnpB and Cas12. Proc Natl Acad Sci U S A 2023; 120:e2308224120. [PMID: 37983496 PMCID: PMC10691335 DOI: 10.1073/pnas.2308224120] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 09/19/2023] [Indexed: 11/22/2023] Open
Abstract
The TnpB proteins are transposon-associated RNA-guided nucleases that are among the most abundant proteins encoded in bacterial and archaeal genomes, but whose functions in the transposon life cycle remain unknown. TnpB appears to be the evolutionary ancestor of Cas12, the effector nuclease of type V CRISPR-Cas systems. We performed a comprehensive census of TnpBs in archaeal and bacterial genomes and constructed a phylogenetic tree on which we mapped various features of these proteins. In multiple branches of the tree, the catalytic site of the TnpB nuclease is rearranged, demonstrating structural and probably biochemical malleability of this enzyme. We identified numerous cases of apparent recruitment of TnpB for other functions of which the most common is the evolution of type V CRISPR-Cas effectors on about 50 independent occasions. In many other cases of more radical exaptation, the catalytic site of the TnpB nuclease is apparently inactivated, suggesting a regulatory function, whereas in others, the activity appears to be retained, indicating that the recruited TnpB functions as a nuclease, for example, as a toxin. These findings demonstrate remarkable evolutionary malleability of the TnpB scaffold and provide extensive opportunities for further exploration of RNA-guided biological systems as well as multiple applications.
Collapse
Affiliation(s)
- Han Altae-Tran
- HHMI, Cambridge, MA02139
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA02142
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Brain and Cognitive Science, Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Sergey A. Shmakov
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, MD20894
| | - Kira S. Makarova
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, MD20894
| | - Yuri I. Wolf
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, MD20894
| | - Soumya Kannan
- HHMI, Cambridge, MA02139
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA02142
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Brain and Cognitive Science, Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Feng Zhang
- HHMI, Cambridge, MA02139
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA02142
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Brain and Cognitive Science, Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Eugene V. Koonin
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, MD20894
| |
Collapse
|
4
|
Jiang K, Lim J, Sgrizzi S, Trinh M, Kayabolen A, Yutin N, Bao W, Kato K, Koonin EV, Gootenberg JS, Abudayyeh OO. Programmable RNA-guided DNA endonucleases are widespread in eukaryotes and their viruses. SCIENCE ADVANCES 2023; 9:eadk0171. [PMID: 37756409 PMCID: PMC10530073 DOI: 10.1126/sciadv.adk0171] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 08/24/2023] [Indexed: 09/29/2023]
Abstract
Programmable RNA-guided DNA nucleases perform numerous roles in prokaryotes, but the extent of their spread outside prokaryotes is unclear. Fanzors, the eukaryotic homolog of prokaryotic TnpB proteins, have been detected in genomes of eukaryotes and large viruses, but their activity and functions in eukaryotes remain unknown. Here, we characterize Fanzors as RNA-programmable DNA endonucleases, using biochemical and cellular evidence. We found diverse Fanzors that frequently associate with various eukaryotic transposases. Reconstruction of Fanzors evolution revealed multiple radiations of RuvC-containing TnpB homologs in eukaryotes. Fanzor genes captured introns and proteins acquired nuclear localization signals, indicating extensive, long-term adaptation to functioning in eukaryotic cells. Fanzor nucleases contain a rearranged catalytic site of the RuvC domain, similar to a distinct subset of TnpBs, and lack collateral cleavage activity. We demonstrate that Fanzors can be harnessed for genome editing in human cells, highlighting the potential of these widespread eukaryotic RNA-guided nucleases for biotechnology applications.
Collapse
Affiliation(s)
- Kaiyi Jiang
- McGovern Institute for Brain Research at MIT Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Justin Lim
- McGovern Institute for Brain Research at MIT Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Samantha Sgrizzi
- McGovern Institute for Brain Research at MIT Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Michael Trinh
- McGovern Institute for Brain Research at MIT Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Alisan Kayabolen
- McGovern Institute for Brain Research at MIT Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Natalya Yutin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Weidong Bao
- Genetic Information Research Institute, 20380 Town Center Ln, Suite 240, Cupertino, CA, USA
| | - Kazuki Kato
- Structural Biology Division, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo 153-8904, Japan
- Department of Molecular and Mechanistic Immunology, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Eugene V. Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Jonathan S. Gootenberg
- McGovern Institute for Brain Research at MIT Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Omar O. Abudayyeh
- McGovern Institute for Brain Research at MIT Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
5
|
Yoon PH, Skopintsev P, Shi H, Chen LX, Adler BA, Al-Shimary M, Craig RJ, Li Z, Amerasekera J, Trinidad M, Nisonoff H, Chen K, Lahiri A, Boger R, Jacobsen S, Banfield JF, Doudna JA. Eukaryotic RNA-guided endonucleases evolved from a unique clade of bacterial enzymes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.09.552727. [PMID: 37609353 PMCID: PMC10441404 DOI: 10.1101/2023.08.09.552727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
RNA-guided endonucleases form the crux of diverse biological processes and technologies, including adaptive immunity, transposition, and genome editing. Some of these enzymes are components of insertion sequences (IS) in the IS200/IS605 and IS607 transposon families. Both IS families encode a TnpA transposase and TnpB nuclease, an RNA-guided enzyme ancestral to CRISPR-Cas12. In eukaryotes and their viruses, TnpB homologs occur as two distinct types, Fanzor1 and Fanzor2. We analyzed the evolutionary relationships between prokaryotic TnpBs and eukaryotic Fanzors, revealing that a clade of IS607 TnpBs with unusual active site arrangement found primarily in Cyanobacteriota likely gave rise to both types of Fanzors. The wide-spread nature of Fanzors imply that the properties of this particular group of IS607 TnpBs were particularly suited to adaptation and evolution in eukaryotes and their viruses. Experimental characterization of a prokaryotic IS607 TnpB and virally encoded Fanzor1s uncovered features that may have fostered coevolution between TnpBs/Fanzors and their cognate transposases. Our results provide insight into the evolutionary origins of a ubiquitous family of RNA-guided proteins that shows remarkable conservation across domains of life.
Collapse
|
6
|
Saito M, Xu P, Faure G, Maguire S, Kannan S, Altae-Tran H, Vo S, Desimone A, Macrae RK, Zhang F. Fanzor is a eukaryotic programmable RNA-guided endonuclease. Nature 2023; 620:660-668. [PMID: 37380027 PMCID: PMC10432273 DOI: 10.1038/s41586-023-06356-2] [Citation(s) in RCA: 89] [Impact Index Per Article: 44.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 06/20/2023] [Indexed: 06/30/2023]
Abstract
RNA-guided systems, which use complementarity between a guide RNA and target nucleic acid sequences for recognition of genetic elements, have a central role in biological processes in both prokaryotes and eukaryotes. For example, the prokaryotic CRISPR-Cas systems provide adaptive immunity for bacteria and archaea against foreign genetic elements. Cas effectors such as Cas9 and Cas12 perform guide-RNA-dependent DNA cleavage1. Although a few eukaryotic RNA-guided systems have been studied, including RNA interference2 and ribosomal RNA modification3, it remains unclear whether eukaryotes have RNA-guided endonucleases. Recently, a new class of prokaryotic RNA-guided systems (termed OMEGA) was reported4,5. The OMEGA effector TnpB is the putative ancestor of Cas12 and has RNA-guided endonuclease activity4,6. TnpB may also be the ancestor of the eukaryotic transposon-encoded Fanzor (Fz) proteins4,7, raising the possibility that eukaryotes are also equipped with CRISPR-Cas or OMEGA-like programmable RNA-guided endonucleases. Here we report the biochemical characterization of Fz, showing that it is an RNA-guided DNA endonuclease. We also show that Fz can be reprogrammed for human genome engineering applications. Finally, we resolve the structure of Spizellomyces punctatus Fz at 2.7 Å using cryogenic electron microscopy, showing the conservation of core regions among Fz, TnpB and Cas12, despite diverse cognate RNA structures. Our results show that Fz is a eukaryotic OMEGA system, demonstrating that RNA-guided endonucleases are present in all three domains of life.
Collapse
Affiliation(s)
- Makoto Saito
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- McGovern Institute for Brain Research at MIT, Cambridge, MA, USA
- Department of Brain and Cognitive Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Howard Hughes Medical Institute, Cambridge, MA, USA
| | - Peiyu Xu
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- McGovern Institute for Brain Research at MIT, Cambridge, MA, USA
- Department of Brain and Cognitive Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Howard Hughes Medical Institute, Cambridge, MA, USA
| | - Guilhem Faure
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- McGovern Institute for Brain Research at MIT, Cambridge, MA, USA
- Department of Brain and Cognitive Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Howard Hughes Medical Institute, Cambridge, MA, USA
| | - Samantha Maguire
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- McGovern Institute for Brain Research at MIT, Cambridge, MA, USA
- Department of Brain and Cognitive Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Howard Hughes Medical Institute, Cambridge, MA, USA
| | - Soumya Kannan
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- McGovern Institute for Brain Research at MIT, Cambridge, MA, USA
- Department of Brain and Cognitive Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Howard Hughes Medical Institute, Cambridge, MA, USA
| | - Han Altae-Tran
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- McGovern Institute for Brain Research at MIT, Cambridge, MA, USA
- Department of Brain and Cognitive Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Howard Hughes Medical Institute, Cambridge, MA, USA
| | - Sam Vo
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- McGovern Institute for Brain Research at MIT, Cambridge, MA, USA
- Department of Brain and Cognitive Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Howard Hughes Medical Institute, Cambridge, MA, USA
| | - AnAn Desimone
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- McGovern Institute for Brain Research at MIT, Cambridge, MA, USA
- Department of Brain and Cognitive Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Howard Hughes Medical Institute, Cambridge, MA, USA
| | - Rhiannon K Macrae
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- McGovern Institute for Brain Research at MIT, Cambridge, MA, USA
- Department of Brain and Cognitive Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Howard Hughes Medical Institute, Cambridge, MA, USA
| | - Feng Zhang
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- McGovern Institute for Brain Research at MIT, Cambridge, MA, USA.
- Department of Brain and Cognitive Science, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Howard Hughes Medical Institute, Cambridge, MA, USA.
| |
Collapse
|
7
|
Karvelis T, Siksnys V. Fanzors: Mysterious TnpB-Like Bacterial Transposon-Related RNA-Guided DNA Nucleases of Eukaryotes. CRISPR J 2023; 6:310-312. [PMID: 37594268 DOI: 10.1089/crispr.2023.29164.tka] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2023] Open
Affiliation(s)
- Tautvydas Karvelis
- Department of Protein - DNA Interactions, Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Virginijus Siksnys
- Department of Protein - DNA Interactions, Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| |
Collapse
|
8
|
Jiang K, Lim J, Sgrizzi S, Trinh M, Kayabolen A, Yutin N, Koonin EV, Abudayyeh OO, Gootenberg JS. Programmable RNA-guided endonucleases are widespread in eukaryotes and their viruses. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.13.544871. [PMID: 37398409 PMCID: PMC10312701 DOI: 10.1101/2023.06.13.544871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
TnpB proteins are RNA-guided nucleases that are broadly associated with IS200/605 family transposons in prokaryotes. TnpB homologs, named Fanzors, have been detected in genomes of some eukaryotes and large viruses, but their activity and functions in eukaryotes remain unknown. We searched genomes of diverse eukaryotes and their viruses for TnpB homologs and identified numerous putative RNA-guided nucleases that are often associated with various transposases, suggesting they are encoded in mobile genetic elements. Reconstruction of the evolution of these nucleases, which we rename Horizontally-transferred Eukaryotic RNA-guided Mobile Element Systems (HERMES), revealed multiple acquisitions of TnpBs by eukaryotes and subsequent diversification. In their adaptation and spread in eukaryotes, HERMES proteins acquired nuclear localization signals, and genes captured introns, indicating extensive, long term adaptation to functioning in eukaryotic cells. Biochemical and cellular evidence show that HERMES employ non-coding RNAs encoded adjacent to the nuclease for RNA-guided cleavage of double-stranded DNA. HERMES nucleases contain a re-arranged catalytic site of the RuvC domain, similar to a distinct subset of TnpBs, and lack collateral cleavage activity. We demonstrate that HERMES can be harnessed for genome editing in human cells, highlighting the potential of these widespread eukaryotic RNA-guided nucleases for biotechnology applications.
Collapse
Affiliation(s)
- Kaiyi Jiang
- McGovern Institute for Brain Research at MIT, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Justin Lim
- McGovern Institute for Brain Research at MIT, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Samantha Sgrizzi
- McGovern Institute for Brain Research at MIT, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Michael Trinh
- McGovern Institute for Brain Research at MIT, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Alisan Kayabolen
- McGovern Institute for Brain Research at MIT, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Natalya Yutin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Eugene V. Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Omar O. Abudayyeh
- McGovern Institute for Brain Research at MIT, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Jonathan S. Gootenberg
- McGovern Institute for Brain Research at MIT, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|