1
|
Bustad E, Petry E, Gu O, Griebel BT, Rustad TR, Sherman DR, Yang JH, Ma S. Predicting bacterial fitness in Mycobacterium tuberculosis with transcriptional regulatory network-informed interpretable machine learning. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.23.614645. [PMID: 39386570 PMCID: PMC11463588 DOI: 10.1101/2024.09.23.614645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Mycobacterium tuberculosis (Mtb) is the causative agent of tuberculosis disease, the greatest source of global mortality by a bacterial pathogen. Mtb adapts and responds to diverse stresses such as antibiotics by inducing transcriptional stress-response regulatory programs. Understanding how and when these mycobacterial regulatory programs are activated could enable novel treatment strategies for potentiating the efficacy of new and existing drugs. Here we sought to define and analyze Mtb regulatory programs that modulate bacterial fitness. We assembled a large Mtb RNA expression compendium and applied these to infer a comprehensive Mtb transcriptional regulatory network and compute condition-specific transcription factor activity profiles. We utilized transcriptomic and functional genomics data to train an interpretable machine learning model that can predict Mtb fitness from transcription factor activity profiles. We demonstrated that this transcription factor activity-based model can successfully predict Mtb growth arrest and growth resumption under hypoxia and reaeration using only RNA-seq expression data as a starting point. These integrative network modeling and machine learning analyses thus enable the prediction of mycobacterial fitness under different environmental and genetic contexts. We envision these models can potentially inform the future design of prognostic assays and therapeutic intervention that can cripple Mtb growth and survival to cure tuberculosis disease.
Collapse
Affiliation(s)
- Ethan Bustad
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle WA, USA
| | - Edson Petry
- Center for Emerging and Re-emerging Pathogens, Rutgers New Jersey Medical School, Newark NJ, USA
| | - Oliver Gu
- Center for Emerging and Re-emerging Pathogens, Rutgers New Jersey Medical School, Newark NJ, USA
| | - Braden T. Griebel
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle WA, USA
- Department of Chemical Engineering, University of Washington, Seattle WA, USA
| | | | - David R. Sherman
- Department of Microbiology, University of Washington, Seattle WA, USA
| | - Jason H. Yang
- Center for Emerging and Re-emerging Pathogens, Rutgers New Jersey Medical School, Newark NJ, USA
- Department of Microbiology, Biochemistry, & Molecular Genetics, Rutgers New Jersey Medical School, Newark NJ, USA
| | - Shuyi Ma
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle WA, USA
- Department of Chemical Engineering, University of Washington, Seattle WA, USA
- Department of Pediatrics, University of Washington, Seattle WA, USA
- Pathobiology Graduate Program, Department of Global Health, University of Washington, Seattle WA, USA
| |
Collapse
|