1
|
Goldberg BS, Ackerman ME. Underappreciated layers of antibody-mediated immune synapse architecture and dynamics. mBio 2025; 16:e0190024. [PMID: 39660921 PMCID: PMC11708040 DOI: 10.1128/mbio.01900-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024] Open
Abstract
The biologic activities of antibody drugs are dictated by structure-function relationships-emerging from the kind, composition, and degree of interactions with a target antigen and with soluble and cellular antibody receptors of the innate immune system. These activities are canonically understood to be both modular: antigen recognition is driven by the heterodimeric antigen-binding fragment, and innate immune recruitment by the homodimeric constant/crystallizable fragment. The model that treats these domains with a high degree of independence has served the field well but is not without limitations. Here, we consider how new insights, particularly from structural studies, complicate the model of neat biophysical separation between these domains and shape our understanding of antibody effector functions. The emerging model endeavors to explain the phenotypic impact of both antibody intrinsic characteristics and extrinsic features-fitting them within a spatiotemporal paradigm that better accounts for observed antibody activities. In this review, we will use insights from recent models of classical complement complexes and T cell immune synapse formation to explore how structural differences in antibody-mediated immune synapses may relate to their functional diversity.
Collapse
Affiliation(s)
| | - Margaret E. Ackerman
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire, USA
- Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire, USA
| |
Collapse
|
2
|
Lusiany T, Terada T, Kishikawa JI, Hirose M, Chen DV, Sugihara F, Ismanto HS, van Eerden FJ, Li S, Kato T, Arase H, Yoshiharu M, Okada M, Standley DM. Enhancement of SARS-CoV-2 Infection via Crosslinking of Adjacent Spike Proteins by N-Terminal Domain-Targeting Antibodies. Viruses 2023; 15:2421. [PMID: 38140662 PMCID: PMC10747171 DOI: 10.3390/v15122421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/08/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023] Open
Abstract
The entry of SARS-CoV-2 into host cells is mediated by the interaction between the spike receptor-binding domain (RBD) and host angiotensin-converting enzyme 2 (ACE2). Certain human antibodies, which target the spike N-terminal domain (NTD) at a distant epitope from the host cell binding surface, have been found to augment ACE2 binding and enhance SARS-CoV-2 infection. Notably, these antibodies exert their effect independently of the antibody fragment crystallizable (Fc) region, distinguishing their mode of action from previously described antibody-dependent infection-enhancing (ADE) mechanisms. Building upon previous hypotheses and experimental evidence, we propose that these NTD-targeting infection-enhancing antibodies (NIEAs) achieve their effect through the crosslinking of neighboring spike proteins. In this study, we present refined structural models of NIEA fragment antigen-binding region (Fab)-NTD complexes, supported by molecular dynamics simulations and hydrogen-deuterium exchange mass spectrometry (HDX-MS). Furthermore, we provide direct evidence confirming the crosslinking of spike NTDs by NIEAs. Collectively, our findings advance our understanding of the molecular mechanisms underlying NIEAs and their impact on SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Tina Lusiany
- Department of Genome Informatics, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita 565-0871, Japan (H.S.I.); (S.L.)
| | - Tohru Terada
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Tokyo 113-8657, Japan;
| | - Jun-ichi Kishikawa
- Cryo-EM Structural Biology, Institute for Protein Research, Osaka University, 3-1 Yamadaoka, Suita 565-0871, Japan; (J.-i.K.); (M.H.); (T.K.)
| | - Mika Hirose
- Cryo-EM Structural Biology, Institute for Protein Research, Osaka University, 3-1 Yamadaoka, Suita 565-0871, Japan; (J.-i.K.); (M.H.); (T.K.)
| | - David Virya Chen
- Department of System Immunology, Immunology Frontier Research Center, Osaka University, 3-1 Yamadaoka, Suita 565-0871, Japan; (D.V.C.); (F.J.v.E.)
- Center for Infectious Disease Education and Research, Osaka University, Osaka 565-0871, Japan;
| | - Fuminori Sugihara
- Core Facility, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Osaka 565-0871, Japan;
| | - Hendra Saputra Ismanto
- Department of Genome Informatics, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita 565-0871, Japan (H.S.I.); (S.L.)
| | - Floris J. van Eerden
- Department of System Immunology, Immunology Frontier Research Center, Osaka University, 3-1 Yamadaoka, Suita 565-0871, Japan; (D.V.C.); (F.J.v.E.)
| | - Songling Li
- Department of Genome Informatics, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita 565-0871, Japan (H.S.I.); (S.L.)
- Department of System Immunology, Immunology Frontier Research Center, Osaka University, 3-1 Yamadaoka, Suita 565-0871, Japan; (D.V.C.); (F.J.v.E.)
| | - Takayuki Kato
- Cryo-EM Structural Biology, Institute for Protein Research, Osaka University, 3-1 Yamadaoka, Suita 565-0871, Japan; (J.-i.K.); (M.H.); (T.K.)
| | - Hisashi Arase
- Department of Immunochemistry, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita 565-0871, Japan;
- Department of Immunochemistry, Immunology Frontier Research Center, Osaka University, 3-1 Yamadaoka, Suita 565-0871, Japan
| | - Matsuura Yoshiharu
- Center for Infectious Disease Education and Research, Osaka University, Osaka 565-0871, Japan;
| | - Masato Okada
- Center for Advanced Modalities and DDS, Osaka University, 2-8 Yamadaoka, Suita 565-0871, Japan;
| | - Daron M. Standley
- Department of Genome Informatics, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita 565-0871, Japan (H.S.I.); (S.L.)
- Department of System Immunology, Immunology Frontier Research Center, Osaka University, 3-1 Yamadaoka, Suita 565-0871, Japan; (D.V.C.); (F.J.v.E.)
| |
Collapse
|