1
|
Osburn SC, Smith ME, Wahl D, LaRocca TJ. Novel effects of reverse transcriptase inhibitor supplementation in skeletal muscle of old mice. Physiol Genomics 2025; 57:308-320. [PMID: 40062980 DOI: 10.1152/physiolgenomics.00115.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 10/08/2024] [Accepted: 02/15/2025] [Indexed: 04/01/2025] Open
Abstract
Aging is the primary risk factor for the development of many chronic diseases, including dementias, cardiovascular disease, and diabetes. There is significant interest in identifying novel "geroprotective" agents, including by repurposing existing drugs, but such treatments may affect organ systems differently. One current example is the nucleoside reverse transcriptase inhibitor 3TC, which has been increasingly studied as a potential gerotherapeutic. Recent data suggest that 3TC may reduce inflammation and improve cognitive function in older mice; however, the effects of 3TC on other tissues in aged animals are less well characterized. Here, we use transcriptomics (RNA-seq) and targeted metabolomics to investigate the influence of 3TC supplementation on skeletal muscle in older mice. We show that 3TC 1) does not overtly affect muscle mass or functional/health markers, 2) largely reverses age-related changes in gene expression and metabolite signatures, and 3) is potentially beneficial for mitochondrial function in old animals via increases in antioxidant enzymes and decreases in mitochondrial reactive oxygen species. Collectively, our results suggest that, in addition to its protective effects in other tissues, 3TC supplementation does not have adverse effects in aged muscle and may even protect muscle/mitochondrial health in this context.NEW & NOTEWORTHY Recent studies suggest that the nucleoside reverse transcriptase inhibitor 3TC may improve brain health and cognitive function in old mice, but its effects on other aging tissues have not been comprehensively studied. This is the first study to use a multiomics approach to investigate the effects of 3TC treatment on skeletal muscle of old mice. The results suggest that 3TC reverses age-related transcriptomic and metabolite signatures and is potentially beneficial for mitochondrial function in aged muscle.
Collapse
Affiliation(s)
- Shelby C Osburn
- Department of Health and Exercise Science, Colorado State University, Fort Collins, Colorado, United States
- Center for Healthy Aging, Colorado State University, Fort Collins, Colorado, United States
| | - Meghan E Smith
- Department of Health and Exercise Science, Colorado State University, Fort Collins, Colorado, United States
- Center for Healthy Aging, Colorado State University, Fort Collins, Colorado, United States
| | - Devin Wahl
- Department of Health and Exercise Science, Colorado State University, Fort Collins, Colorado, United States
- Center for Healthy Aging, Colorado State University, Fort Collins, Colorado, United States
| | - Thomas J LaRocca
- Department of Health and Exercise Science, Colorado State University, Fort Collins, Colorado, United States
- Center for Healthy Aging, Colorado State University, Fort Collins, Colorado, United States
| |
Collapse
|
2
|
Anton PE, Nagpal P, Moreno J, Burchill MA, Chatterjee A, Busquet N, Mesches M, Kovacs EJ, McCullough RL. NF-κB/NLRP3 Translational Inhibition by Nanoligomer Therapy Mitigates Ethanol and Advanced Age-Related Neuroinflammation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.26.582114. [PMID: 38464118 PMCID: PMC10925165 DOI: 10.1101/2024.02.26.582114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Binge alcohol use is increasing among aged adults (>65 years). Alcohol-related toxicity in aged adults is associated with neurodegeneration, yet the molecular underpinnings of age-related sensitivity to alcohol are not well described. Studies utilizing rodent models of neurodegenerative disease reveal heightened activation of Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and Nod like receptor 3 (NLRP3) mediate microglia activation and associated neuronal injury. Our group, and others, have implicated hippocampal-resident microglia as key producers of inflammatory mediators, yet the link between inflammation and neurodegeneration has not been established in models of binge ethanol exposure and advanced age. Here, we report binge ethanol increased the proportion of NLRP3+ microglia in the hippocampus of aged (18-20 months) female C57BL/6N mice compared to young (3-4 months). In primary microglia, ethanol-induced expression of reactivity markers and NLRP3 inflammasome activation were more pronounced in microglia from aged mice compared to young. Making use of an NLRP3-specific inhibitor (OLT1177) and a novel brain-penetrant Nanoligomer that inhibits NF-κB and NLRP3 translation (SB_NI_112), we find ethanol-induced microglial reactivity can be attenuated by OLT1177 and SB_NI_112 in microglia from aged mice. In a model of intermittent binge ethanol exposure, SB_NI_112 prevented ethanol-mediated microglia reactivity, IL-1β production, and tau hyperphosphorylation in the hippocampus of aged mice. These data suggest early indicators of neurodegeneration occurring with advanced age and binge ethanol exposure are NF-κB- and NLRP3-dependent. Further investigation is warranted to explore the use of targeted immunosuppression via Nanoligomers to attenuate neuroinflammation after alcohol consumption in the aged.
Collapse
Affiliation(s)
- Paige E. Anton
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO
- Alcohol Research Program, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO
| | | | - Julie Moreno
- Department of Environmental and Radiological Health Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO
| | - Matthew A. Burchill
- GI and Liver Innate Immune Program, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO
- Department of Medicine, Division of Gastroenterology and Hepatology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO
| | | | - Nicolas Busquet
- Animal Behavior & In Vivo Neurophysiology Core, NeuroTechnology Center, University of Colorado Anschutz Medical Campus, Aurora, CO
- Department of Neurology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora Colorado
| | - Michael Mesches
- Animal Behavior & In Vivo Neurophysiology Core, NeuroTechnology Center, University of Colorado Anschutz Medical Campus, Aurora, CO
- Department of Neurology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora Colorado
| | - Elizabeth J. Kovacs
- Alcohol Research Program, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO
- Division of GI Trauma and Endocrine Surgery, Department of Surgery, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO
- Veterans’ Health Administration, Eastern Colorado Health Care System, Rocky Mountain Regional Veterans Affairs Medical Center (RMRVAMC), Aurora, CO
| | - Rebecca L. McCullough
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO
- Alcohol Research Program, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO
- GI and Liver Innate Immune Program, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO
| |
Collapse
|