1
|
Tachiyama S, Rosinke K, Khan MF, Zhou X, Xin Y, Botting JM, Yue J, Roujeinikova A, Hoover TR, Liu J. FlgY, PflA, and PflB form a spoke-ring network in the high-torque flagellar motor of Helicobacter pylori. Proc Natl Acad Sci U S A 2025; 122:e2421632122. [PMID: 40261933 PMCID: PMC12054838 DOI: 10.1073/pnas.2421632122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Accepted: 03/19/2025] [Indexed: 04/24/2025] Open
Abstract
Helicobacter pylori has evolved distinct flagellar motility to colonize the human stomach. Rotation of the H. pylori flagella is driven by one of the largest known bacterial flagellar motors. In addition to the core motor components found in Escherichia coli and Salmonella enterica, the flagellar motor in H. pylori possesses many accessories that enable the bacteria to penetrate the gastric mucus layer. Here, we utilize cryoelectron tomography with molecular genetics and biochemical approaches to characterize three accessory proteins, FlgY, PflA, and PflB, and their roles in H. pylori flagellar assembly and motility. Comparative analyses of in situ flagellar motor structures from pflA, pflB, and flgY mutants and wild-type H. pylori reveal that FlgY forms a 13-fold proximal spoke-ring around the MS-ring and that PflA and PflB form an 18-fold distal spoke-ring enclosing 18 torque-generating stator complexes. We build a pseudoatomic model of the H. pylori motor by leveraging AlphaFold-predicted structures, protein-protein interactions, and in situ motor structures. Our model suggests that the FlgY spoke-ring functions as a bearing around the rotating MS-ring and as a template for stabilizing the PflA-PflB spoke-ring, thus enabling the recruitment of 18 stator complexes for high-torque generation. Overall, our study sheds light on how this spoke-ring network between the MS-ring and stator complexes enables the unique motility of H. pylori. As these accessory proteins are conserved in the phylum Campylobacterota, our findings apply broadly to a better understanding of how polar flagella help bacteria thrive in gastric and enteric niches.
Collapse
Affiliation(s)
- Shoichi Tachiyama
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, CT06536
- Microbial Sciences Institute, Yale University, West Haven, CT06516
| | - Kyle Rosinke
- Department of Microbiology, University of Georgia, Athens, GA30602
| | - Mohammad F. Khan
- Department of Microbiology, Monash University, Clayton, VIC3800, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC3800, Australia
| | - Xiaotian Zhou
- Department of Microbiology, Monash University, Clayton, VIC3800, Australia
| | - Yue Xin
- Department of Microbiology, Monash University, Clayton, VIC3800, Australia
| | - Jack M. Botting
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, CT06536
- Microbial Sciences Institute, Yale University, West Haven, CT06516
| | - Jian Yue
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, CT06536
- Microbial Sciences Institute, Yale University, West Haven, CT06516
| | - Anna Roujeinikova
- Department of Microbiology, Monash University, Clayton, VIC3800, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC3800, Australia
| | | | - Jun Liu
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, CT06536
- Microbial Sciences Institute, Yale University, West Haven, CT06516
| |
Collapse
|
2
|
Alzheimer M, Froschauer K, Svensson SL, König F, Hopp E, Drobnič T, Henderson LD, Ribardo DA, Hendrixson DR, Bischler T, Beeby M, Sharma CM. Functional genomics of Campylobacter -host interactions in an intestinal tissue model reveals a small lipoprotein essential for flagellar assembly. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.04.02.646747. [PMID: 40236077 PMCID: PMC11996450 DOI: 10.1101/2025.04.02.646747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Campylobacter jejuni is currently the most common cause of bacterial gastroenteritis worldwide. However, its genome provides few clues about how it interacts with the host. Moreover, infection screens have often been limited to classical cell culture or animal models. To identify C. jejuni genes involved in host cell interactions, we applied transposon sequencing in a humanized 3D intestinal infection model based on tissue engineering. This revealed key proteins required for host cell adherence and/or internalization, including an Rrf2 family transcriptional regulator as well as three so far uncharacterized genes ( pflC / Cj1643 , pflD / Cj0892c , pflE / Cj0978c ), which we demonstrate to encode factors essential for motility. Deletion mutants of pflC / D / E are non-motile but retain intact, paralysed flagella filaments. We demonstrate that two of these newly identified motility proteins, PflC and PflD, are components of the C. jejuni 's periplasmic disk structures of the high torque motor. The third gene, pflE , encodes a small protein of only 57 aa. Using CryoET imaging we uncovered that the small protein has a striking effect on motor biogenesis, leading to a complete loss of the flagellar disk and motor structures upon its deletion. While PflE does not appear to be a structural component of the motor itself, our data suggests that it is a lipoprotein and supports localization of the main basal disk protein FlgP, which is the first assembly step of the flagellar disk structure. Despite being annotated as a lipoprotein, we find that C. jejuni FlgP instead relies on PflE for its association with the outer membrane. Overall, our genome-wide screen revealed novel C. jejuni host interaction factors including a transcriptional regulator as well as two structural components and a small protein crucial for biogenesis of the C. jejuni high torque flagella motor. Since the flagella machinery is a critical virulence determining factor for C. jejuni , our work demonstrates how such a small protein can, quite literally, bring a bacterial pathogen to a halt.
Collapse
|
3
|
Dutka P, Li EH, Zhong T, Jensen GJ, Kaplan M. Structural differences in the outer membrane-associated flagellar rings between sheathed and unsheathed flagella. FEBS Lett 2025. [PMID: 39973388 DOI: 10.1002/1873-3468.70011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 01/14/2025] [Accepted: 01/16/2025] [Indexed: 02/21/2025]
Abstract
The bacterial flagellar motor generates a torque to move the bacterium in its environment. Despite sharing a conserved core, flagellar motors of different species exhibit structural diversity with species-specific embellishments. These embellishments are classified into various types, including integrated (spanning the whole periplasmic space) or outer membrane (OM)-associated ones. Here, we used cryo-electron tomography to investigate the structural differences between the embellishments of sheathed and unsheathed flagella in various species. We discovered that the integrated embellishments of sheathed flagella have disks and rings with a constant diameter, while those of unsheathed flagella have components that vary significantly in diameter. Both unsheathed and sheathed flagella with OM-associated embellishments have components with constant diameter with a subset of motors having an additional extracellular ring. In this Hypothesis article, we propose that these differences may play a role in the formation of the sheath, as having large protein disks of various diameters underneath the OM may interfere with membrane bending to form the sheath.
Collapse
Affiliation(s)
- Przemysław Dutka
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Ethan H Li
- Department of Microbiology, University of Chicago, IL, USA
| | - Tengfei Zhong
- Department of Microbiology, University of Chicago, IL, USA
| | - Grant J Jensen
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, USA
| | | |
Collapse
|
4
|
Feng X, Tachiyama S, He J, Zhu S, Zhao H, Botting JM, Liu Y, Chen Y, Hua C, Lara-Tejero M, Baker MAB, Gao X, Liu J, Gao B. The architecture, assembly, and evolution of a complex flagellar motor. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.19.638559. [PMID: 40027708 PMCID: PMC11870540 DOI: 10.1101/2025.02.19.638559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Bacterial flagella drive motility in many species, likely including the last bacterial common ancestor 1,2 . Knowledge of flagellar assembly and function has mainly come from studies of Escherichia coli and Salmonella enterica , which have simple flagellar motors 3-7 . However, most flagellated bacteria possess complex motors with unique, species-specific adaptations whose mechanisms and evolution remain largely unexplored 8-10 . Here, we deploy a multidisciplinary approach to build a near-complete model of the flagellar motor in Campylobacter jejuni , revealing its remarkable complexity in architecture and composition. We identify an E-ring around the MS-ring, a periplasmic cage with two distinctive conformations, and an intricate interaction network between the E-ring and cage. These scaffolds play critical roles in stabilizing and regulating 17 torque-generating stator complexes for optimal motility. In-depth evolutionary analyses uncover the ancient origin and prevalence of the E-ring in flagellated species of the domain Bacteria as well as a unique exaptation of type IV pili components PilMNOPQF in the ancestral motor of the phylum Campylobacterota . Collectively, our studies reveal novel mechanisms of assembly and function in complex flagellar motors and shed light on the evolution of flagella and modern bacterial species.
Collapse
|
5
|
Chen Y, Tachiyama S, Li Y, Feng X, Zhao H, Wu Y, Guo Y, Lara-Tejero M, Hua C, Liu J, Gao B. Tetrameric PilZ protein stabilizes stator ring in complex flagellar motor and is required for motility in Campylobacter jejuni. Proc Natl Acad Sci U S A 2025; 122:e2412594121. [PMID: 39793078 PMCID: PMC11725899 DOI: 10.1073/pnas.2412594121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 11/19/2024] [Indexed: 01/12/2025] Open
Abstract
Rotation of the bacterial flagellum, the first identified biological rotary machine, is driven by its stator units. Knowledge gained about the function of stator units has increasingly led to studies of rotary complexes in different cellular pathways. Here, we report that a tetrameric PilZ family protein, FlgX, is a structural component underneath the stator units in the flagellar motor of Campylobacter jejuni. FlgX forms a stable tetramer that does not bind cyclic di-GMP (c-di-GMP), unlike other canonical PilZ domain-containing proteins. Cryoelectron tomography and subtomogram averaging of flagellar motors in situ provide evidence that FlgX interacts with each stator unit and plays a critical role in stator ring assembly and stability. Furthermore, FlgX is conserved and was most likely present in the common ancestor of the phylum Campylobacterota. Overall, FlgX represents a divergence in function for PilZ superfamily proteins as well as a player in the key stator-rotor interaction of complex flagellar motors.
Collapse
Affiliation(s)
- Yuanyuan Chen
- Chinese Academy of Sciences Key Laboratory of Tropical Marine Bio Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, Guangdong Provincial Observation and Research Station for Coastal Upwelling Ecosystem, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou511458, China
- Sanya National Marine Ecosystem Research Station, Tropical Marine Biological Research Station in Hainan, Chinese Academy of Sciences, Sanya572000, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou511458, China
- University of Chinese Academy of Sciences, Beijing100049, China
| | - Shoichi Tachiyama
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, CT06536
- Microbial Sciences Institute, Yale University, West Haven, CT06516
| | - Yuqian Li
- Chinese Academy of Sciences Key Laboratory of Tropical Marine Bio Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, Guangdong Provincial Observation and Research Station for Coastal Upwelling Ecosystem, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou511458, China
- Sanya National Marine Ecosystem Research Station, Tropical Marine Biological Research Station in Hainan, Chinese Academy of Sciences, Sanya572000, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou511458, China
| | - Xueyin Feng
- Chinese Academy of Sciences Key Laboratory of Tropical Marine Bio Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, Guangdong Provincial Observation and Research Station for Coastal Upwelling Ecosystem, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou511458, China
- Sanya National Marine Ecosystem Research Station, Tropical Marine Biological Research Station in Hainan, Chinese Academy of Sciences, Sanya572000, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou511458, China
- University of Chinese Academy of Sciences, Beijing100049, China
| | - Hang Zhao
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, CT06536
- Microbial Sciences Institute, Yale University, West Haven, CT06516
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng475004, China
| | - Yanmin Wu
- Chinese Academy of Sciences Key Laboratory of Tropical Marine Bio Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, Guangdong Provincial Observation and Research Station for Coastal Upwelling Ecosystem, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou511458, China
- Sanya National Marine Ecosystem Research Station, Tropical Marine Biological Research Station in Hainan, Chinese Academy of Sciences, Sanya572000, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou511458, China
- University of Chinese Academy of Sciences, Beijing100049, China
| | - Yu Guo
- Chinese Academy of Sciences Key Laboratory of Tropical Marine Bio Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, Guangdong Provincial Observation and Research Station for Coastal Upwelling Ecosystem, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou511458, China
- Sanya National Marine Ecosystem Research Station, Tropical Marine Biological Research Station in Hainan, Chinese Academy of Sciences, Sanya572000, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou511458, China
| | - María Lara-Tejero
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, CT06536
| | - Canfeng Hua
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, CT06536
| | - Jun Liu
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, CT06536
- Microbial Sciences Institute, Yale University, West Haven, CT06516
| | - Beile Gao
- Chinese Academy of Sciences Key Laboratory of Tropical Marine Bio Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, Guangdong Provincial Observation and Research Station for Coastal Upwelling Ecosystem, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou511458, China
- Sanya National Marine Ecosystem Research Station, Tropical Marine Biological Research Station in Hainan, Chinese Academy of Sciences, Sanya572000, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou511458, China
| |
Collapse
|
6
|
Zhou X, Khan M, Xin Y, Chan K, Roujeinikova A. Biochemical characterization of paralyzed flagellum proteins A (PflA) and B (PflB) from Helicobacter pylori flagellar motor. Biosci Rep 2024; 44:BSR20240692. [PMID: 39105472 PMCID: PMC11392913 DOI: 10.1042/bsr20240692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/29/2024] [Accepted: 08/06/2024] [Indexed: 08/07/2024] Open
Abstract
Motility by means of flagella plays an important role in the persistent colonization of Helicobacter pylori in the human stomach. The H. pylori flagellar motor has a complex structure that includes a periplasmic scaffold, the components of which are still being identified. Here, we report the isolation and characterization of the soluble forms of two putative essential H. pylori motor scaffold components, proteins PflA and PflB. We developed an on-column refolding procedure, overcoming the challenge of inclusion body formation in Escherichia coli. We employed mild detergent sarkosyl to enhance protein recovery and n-dodecyl-N,N-dimethylamine-N-oxide (LDAO)-containing buffers to achieve optimal solubility and monodispersity. In addition, we showed that PflA lacking the β-rich N-terminal domain is expressed in a soluble form, and behaves as a monodisperse monomer in solution. The methods for producing the soluble, folded forms of H. pylori PflA and PflB established in this work will facilitate future biophysical and structural studies aimed at deciphering their location and their function within the flagellar motor.
Collapse
Affiliation(s)
- Xiaotian Zhou
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Melbourne, Victoria 3800, Australia
| | - Muhammad F. Khan
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Melbourne, Victoria 3800, Australia
| | - Yue Xin
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Melbourne, Victoria 3800, Australia
| | - Kar L. Chan
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Melbourne, Victoria 3800, Australia
| | - Anna Roujeinikova
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Melbourne, Victoria 3800, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Victoria 3800, Australia
| |
Collapse
|
7
|
Rosinke K, Starai VJ, Hoover TR. Helicobacter pylori HP0018 Has a Potential Role in the Maintenance of the Cell Envelope. Cells 2024; 13:1438. [PMID: 39273010 PMCID: PMC11394524 DOI: 10.3390/cells13171438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/22/2024] [Accepted: 08/23/2024] [Indexed: 09/15/2024] Open
Abstract
Helicobacter pylori is a bacterial pathogen that colonizes the human stomach, where it can cause a variety of diseases. H. pylori uses a cluster of sheathed flagella for motility, which is required for host colonization in animal models. The flagellar sheath is continuous with the outer membrane and is found in most Helicobacter species identified to date. HP0018 is a predicted lipoprotein of unknown function that is conserved in Helicobacter species that have flagellar sheaths but is absent in Helicobacter species that have sheath-less flagella. Deletion of hp0018 in H. pylori B128 resulted in the formation of long chains of outer membrane vesicles, which were most evident in an aflagellated variant of the Δhp0018 mutant that had a frameshift mutation in fliP. Flagellated cells of the Δhp0018 mutant possessed what appeared to be a normal flagellar sheath, suggesting that HP0018 is not required for sheath formation. Cells of the Δhp0018 mutant were also less helical in shape compared to wild-type cells. A HP0018-superfolder green fluorescent fusion protein expressed in the H. pylori Δhp0018 mutant formed fluorescent foci at the cell poles and lateral sites. Co-immunoprecipitation assays with HP0018 identified two enzymes involved in the modification of the cell wall peptidoglycan, AmiA and MltD, as potential HP0018 interaction partners. HP0018 may modulate the activity of AmiA or MltD, and in the absence of HP0018, the unregulated activity of these enzymes may alter the peptidoglycan layer in a manner that results in an altered cell shape and hypervesiculation.
Collapse
Affiliation(s)
- Kyle Rosinke
- Department of Microbiology, University of Georgia, Athens, GA 30602, USA; (K.R.); (V.J.S.)
| | - Vincent J. Starai
- Department of Microbiology, University of Georgia, Athens, GA 30602, USA; (K.R.); (V.J.S.)
- Department of Infectious Diseases, University of Georgia, Athens, GA 30602, USA
| | - Timothy R. Hoover
- Department of Microbiology, University of Georgia, Athens, GA 30602, USA; (K.R.); (V.J.S.)
| |
Collapse
|