1
|
Li C, Hendrikse NW, Mai M, Farooqui MA, Argall-Knapp Z, Kim JS, Wheat EA, Juang T. Microliter Whole Blood Neutrophil Assay Preserving Physiological Lifespan and Functional Heterogeneity. SMALL METHODS 2024; 8:e2400373. [PMID: 38984758 PMCID: PMC11499044 DOI: 10.1002/smtd.202400373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/21/2024] [Indexed: 07/11/2024]
Abstract
For in vitro neutrophil functional assays, neutrophils are typically isolated from whole blood, having the target cells exposed to an artificial microenvironment with altered kinetics. Isolated neutrophils exhibit limited lifespans of only a few hours ex vivo, significantly shorter than the 3-5 day lifespan of neutrophils in vivo. In addition, due to neutrophils' inherently high sensitivity, neutrophils removed from whole blood exhibit stochastic non-specific activation that contributes to assay variability. Here, a method - named "µ-Blood" - is presented that enables functional neutrophil assays using a microliter of unprocessed whole blood. µ-Blood allows multiple phenotypic readouts of neutrophil function (including cell/nucleus morphology, motility, recruitment, and pathogen control). In µ-Blood, neutrophils show sustained migration and limited non-specific activation kinetics (<0.1% non-specific activation) over 3-6 days. In contrast, neutrophils isolated using traditional methods show increased and divergent activation kinetics (10-70% non-specific activation) in only 3 h. Finally, µ-Blood allows the capture and quantitative comparison of distinct neutrophil functional heterogeneity between healthy donors and cancer patients in response to microbial stimuli with the preserved physiological lifespan over 6 days.
Collapse
Affiliation(s)
- Chao Li
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI, 53792, USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Nathan W Hendrikse
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Makenna Mai
- Department of Molecular and Cell Biology, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Mehtab A Farooqui
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Zach Argall-Knapp
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Jun Sung Kim
- Department of Molecular and Cell Biology, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Emily A Wheat
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Terry Juang
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA
| |
Collapse
|
2
|
Babatunde KA, Datta R, Hendrikse NW, Ayuso JM, Huttenlocher A, Skala MC, Beebe DJ, Kerr SC. Naive primary neutrophils play a dual role in the tumor microenvironment. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.15.557892. [PMID: 37745595 PMCID: PMC10515919 DOI: 10.1101/2023.09.15.557892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
The tumor microenvironment (TME) is characterized by a network of cancer cells, recruited immune cells and extracellular matrix (ECM) in a hypoxic microenvironment. However, the specific role of neutrophils during tumor development, and their interactions with other immune cells is still not well understood. Thus, there is a need to investigate the interaction between primary neutrophils and natural killer cells and the resulting effects on tumor development. Here we use both standard well plate culture and an under oil microfluidic (UOM) assay with an integrated extracellular cell matrix (ECM) bridge to elucidate how naive primary neutrophils respond to both patient derived tumor cells and tumor cell lines. Our data demonstrated that both patient derived head and neck squamous cell carcinoma (HNSCC) tumor cells and MDA-MB-231 breast cancer cells trigger cluster formation in neutrophils, and the swarm of neutrophils restricts tumor invasion through the generation of reactive oxygen species (ROS) and neutrophil extracellular trap (NETs) release within the neutrophil cluster. However, we also observed that the presence of neutrophils downregulates granzyme B in NK-92 cells and the resulting NETs can obstruct NK cells from penetrating the tumor mass in vitro suggesting a dual role for neutrophils in the TME. Further, using label-free optical metabolic imaging (OMI) we observed changes in the metabolic activities of primary neutrophils during the different swarming phases when challenged with tumor cells. Finally, our data demonstrates that neutrophils in direct contact, or in close proximity, with tumor cells exhibit greater metabolic activities (lower nicotinamide adenine dinucleotide phosphate (NAD(P)H) mean lifetime) compared to non-contact neutrophils.
Collapse
|