1
|
Do AN, Ali M, Timsina J, Wang L, Western D, Liu M, Sanford J, Rosende-Roca M, Boada M, Puerta R, Wilson T, Ruiz A, Pastor P, Wyss-Coray T, Cruchaga C, Sung YJ. CSF proteomic profiling with amyloid/tau positivity identifies distinctive sex-different alteration of multiple proteins involved in Alzheimer's disease. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.03.15.24304164. [PMID: 38559166 PMCID: PMC10980123 DOI: 10.1101/2024.03.15.24304164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
In Alzheimer's disease (AD), the most common cause of dementia, females have higher prevalence and faster progression, but sex-specific molecular findings in AD are limited. Here, we comprehensively examined and validated 7,006 aptamers targeting 6,162 proteins in cerebral spinal fluid (CSF) from 2,077 amyloid/tau positive cases and controls to identify sex-specific proteomic signatures of AD. In discovery (N=1,766), we identified 330 male-specific and 121 female-specific proteomic alternations in CSF (FDR <0.05). These sex-specific proteins strongly predicted amyloid/tau positivity (AUC=0.98 in males; 0.99 in females), significantly higher than those with age, sex, and APOE-ε4 (AUC=0.85). The identified sex-specific proteins were well validated (r≥0.5) in the Stanford study (N=108) and Emory study (N=148). Biological follow-up of these proteins led to sex differences in cell-type specificity, pathways, interaction networks, and drug targets. Male-specific proteins, enriched in astrocytes and oligodendrocytes, were involved in postsynaptic and axon-genesis. The male network exhibited direct connections among 152 proteins and highlighted PTEN, NOTCH1, FYN, and MAPK8 as hubs. Drug target suggested melatonin (used for sleep-wake cycle regulation), nabumetone (used for pain), daunorubicin, and verteporfin for treating AD males. In contrast, female-specific proteins, enriched in neurons, were involved in phosphoserine residue binding including cytokine activities. The female network exhibits strong connections among 51 proteins and highlighted JUN and 14-3-3 proteins (YWHAG and YWHAZ) as hubs. Drug target suggested biperiden (for muscle control of Parkinson's disease), nimodipine (for cerebral vasospasm), quinostatin and ethaverine for treating AD females. Together, our findings provide mechanistic understanding of sex differences for AD risk and insights into clinically translatable interventions.
Collapse
Affiliation(s)
- Anh N Do
- Division of Biostatistics, Washington University School of Medicine, St. Louis, MO, USA
- NeuroGenomics and Informatics Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Muhammad Ali
- NeuroGenomics and Informatics Center, Washington University School of Medicine, St. Louis, MO, USA
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | - Jigyasha Timsina
- NeuroGenomics and Informatics Center, Washington University School of Medicine, St. Louis, MO, USA
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | - Lihua Wang
- NeuroGenomics and Informatics Center, Washington University School of Medicine, St. Louis, MO, USA
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | - Daniel Western
- NeuroGenomics and Informatics Center, Washington University School of Medicine, St. Louis, MO, USA
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | - Menghan Liu
- NeuroGenomics and Informatics Center, Washington University School of Medicine, St. Louis, MO, USA
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | - Jessie Sanford
- NeuroGenomics and Informatics Center, Washington University School of Medicine, St. Louis, MO, USA
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | - Matitee Rosende-Roca
- Research Center and Memory clinic Fundació ACE. Institut Català de Neurociències Aplicades, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Merce Boada
- Research Center and Memory clinic Fundació ACE. Institut Català de Neurociències Aplicades, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Raquel Puerta
- Research Center and Memory clinic Fundació ACE. Institut Català de Neurociències Aplicades, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Ted Wilson
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
| | - Agustin Ruiz
- Research Center and Memory clinic Fundació ACE. Institut Català de Neurociències Aplicades, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Pau Pastor
- Memory Disorders Unit, Department of Neurology, University Hospital Mutua Terrassa, Terrassa, Spain
| | - Tony Wyss-Coray
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
| | - Carlos Cruchaga
- NeuroGenomics and Informatics Center, Washington University School of Medicine, St. Louis, MO, USA
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
- Hope Center for Neurologic Diseases, Washington University in St. Louis, St. Louis, MO, USA
| | - Yun Ju Sung
- Division of Biostatistics, Washington University School of Medicine, St. Louis, MO, USA
- NeuroGenomics and Informatics Center, Washington University School of Medicine, St. Louis, MO, USA
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
2
|
Padrela B, Mahroo A, Tee M, Sneve MH, Moyaert P, Geier O, Kuijer JPA, Beun S, Nordhøy W, Zhu YD, Buck MA, Hoinkiss DC, Konstandin S, Huber J, Wiersinga J, Rikken R, de Leeuw D, Grydeland H, Tippett L, Cawston EE, Ozturk-Isik E, Linn J, Brandt M, Tijms BM, van de Giessen EM, Muller M, Fjell A, Walhovd K, Bjørnerud A, Pålhaugen L, Selnes P, Clement P, Achten E, Anazodo U, Barkhof F, Hilal S, Fladby T, Eickel K, Morgan C, Thomas DL, Petr J, Günther M, Mutsaerts HJMM. Developing blood-brain barrier arterial spin labelling as a non-invasive early biomarker of Alzheimer's disease (DEBBIE-AD): a prospective observational multicohort study protocol. BMJ Open 2024; 14:e081635. [PMID: 38458785 PMCID: PMC10928768 DOI: 10.1136/bmjopen-2023-081635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 02/26/2024] [Indexed: 03/10/2024] Open
Abstract
INTRODUCTION Loss of blood-brain barrier (BBB) integrity is hypothesised to be one of the earliest microvascular signs of Alzheimer's disease (AD). Existing BBB integrity imaging methods involve contrast agents or ionising radiation, and pose limitations in terms of cost and logistics. Arterial spin labelling (ASL) perfusion MRI has been recently adapted to map the BBB permeability non-invasively. The DEveloping BBB-ASL as a non-Invasive Early biomarker (DEBBIE) consortium aims to develop this modified ASL-MRI technique for patient-specific and robust BBB permeability assessments. This article outlines the study design of the DEBBIE cohorts focused on investigating the potential of BBB-ASL as an early biomarker for AD (DEBBIE-AD). METHODS AND ANALYSIS DEBBIE-AD consists of a multicohort study enrolling participants with subjective cognitive decline, mild cognitive impairment and AD, as well as age-matched healthy controls, from 13 cohorts. The precision and accuracy of BBB-ASL will be evaluated in healthy participants. The clinical value of BBB-ASL will be evaluated by comparing results with both established and novel AD biomarkers. The DEBBIE-AD study aims to provide evidence of the ability of BBB-ASL to measure BBB permeability and demonstrate its utility in AD and AD-related pathologies. ETHICS AND DISSEMINATION Ethics approval was obtained for 10 cohorts, and is pending for 3 cohorts. The results of the main trial and each of the secondary endpoints will be submitted for publication in a peer-reviewed journal.
Collapse
Affiliation(s)
- Beatriz Padrela
- Department of Radiology and Nuclear Medicine, Amsterdam UMC Locatie VUmc, Amsterdam, Netherlands
| | - Amnah Mahroo
- Fraunhofer Institute for Digital Medicine MEVIS, Bremen, Germany
| | - Mervin Tee
- National University Health System, Singapore
| | - Markus H Sneve
- Center for Lifespan Changes in Brain and Cognition, University of Oslo, Oslo, Norway
| | - Paulien Moyaert
- Lawson Health Research Institute, London, Ontario, Canada
- Department of Diagnostic Sciences, University Hospital Ghent, Gent, Belgium
| | - Oliver Geier
- Department of Physics and Computational Radiology, Oslo University Hospital, Oslo, Norway
| | - Joost P A Kuijer
- Department of Radiology and Nuclear Medicine, Amsterdam UMC Locatie VUmc, Amsterdam, Netherlands
| | - Soetkin Beun
- Department of Diagnostic Sciences, University Hospital Ghent, Gent, Belgium
| | - Wibeke Nordhøy
- Department of Physics and Computational Radiology, Oslo University Hospital, Oslo, Norway
| | - Yufei David Zhu
- Biomedical Engineering, University of California Davis, Davis, California, USA
| | - Mareike A Buck
- Fraunhofer Institute for Digital Medicine MEVIS, Bremen, Germany
- University of Bremen, Bremen, Germany
| | | | - Simon Konstandin
- Fraunhofer Institute for Digital Medicine MEVIS, Bremen, Germany
| | - Jörn Huber
- Fraunhofer Institute for Digital Medicine MEVIS, Bremen, Germany
| | - Julia Wiersinga
- Department of Internal Medicine, Amsterdam UMC Locatie VUmc, Amsterdam, Netherlands
| | - Roos Rikken
- Amsterdam UMC Locatie VUmc, Amsterdam, Netherlands
| | | | - Håkon Grydeland
- Center for Lifespan Changes in Brain and Cognition, University of Oslo, Oslo, Norway
| | - Lynette Tippett
- The University of Auckland School of Psychology, Auckland, New Zealand
| | - Erin E Cawston
- The University of Auckland Department of Pharmacology and Clinical Pharmacology, Auckland, New Zealand
| | - Esin Ozturk-Isik
- Bogazici University Institute of Biomedical Engineering, Istanbul, Turkey
| | - Jennifer Linn
- Department of Neurology, Faculty of Medicine, Babylon, Iraq
- Department of Neurology, Technische Universität Dresden, Dresden, Germany
| | - Moritz Brandt
- Department of Neurology, Faculty of Medicine, Babylon, Iraq
- Department of Neurology, Technische Universität Dresden, Dresden, Germany
| | - Betty M Tijms
- Neurology, Amsterdam UMC Locatie VUmc, Amsterdam, Netherlands
| | | | - Majon Muller
- Department of Internal Medicine, Amsterdam UMC Locatie VUmc, Amsterdam, Netherlands
| | - Anders Fjell
- Center for Lifespan Changes in Brain and Cognition, University of Oslo, Oslo, Norway
- Oslo University Hospital, Oslo, Norway
| | - Kristine Walhovd
- Center for Lifespan Changes in Brain and Cognition, University of Oslo, Oslo, Norway
- Oslo University Hospital, Oslo, Norway
| | - Atle Bjørnerud
- Center for Lifespan Changes in Brain and Cognition, University of Oslo, Oslo, Norway
- Oslo University Hospital, Oslo, Norway
| | - Lene Pålhaugen
- Department of Neurology, Akershus University Hospital, Lorenskog, Norway
- University of Oslo, Oslo, Norway
| | - Per Selnes
- Department of Neurology, Akershus University Hospital, Lorenskog, Norway
| | - Patricia Clement
- Department of Diagnostic Sciences, University Hospital Ghent, Gent, Belgium
| | - Eric Achten
- Department of Diagnostic Sciences, University Hospital Ghent, Gent, Belgium
| | - Udunna Anazodo
- Lawson Health Research Institute, London, Ontario, Canada
| | - Frederik Barkhof
- Department of Radiology and Nuclear Medicine, Amsterdam UMC Locatie VUmc, Amsterdam, Netherlands
- University College London, London, UK
| | - Saima Hilal
- National University Health System, Singapore
- Department of Pharmacology, National University of Singapore, Singapore
| | - Tormod Fladby
- Department of Neurology, Akershus University Hospital, Lorenskog, Norway
- University of Oslo, Oslo, Norway
| | - Klaus Eickel
- Fraunhofer Institute for Digital Medicine MEVIS, Bremen, Germany
- University of Applied Sciences Bremerhaven, Bremerhaven, Germany
| | - Catherine Morgan
- The University of Auckland School of Psychology, Auckland, New Zealand
| | - David L Thomas
- Department of Brain Repair and Rehabilitation, University College London, London, UK
| | - Jan Petr
- Department of Radiology and Nuclear Medicine, Amsterdam UMC Locatie VUmc, Amsterdam, Netherlands
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Matthias Günther
- Fraunhofer Institute for Digital Medicine MEVIS, Bremen, Germany
- University of Bremen, Bremen, Germany
| | - Henk J M M Mutsaerts
- Department of Radiology and Nuclear Medicine, Amsterdam UMC Locatie VUmc, Amsterdam, Netherlands
| |
Collapse
|
3
|
Gorijala P, Aslam MM, Dang LT, Xicota L, Fernandez MV, Sung YJ, Fan K, Feingold E, Surace EI, Chhatwal JP, Hom CL, Hartley SL, Hassenstab J, Perrin RJ, Mapstone M, Zaman SH, Ances BM, Kamboh MI, Lee JH, Cruchaga C. Alzheimer's polygenic risk scores are associated with cognitive phenotypes in Down syndrome. Alzheimers Dement 2024; 20:1038-1049. [PMID: 37855447 PMCID: PMC10916941 DOI: 10.1002/alz.13506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 09/08/2023] [Accepted: 09/19/2023] [Indexed: 10/20/2023]
Abstract
INTRODUCTION This study aimed to investigate the influence of the overall Alzheimer's disease (AD) genetic architecture on Down syndrome (DS) status, cognitive measures, and cerebrospinal fluid (CSF) biomarkers. METHODS AD polygenic risk scores (PRS) were tested for association with DS-related traits. RESULTS The AD risk PRS was associated with disease status in several cohorts of sporadic late- and early-onset and familial late-onset AD, but not in familial early-onset AD or DS. On the other hand, lower DS Mental Status Examination memory scores were associated with higher PRS, independent of intellectual disability and APOE (PRS including APOE, PRSAPOE , p = 2.84 × 10-4 ; PRS excluding APOE, PRSnonAPOE , p = 1.60 × 10-2 ). PRSAPOE exhibited significant associations with Aβ42, tTau, pTau, and Aβ42/40 ratio in DS. DISCUSSION These data indicate that the AD genetic architecture influences cognitive and CSF phenotypes in DS adults, supporting common pathways that influence memory decline in both traits. HIGHLIGHTS Examination of the polygenic risk of AD in DS presented here is the first of its kind. AD PRS influences memory aspects in DS individuals, independently of APOE genotype. These results point to an overlap between the genes and pathways that leads to AD and those that influence dementia and memory decline in the DS population. APOE ε4 is linked to DS cognitive decline, expanding cognitive insights in adults.
Collapse
Affiliation(s)
- Priyanka Gorijala
- Department of PsychiatryWashington University School of MedicineSt. LouisMissouriUSA
- Neurogenomics and Informatics CenterWashington University School of MedicineSt. LouisMissouriUSA
| | - M. Muaaz Aslam
- Department of Human GeneticsUniversity of PittsburghSchool of Public HealthPittsburghPennsylvaniaUSA
| | - Lam‐Ha T. Dang
- Department of EpidemiologyColumbia University Irving Medical CenterNew YorkNew YorkUSA
- Sergievsky CenterTaub Institute for Research on Alzheimer's Disease and the Aging Brainand Department of NeurologyColumbia University Irving Medical CenterNew YorkNew YorkUSA
| | - L. Xicota
- Sergievsky CenterTaub Institute for Research on Alzheimer's Disease and the Aging Brainand Department of NeurologyColumbia University Irving Medical CenterNew YorkNew YorkUSA
| | - Maria V. Fernandez
- Department of PsychiatryWashington University School of MedicineSt. LouisMissouriUSA
- Neurogenomics and Informatics CenterWashington University School of MedicineSt. LouisMissouriUSA
| | - Yun Ju Sung
- Department of PsychiatryWashington University School of MedicineSt. LouisMissouriUSA
- Neurogenomics and Informatics CenterWashington University School of MedicineSt. LouisMissouriUSA
- Division of BiostatisticsWashington University School of MedicineSt. LouisMissouriUSA
| | - Kang‐Hsien Fan
- Department of Human GeneticsUniversity of PittsburghSchool of Public HealthPittsburghPennsylvaniaUSA
| | - Eleanor Feingold
- Department of Human GeneticsUniversity of PittsburghSchool of Public HealthPittsburghPennsylvaniaUSA
| | - Ezequiel I. Surace
- Laboratory of Neurodegenerative Diseases ‐ Institute of Neurosciences (INEU‐Fleni‐ CONICET)Buenos AiresArgentina
| | - Jasmeer P Chhatwal
- Massachusetts General HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - Christy L. Hom
- Dept. of Psychiatry and Human BehaviorUniversity of CaliforniaIrvine School of MedicineCaliforniaUSA
| | | | | | - Sigan L. Hartley
- Waisman Center and School of Human EcologyUniversity of Wisconsin‐ MadisonMadisonWisconsinUSA
| | - Jason Hassenstab
- Department of Neurology and Psychological & Brain SciencesWashington UniversitySt. LouisMissouriUSA
| | - Richard J. Perrin
- Hope Center for Neurologic DiseasesWashington UniversitySt. LouisMissouriUSA
- Department of Pathology and ImmunologyWashington University School of MedicineSt. LouisMissouriUSA
- Department of NeurologyWashington University School of MedicineSt. LouisMissouriUSA
| | - Mark Mapstone
- Department of NeurologyUniversity of California‐IrvineIrvineCaliforniaUSA
| | - Shahid H Zaman
- Cambridge Intellectual and Developmental Disabilities Research GroupDepartment of PsychiatryUniversity of CambridgeDouglas HouseCambridgeUK
- Cambridgeshire and Peterborough NHS Foundation TrustElizabeth HouseFulbourn HospitalFulbournCambridgeUK
| | - Beau M Ances
- Department of NeurologyWashington University School of MedicineSt. LouisMissouriUSA
| | - M. Ilyas Kamboh
- Department of Human GeneticsUniversity of PittsburghSchool of Public HealthPittsburghPennsylvaniaUSA
| | - Joseph H Lee
- Department of EpidemiologyColumbia University Irving Medical CenterNew YorkNew YorkUSA
- Sergievsky CenterTaub Institute for Research on Alzheimer's Disease and the Aging Brainand Department of NeurologyColumbia University Irving Medical CenterNew YorkNew YorkUSA
| | - Carlos Cruchaga
- Department of PsychiatryWashington University School of MedicineSt. LouisMissouriUSA
- Neurogenomics and Informatics CenterWashington University School of MedicineSt. LouisMissouriUSA
- Hope Center for Neurologic DiseasesWashington UniversitySt. LouisMissouriUSA
| |
Collapse
|
4
|
Shen Y, Ali M, Timsina J, Wang C, Do A, Western D, Liu M, Gorijala P, Budde J, Liu H, Gordon B, McDade E, Morris JC, Llibre-Guerra JJ, Bateman RJ, Joseph-Mathurin N, Perrin RJ, Maschi D, Wyss-Coray T, Pastor P, Goate A, Renton AE, Surace EI, Johnson ECB, Levey AI, Alvarez I, Levin J, Ringman JM, Allegri RF, Seyfried N, Day GS, Wu Q, Fernández MV, Ibanez L, Sung YJ, Cruchaga C. Systematic proteomics in Autosomal dominant Alzheimer's disease reveals decades-early changes of CSF proteins in neuronal death, and immune pathways. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.01.12.24301242. [PMID: 38260583 PMCID: PMC10802763 DOI: 10.1101/2024.01.12.24301242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Background To date, there is no high throughput proteomic study in the context of Autosomal Dominant Alzheimer's disease (ADAD). Here, we aimed to characterize early CSF proteome changes in ADAD and leverage them as potential biomarkers for disease monitoring and therapeutic strategies. Methods We utilized Somascan® 7K assay to quantify protein levels in the CSF from 291 mutation carriers (MCs) and 185 non-carriers (NCs). We employed a multi-layer regression model to identify proteins with different pseudo-trajectories between MCs and NCs. We replicated the results using publicly available ADAD datasets as well as proteomic data from sporadic Alzheimer's disease (sAD). To biologically contextualize the results, we performed network and pathway enrichment analyses. Machine learning was applied to create and validate predictive models. Findings We identified 125 proteins with significantly different pseudo-trajectories between MCs and NCs. Twelve proteins showed changes even before the traditional AD biomarkers (Aβ42, tau, ptau). These 125 proteins belong to three different modules that are associated with age at onset: 1) early stage module associated with stress response, glutamate metabolism, and mitochondria damage; 2) the middle stage module, enriched in neuronal death and apoptosis; and 3) the presymptomatic stage module was characterized by changes in microglia, and cell-to-cell communication processes, indicating an attempt of rebuilding and establishing new connections to maintain functionality. Machine learning identified a subset of nine proteins that can differentiate MCs from NCs better than traditional AD biomarkers (AUC>0.89). Interpretation Our findings comprehensively described early proteomic changes associated with ADAD and captured specific biological processes that happen in the early phases of the disease, fifteen to five years before clinical onset. We identified a small subset of proteins with the potentials to become therapy-monitoring biomarkers of ADAD MCs. Funding Proteomic data generation was supported by NIH: RF1AG044546.
Collapse
|
5
|
Wang L, Nykänen NP, Western D, Gorijala P, Timsina J, Li F, Wang Z, Ali M, Yang C, Liu M, Brock W, Marquié M, Boada M, Alvarez I, Aguilar M, Pastor P, Ruiz A, Puerta R, Orellana A, Rutledge J, Oh H, Greicius MD, Le Guen Y, Perrin RJ, Wyss-Coray T, Jefferson A, Hohman TJ, Graff-Radford N, Mori H, Goate A, Levin J, Sung YJ, Cruchaga C. Proteo-genomics of soluble TREM2 in cerebrospinal fluid provides novel insights and identifies novel modulators for Alzheimer's disease. Mol Neurodegener 2024; 19:1. [PMID: 38172904 PMCID: PMC10763080 DOI: 10.1186/s13024-023-00687-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 11/28/2023] [Indexed: 01/05/2024] Open
Abstract
Triggering receptor expressed on myeloid cells 2 (TREM2) plays a critical role in microglial activation, survival, and apoptosis, as well as in Alzheimer's disease (AD) pathogenesis. We previously reported the MS4A locus as a key modulator for soluble TREM2 (sTREM2) in cerebrospinal fluid (CSF). To identify additional novel genetic modifiers of sTREM2, we performed the largest genome-wide association study (GWAS) and identified four loci for CSF sTREM2 in 3,350 individuals of European ancestry. Through multi-ethnic fine mapping, we identified two independent missense variants (p.M178V in MS4A4A and p.A112T in MS4A6A) that drive the association in MS4A locus and showed an epistatic effect for sTREM2 levels and AD risk. The novel TREM2 locus on chr 6 contains two rare missense variants (rs75932628 p.R47H, P=7.16×10-19; rs142232675 p.D87N, P=2.71×10-10) associated with sTREM2 and AD risk. The third novel locus in the TGFBR2 and RBMS3 gene region (rs73823326, P=3.86×10-9) included a regulatory variant with a microglia-specific chromatin loop for the promoter of TGFBR2. Using cell-based assays we demonstrate that overexpression and knock-down of TGFBR2, but not RBMS3, leads to significant changes of sTREM2. The last novel locus is located on the APOE region (rs11666329, P=2.52×10-8), but we demonstrated that this signal was independent of APOE genotype. This signal colocalized with cis-eQTL of NECTIN2 in the brain cortex and cis-pQTL of NECTIN2 in CSF. Overexpression of NECTIN2 led to an increase of sTREM2 supporting the genetic findings. To our knowledge, this is the largest study to date aimed at identifying genetic modifiers of CSF sTREM2. This study provided novel insights into the MS4A and TREM2 loci, two well-known AD risk genes, and identified TGFBR2 and NECTIN2 as additional modulators involved in TREM2 biology.
Collapse
Affiliation(s)
- Lihua Wang
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
- NeuroGenomics and Informatics Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Niko-Petteri Nykänen
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
- NeuroGenomics and Informatics Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Daniel Western
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
- NeuroGenomics and Informatics Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Priyanka Gorijala
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
- NeuroGenomics and Informatics Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Jigyasha Timsina
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
- NeuroGenomics and Informatics Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Fuhai Li
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
| | - Zhaohua Wang
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
- NeuroGenomics and Informatics Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Muhammad Ali
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
- NeuroGenomics and Informatics Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Chengran Yang
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
- NeuroGenomics and Informatics Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Menghan Liu
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
- NeuroGenomics and Informatics Center, Washington University School of Medicine, St. Louis, MO, USA
| | - William Brock
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
- NeuroGenomics and Informatics Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Marta Marquié
- Networking Research Center on Neurodegenerative Disease (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
- Research Center and Memory Clinic, ACE Alzheimer Center Barcelona, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Mercè Boada
- Networking Research Center on Neurodegenerative Disease (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
- Research Center and Memory Clinic, ACE Alzheimer Center Barcelona, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Ignacio Alvarez
- Memory Disorders Unit, Department of Neurology, University Hospital Mutua Terrassa, Terrassa, Spain
| | - Miquel Aguilar
- Memory Disorders Unit, Department of Neurology, University Hospital Mutua Terrassa, Terrassa, Spain
| | - Pau Pastor
- Unit of Neurodegenerative diseases, Department of Neurology, University Hospital Germans Trias i Pujol and The Germans Trias i Pujol Research Institute (IGTP) Badalona, Barcelona, Spain
| | - Agustín Ruiz
- Networking Research Center on Neurodegenerative Disease (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
- Research Center and Memory Clinic, ACE Alzheimer Center Barcelona, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Raquel Puerta
- Networking Research Center on Neurodegenerative Disease (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
- Research Center and Memory Clinic, ACE Alzheimer Center Barcelona, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Adelina Orellana
- Networking Research Center on Neurodegenerative Disease (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
- Research Center and Memory Clinic, ACE Alzheimer Center Barcelona, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Jarod Rutledge
- Wu-Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
| | - Hamilton Oh
- Wu-Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
| | | | - Yann Le Guen
- Wu-Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
| | - Richard J Perrin
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Tony Wyss-Coray
- Wu-Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
| | - Angela Jefferson
- Vanderbilt Memory & Alzheimer's Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Timothy J Hohman
- Vanderbilt Memory & Alzheimer's Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | | | | | - Alison Goate
- Department of Genetics & Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Johannes Levin
- Department of Neurology, University Hospital of Munich, Ludwig-Maximilians-Universität (LMU) Munich, Munich, Germany
| | - Yun Ju Sung
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
- NeuroGenomics and Informatics Center, Washington University School of Medicine, St. Louis, MO, USA
- Division of Biostatistics, Washington University School of Medicine, BJC Institute of Health, 425 S. Euclid Ave, Box 8134, St. Louis, MO, 63110, USA
| | - Carlos Cruchaga
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA.
- NeuroGenomics and Informatics Center, Washington University School of Medicine, St. Louis, MO, USA.
- Hope Center for Neurologic Diseases, Washington University, St. Louis, MO, USA.
| |
Collapse
|