1
|
Jha A, Chandra A, Farahani P, Toettcher J, Haugh JM, Waterman CM. CD44 and Ezrin restrict EGF receptor mobility to generate a novel spatial arrangement of cytoskeletal signaling modules driving bleb-based migration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.12.31.630838. [PMID: 39803565 PMCID: PMC11722407 DOI: 10.1101/2024.12.31.630838] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
Cells under high confinement form highly polarized hydrostatic pressure-driven, stable leader blebs that enable efficient migration in low adhesion, environments. Here we investigated the basis of the polarized bleb morphology of metastatic melanoma cells migrating in non-adhesive confinement. Using high-resolution time-lapse imaging and specific molecular perturbations, we found that EGF signaling via PI3K stabilizes and maintains a polarized leader bleb. Protein activity biosensors revealed a unique EGFR/PI3K activity gradient decreasing from rear-to-front, promoting PIP3 and Rac1-GTP accumulation at the bleb rear, with its antagonists PIP2 and RhoA-GTP concentrated at the bleb tip, opposite to the front-to-rear organization of these signaling modules in integrin-mediated mesenchymal migration. Optogenetic experiments showed that disrupting this gradient caused bleb retraction, underscoring the role of this signaling gradient in bleb stability. Mathematical modeling and experiments identified a mechanism where, as the bleb initiates, CD44 and ERM proteins restrict EGFR mobility in a membrane-apposed cortical actin meshwork in the bleb rear, establishing a rear-to-front EGFR-PI3K-Rac activity gradient. Thus, our study reveals the biophysical and molecular underpinnings of cell polarity in bleb-based migration of metastatic cells in non-adhesive confinement, and underscores how alternative spatial arrangements of migration signaling modules can mediate different migration modes according to the local microenvironment.
Collapse
Affiliation(s)
- Ankita Jha
- Cell and Developmental Biology Center, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, United States
| | - Ankit Chandra
- Department of Chemical & Biomolecular Engineering, North Carolina State University, Raleigh, United States
| | - Payam Farahani
- Department of Chemical and Biological Engineering, Princeton University, Princeton, United States
| | - Jared Toettcher
- Department of Molecular Biology, Princeton University, Princeton, United States
- Omenn-Darling Bioengineering Institute, Princeton University, Princeton, United States
| | - Jason M. Haugh
- Department of Chemical & Biomolecular Engineering, North Carolina State University, Raleigh, United States
| | - Clare M. Waterman
- Cell and Developmental Biology Center, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, United States
| |
Collapse
|
2
|
Levandosky K, Copos C. Model supports asymmetric regulation across the intercellular junction for collective cell polarization. PLoS Comput Biol 2024; 20:e1012216. [PMID: 39689113 DOI: 10.1371/journal.pcbi.1012216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 12/31/2024] [Accepted: 11/22/2024] [Indexed: 12/19/2024] Open
Abstract
Symmetry breaking, which is ubiquitous in biological cells, functionally enables directed cell movement and organized embryogenesis. Prior to movement, cells break symmetry to form a well-defined cell front and rear in a process called polarization. In developing and regenerating tissues, collective cell movement requires the coordination of the polarity of the migration machineries of neighboring cells. Though several works shed light on the molecular basis of polarity, fewer studies have focused on the regulation across the cell-cell junction required for collective polarization, thus limiting our ability to connect tissue-level dynamics to subcellular interactions. Here, we investigated how polarity signals are communicated from one cell to its neighbor to ensure coordinated front-to-rear symmetry breaking with the same orientation across the group. In a theoretical setting, we systematically searched a variety of intercellular interactions and identified that co-alignment arrangement of the polarity axes in groups of two and four cells can only be achieved with strong asymmetric regulation of Rho GTPases or enhanced assembly of complementary F-actin structures across the junction. Our results held if we further assumed the presence of an external stimulus, intrinsic cell-to-cell variability, or larger groups. The results underline the potential of using quantitative models to probe the molecular interactions required for macroscopic biological phenomena. Lastly, we posit that asymmetric regulation is achieved through junction proteins and predict that in the absence of cytoplasmic tails of such linker proteins, the likeliness of doublet co-polarity is greatly diminished.
Collapse
Affiliation(s)
- Katherine Levandosky
- Department of Mathematics, Northeastern University, Boston, Massachusetts, United States of America
| | - Calina Copos
- Department of Mathematics, Northeastern University, Boston, Massachusetts, United States of America
- Department of Biology, Northeastern University, Boston, Massachusetts, United States of America
| |
Collapse
|
3
|
Waechtler BE, Jayasankar R, Morin EP, Robinson DN. Benefits and challenges of reconstituting the actin cortex. Cytoskeleton (Hoboken) 2024; 81:843-863. [PMID: 38520148 PMCID: PMC11417134 DOI: 10.1002/cm.21855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/21/2024] [Accepted: 03/05/2024] [Indexed: 03/25/2024]
Abstract
The cell's ability to change shape is a central feature in many cellular processes, including cytokinesis, motility, migration, and tissue formation. The cell constructs a network of contractile proteins underneath the cell membrane to form the cortex, and the reorganization of these components directly contributes to cellular shape changes. The desire to mimic these cell shape changes to aid in the creation of a synthetic cell has been increasing. Therefore, membrane-based reconstitution experiments have flourished, furthering our understanding of the minimal components the cell uses throughout these processes. Although biochemical approaches increased our understanding of actin, myosin II, and actin-associated proteins, using membrane-based reconstituted systems has further expanded our understanding of actin structures and functions because membrane-cortex interactions can be analyzed. In this review, we highlight the recent developments in membrane-based reconstitution techniques. We examine the current findings on the minimal components needed to recapitulate distinct actin structures and functions and how they relate to the cortex's impact on cellular mechanical properties. We also explore how co-processing of computational models with wet-lab experiments enhances our understanding of these properties. Finally, we emphasize the benefits and challenges inherent to membrane-based, reconstitution assays, ranging from the advantage of precise control over the system to the difficulty of integrating these findings into the complex cellular environment.
Collapse
Affiliation(s)
- Brooke E. Waechtler
- Department of Cell Biology, Johns Hopkins University, School of Medicine, 725 N Wolfe Street, Baltimore, MD 21205
| | - Rajan Jayasankar
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Whiting School of Engineering, 725 N Wolfe Street, Baltimore, MD 21205
| | - Emma P. Morin
- Department of Cell Biology, Johns Hopkins University, School of Medicine, 725 N Wolfe Street, Baltimore, MD 21205
| | - Douglas N. Robinson
- Department of Cell Biology, Johns Hopkins University, School of Medicine, 725 N Wolfe Street, Baltimore, MD 21205
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Whiting School of Engineering, 725 N Wolfe Street, Baltimore, MD 21205
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University, School of Medicine, 725 N Wolfe Street, Baltimore, MD 21205
- Department of Medicine, Johns Hopkins University, School of Medicine, 725 N Wolfe Street, Baltimore, MD 21205
- Department of Oncology, Johns Hopkins University, School of Medicine, 725 N Wolfe Street, Baltimore, MD 21205
| |
Collapse
|
4
|
García-Arcos JM, Jha A, Waterman CM, Piel M. Blebology: principles of bleb-based migration. Trends Cell Biol 2024; 34:838-853. [PMID: 38538441 PMCID: PMC11424778 DOI: 10.1016/j.tcb.2024.02.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 02/09/2024] [Accepted: 02/21/2024] [Indexed: 09/27/2024]
Abstract
Bleb-based migration, a conserved cell motility mode, has a crucial role in both physiological and pathological processes. Unlike the well-elucidated mechanisms of lamellipodium-based mesenchymal migration, the dynamics of bleb-based migration remain less understood. In this review, we highlight in a systematic way the establishment of front-rear polarity, bleb formation and extension, and the distinct regimes of bleb dynamics. We emphasize new evidence proposing a regulatory role of plasma membrane-cortex interactions in blebbing behavior and discuss the generation of force and its transmission during migration. Our analysis aims to deepen the understanding of the physical and molecular mechanisms of bleb-based migration, shedding light on its implications and significance for health and disease.
Collapse
Affiliation(s)
| | - Ankita Jha
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Clare M Waterman
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Matthieu Piel
- Institut Curie, UMR144, CNRS, PSL University, Paris, France; Institut Pierre Gilles de Gennes, PSL University, Paris, France.
| |
Collapse
|
5
|
Lin L, Tijjani I, Guo H, An Q, Cao J, Chen X, Liu W, Wang Z, Norvienyeku J. Cytoplasmic dynein1 intermediate-chain2 regulates cellular trafficking and physiopathological development in Magnaporthe oryzae. iScience 2023; 26:106050. [PMID: 36866040 PMCID: PMC9971887 DOI: 10.1016/j.isci.2023.106050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/09/2022] [Accepted: 01/20/2023] [Indexed: 02/12/2023] Open
Abstract
The cytoplasmic dynein 1, a minus end-directed motor protein, is an essential microtubule-based molecular motor that mediates the movement of molecules to intracellular destinations in eukaryotes. However, the role of dynein in the pathogenesis of Magnaporthe oryzae is unknown. Here, we identified cytoplasmic dynein 1 intermediate-chain 2 genes in M. oryzae and functionally characterized it using genetic manipulations, and biochemical approaches. We observed that targeted the deletion of MoDYNC1I2 caused significant vegetative growth defects, abolished conidiation, and rendered the ΔModync1I2 strains non-pathogenic. Microscopic examinations revealed significant defects in microtubule network organization, nuclear positioning, and endocytosis ΔModync1I2 strains. MoDync1I2 is localized exclusively to microtubules during fungal developmental stages but co-localizes with the histone OsHis1 in plant nuclei upon infection. The exogenous expression of a histone gene, MoHis1, restored the homeostatic phenotypes of ΔModync1I2 strains but not pathogenicity. These findings could facilitate the development of dynein-directed remedies for managing the rice blast disease.
Collapse
Affiliation(s)
- Lily Lin
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China,State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Ibrahim Tijjani
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Hengyuan Guo
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, College of Plant Protection, Hainan University, Haikou, China
| | - Qiuli An
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jiaying Cao
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xiaomin Chen
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Wende Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Zonghua Wang
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China,Institute of Oceanography, Minjiang University, Fuzhou 350108, China,Corresponding author
| | - Justice Norvienyeku
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, College of Plant Protection, Hainan University, Haikou, China,Hainan Yazhou Bay Seed Laboratory, Sanya Nanfan Research Institute of Hainan University, Sanya, China,Corresponding author
| |
Collapse
|
6
|
Das A, Adhikary S, Roy Chowdhury A, Barui A. Leveraging substrate stiffness to promote stem cell asymmetric division via mechanotransduction-polarity protein axis and its Bayesian regression analysis. Rejuvenation Res 2022; 25:59-69. [PMID: 35316074 DOI: 10.1089/rej.2021.0039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Asymmetric division of stem cells is an evolutionarily conserved process in multicellular organisms responsible for maintaining cellular fate diversity. Symmetric-asymmetric division pattern of mesenchymal stem cells (MSC) is regulated by both biochemical and biophysical cues. However, modulation of mechanotransduction pathway by varying scaffold properties and their adaptation to control stem cell division fate is not widely established. In present study, we explored the interplay between the mechanotrasduction pathway and polarity protein complex in stem cell asymmetry under varied biophysical stimuli. We hypothesize that variation of scaffold stiffness will impart mechanical stimulus and control the cytoskeleton assembly through RhoA, which will lead to further downstream activation of polarity-related cell signalling and asymmetric division of MSC. To establish the hypothesis, umbilical cord derived MSC were cultured on PCL/collagen scaffolds with varied stiffness and expressions of several important genes (viz. YAP, TAZ, LATS1, LATS2, Par3, Par6, PRKC1 (homolog of aPKC) and RhoA) and biomarkers (viz. YAP, TAZ, F-actin, Numb) were assessed. SVM polarity index was employed to understand the polarization status of the MSC cultured on varied scaffold stiffness. Further, the Bayesian logistic regression model was employed for classifying the asymmetric division of MSC cultured on different scaffold stiffness which showed 91% accuracy. Present study emphasizes the vital role of scaffold properties in modulating the mechanotransduction signalling pathway of MSC and provides mechanistic basis for adopting facile method to control stem cell division pattern towards improving tissue engineering outcome.
Collapse
Affiliation(s)
- Ankita Das
- Indian Institute of Engineering Science and Technology, 30130, Howrah, India;
| | - Shreya Adhikary
- Indian Institute of Engineering Science and Technology, 30130, Howrah, India;
| | - Amit Roy Chowdhury
- Indian Institute of Engineering Science and Technology, 30130, Howrah, India;
| | - Ananya Barui
- Indian Institute of Engineering Science and Technology, 30130, Centre for Healthcare science and Technology, IIEST Shibpur, Howrah, WB, Howrah, India, 711103;
| |
Collapse
|
7
|
Abstract
Accurate decoding of spatial chemical landscapes is critical for many cell functions. Eukaryotic cells decode local chemical gradients to orient growth or movement in productive directions. Recent work on yeast model systems, whose gradient sensing pathways display much less complexity than those in animal cells, has suggested new paradigms for how these very small cells successfully exploit information in noisy and dynamic pheromone gradients to identify their mates. Pheromone receptors regulate a polarity circuit centered on the conserved Rho-family GTPase, Cdc42. The polarity circuit contains both positive and negative feedback pathways, allowing spontaneous symmetry breaking and also polarity site disassembly and relocation. Cdc42 orients the actin cytoskeleton, leading to focused vesicle traffic that promotes movement of the polarity site and also reshapes the cortical distribution of receptors at the cell surface. In this article, we review the advances from work on yeasts and compare them with the excitable signaling pathways that have been revealed in chemotactic animal cells. Expected final online publication date for the Annual Review of Biophysics, Volume 51 is May 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Debraj Ghose
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina, USA;
| | - Timothy Elston
- Department of Pharmacology, University of North Carolina at Chapel Hill, North Carolina, USA
| | - Daniel Lew
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina, USA;
| |
Collapse
|
8
|
Abstract
All living cells interact dynamically with a constantly changing world. Eukaryotes, in particular, evolved radically new ways to sense and react to their environment. These advances enabled new and more complex forms of cellular behaviour in eukaryotes, including directional movement, active feeding, mating, and responses to predation. But what are the key events and innovations during eukaryogenesis that made all of this possible? Here we describe the ancestral repertoire of eukaryotic excitability and discuss five major cellular innovations that enabled its evolutionary origin. The innovations include a vastly expanded repertoire of ion channels, the emergence of cilia and pseudopodia, endomembranes as intracellular capacitors, a flexible plasma membrane and the relocation of chemiosmotic ATP synthesis to mitochondria, which liberated the plasma membrane for more complex electrical signalling involved in sensing and reacting. We conjecture that together with an increase in cell size, these new forms of excitability greatly amplified the degrees of freedom associated with cellular responses, allowing eukaryotes to vastly outperform prokaryotes in terms of both speed and accuracy. This comprehensive new perspective on the evolution of excitability enriches our view of eukaryogenesis and emphasizes behaviour and sensing as major contributors to the success of eukaryotes. This article is part of the theme issue 'Basal cognition: conceptual tools and the view from the single cell'.
Collapse
Affiliation(s)
- Kirsty Y. Wan
- Living Systems Institute, University of Exeter, Stocker Road, Exeter EX4 4QD, UK
| | - Gáspár Jékely
- Living Systems Institute, University of Exeter, Stocker Road, Exeter EX4 4QD, UK
| |
Collapse
|
9
|
Abstract
In this review, we consider transformations of axial symmetry in metazoan evolution and development, the genetic basis, and phenotypic expressions of different axial body plans. In addition to the main symmetry types in metazoan body plans, such as rotation (radial symmetry), reflection (mirror and glide reflection symmetry), and translation (metamerism), many biological objects show scale (fractal) symmetry as well as some symmetry-type combinations. Some genetic mechanisms of axial pattern establishment, creating a coordinate system of a metazoan body plan, bilaterian segmentation, and left–right symmetry/asymmetry, are analysed. Data on the crucial contribution of coupled functions of the Wnt, BMP, Notch, and Hedgehog signaling pathways (all pathways are designated according to the abbreviated or full names of genes or their protein products; for details, see below) and the axial Hox-code in the formation and maintenance of metazoan body plans are necessary for an understanding of the evolutionary diversification and phenotypic expression of various types of axial symmetry. The lost body plans of some extinct Ediacaran and early Cambrian metazoans are also considered in comparison with axial body plans and posterior growth in living animals.
Collapse
|
10
|
Tse JD, Moore R, Meng Y, Tao W, Smith ER, Xu XX. Dynamic conversion of cell sorting patterns in aggregates of embryonic stem cells with differential adhesive affinity. BMC DEVELOPMENTAL BIOLOGY 2021; 21:2. [PMID: 33407086 PMCID: PMC7788919 DOI: 10.1186/s12861-020-00234-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 11/24/2020] [Indexed: 12/23/2022]
Abstract
BACKGROUND Mammalian early development comprises the proliferation, differentiation, and self-assembly of the embryonic cells. The classic experiment undertaken by Townes and Holtfreter demonstrated the ability of dissociated embryonic cells to sort and self-organize spontaneously into the original tissue patterns. Here, we further explored the principles and mechanisms underlying the phenomenon of spontaneous tissue organization by studying aggregation and sorting of mouse embryonic stem (ES) cells with differential adhesive affinity in culture. RESULTS As observed previously, in aggregates of wild-type and E-cadherin-deficient ES cells, the cell assemblies exhibited an initial sorting pattern showing wild-type cells engulfed by less adhesive E-cadherin-deficient ES cells, which fits the pattern predicted by the differential adhesive hypothesis proposed by Malcom Steinberg. However, in further study of more mature cell aggregates, the initial sorting pattern reversed, with the highly adhesive wild-type ES cells forming an outer shell enveloping the less adhesive E-cadherin-deficient cells, contradicting Steinberg's sorting principle. The outer wild-type cells of the more mature aggregates did not differentiate into endoderm, which is known to be able to sort to the exterior from previous studies. In contrast to the naive aggregates, the mature aggregates presented polarized, highly adhesive cells at the outer layer. The surface polarity was observed as an actin cap contiguously spanning across the apical surface of multiple adjacent cells, though independent of the formation of tight junctions. CONCLUSIONS Our experimental findings suggest that the force of differential adhesive affinity can be overcome by even subtle polarity generated from strong bilateral ligation of highly adhesive cells in determining cell sorting patterns.
Collapse
Affiliation(s)
- Jeffrey D. Tse
- Sylvester Comprehensive Cancer Center, Department of Cell Biology, Cell and Developmental Biology Graduate Program, University of Miami School of Medicine, Miami, FL 33136 USA
| | - Robert Moore
- Sylvester Comprehensive Cancer Center, Department of Cell Biology, Cell and Developmental Biology Graduate Program, University of Miami School of Medicine, Miami, FL 33136 USA
| | - Yue Meng
- Sylvester Comprehensive Cancer Center, Department of Cell Biology, Cell and Developmental Biology Graduate Program, University of Miami School of Medicine, Miami, FL 33136 USA
| | - Wensi Tao
- Sylvester Comprehensive Cancer Center, Department of Cell Biology, Cell and Developmental Biology Graduate Program, University of Miami School of Medicine, Miami, FL 33136 USA
| | - Elizabeth R. Smith
- Sylvester Comprehensive Cancer Center, Department of Cell Biology, Cell and Developmental Biology Graduate Program, University of Miami School of Medicine, Miami, FL 33136 USA
| | - Xiang-Xi Xu
- Sylvester Comprehensive Cancer Center, Department of Cell Biology, Cell and Developmental Biology Graduate Program, University of Miami School of Medicine, Miami, FL 33136 USA
| |
Collapse
|
11
|
Wigerius M, Quinn D, Fawcett JP. Emerging roles for angiomotin in the nervous system. Sci Signal 2020; 13:13/655/eabc0635. [PMID: 33109746 DOI: 10.1126/scisignal.abc0635] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Angiomotins are a family of molecular scaffolding proteins that function to organize contact points (called tight junctions in vertebrates) between adjacent cells. Some angiomotin isoforms bind to the actin cytoskeleton and are part of signaling pathways that influence cell morphology and migration. Others cooperate with components of the Hippo signaling pathway and the associated networks to control organ growth. The 130-kDa isoform, AMOT-p130, has critical roles in neural stem cell differentiation, dendritic patterning, and synaptic maturation-attributes that are essential for normal brain development and are consistent with its association with autism. Here, we review and discuss the evidence that supports a role for AMOT-p130 in neuronal development in the central nervous system.
Collapse
Affiliation(s)
- Michael Wigerius
- Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada.
| | - Dylan Quinn
- Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - James P Fawcett
- Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada. .,Department of Surgery, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| |
Collapse
|
12
|
Copos C, Mogilner A. A hybrid stochastic-deterministic mechanochemical model of cell polarization. Mol Biol Cell 2020; 31:1637-1649. [PMID: 32459563 PMCID: PMC7521800 DOI: 10.1091/mbc.e19-09-0549] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 05/11/2020] [Accepted: 05/20/2020] [Indexed: 12/15/2022] Open
Abstract
Polarization is a crucial component in cell differentiation, development, and motility, but its details are not yet well understood. At the onset of cell locomotion, cells break symmetry to form well-defined cell fronts and rears. This polarity establishment varies across cell types: in Dictyostelium discoideum cells, it is mediated by biochemical signaling pathways and can function in the absence of a cytoskeleton, while in keratocytes, it is tightly connected to cytoskeletal dynamics and mechanics. Theoretical models that have been developed to understand the onset of polarization have explored either signaling or mechanical pathways, yet few have explored mechanochemical mechanisms. However, many motile cells rely on both signaling modules and actin cytoskeleton to break symmetry and achieve a stable polarized state. We propose a general mechanochemical polarization model based on coupling between a stochastic model for the segregation of signaling molecules and a simplified mechanical model for actin cytoskeleton network competition. We find that local linear coupling between minimally nonlinear signaling and cytoskeletal systems, separately not supporting stable polarization, yields a robustly polarized cell state. The model captures the essence of spontaneous polarization of neutrophils, which has been proposed to emerge due to the competition between frontness and backness pathways.
Collapse
Affiliation(s)
- Calina Copos
- Courant Institute, New York University, New York, NY 10012
| | - Alex Mogilner
- Courant Institute, New York University, New York, NY 10012
- Department of Biology, New York University, New York, NY 10012
| |
Collapse
|
13
|
Moure A, Gomez H. Influence of myosin activity and mechanical impact on keratocyte polarization. SOFT MATTER 2020; 16:5177-5194. [PMID: 32459252 DOI: 10.1039/d0sm00473a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In cell migration, polarization is the process by which a stationary cell breaks symmetry and initiates motion. Although a lot is known about the mechanisms involved in cell polarization, the role played by myosin contraction remains unclear. In addition, cell polarization by mechanical impact has received little attention. Here, we study the influence of myosin activity on cell polarization and the initiation of motion induced by mechanical cues using a computational model for keratocytes. The model accounts for cell deformation, the dynamics of myosin and the signaling protein RhoA (a member of the Rho GTPases family), as well as the forces acting on the actomyosin network. Our results show that the attainment of a steady polarized state depends on the strength of myosin down- or up-regulation and that myosin upregulation favors cell polarization. Our results also confirm the existence of a threshold level for cell polarization, which is determined by the level of polarization of the Rho GTPases at the time the external stimuli vanish. In all, this paper shows that capturing the interactions between the signaling proteins (Rho GTPases for keratocytes) and the compounds of the motile machinery in a moving cell is crucial to study cell polarization.
Collapse
Affiliation(s)
- Adrian Moure
- School of Mechanical Engineering, Purdue University, West Lafayette, 47907 IN, USA.
| | - Hector Gomez
- School of Mechanical Engineering, Purdue University, West Lafayette, 47907 IN, USA. and Weldon School of Biomedical Engineering, Purdue University, West Lafayette, 47907 IN, USA and Purdue University Center for Cancer Research, Purdue University, West Lafayette, 47906 IN, USA
| |
Collapse
|
14
|
Fortuna I, Perrone GC, Krug MS, Susin E, Belmonte JM, Thomas GL, Glazier JA, de Almeida RMC. CompuCell3D Simulations Reproduce Mesenchymal Cell Migration on Flat Substrates. Biophys J 2020; 118:2801-2815. [PMID: 32407685 PMCID: PMC7264849 DOI: 10.1016/j.bpj.2020.04.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 04/20/2020] [Accepted: 04/20/2020] [Indexed: 11/16/2022] Open
Abstract
Mesenchymal cell crawling is a critical process in normal development, in tissue function, and in many diseases. Quantitatively predictive numerical simulations of cell crawling thus have multiple scientific, medical, and technological applications. However, we still lack a low-computational-cost approach to simulate mesenchymal three-dimensional (3D) cell crawling. Here, we develop a computationally tractable 3D model (implemented as a simulation in the CompuCell3D simulation environment) of mesenchymal cells crawling on a two-dimensional substrate. The Fürth equation, the usual characterization of mean-squared displacement (MSD) curves for migrating cells, describes a motion in which, for increasing time intervals, cell movement transitions from a ballistic to a diffusive regime. Recent experiments have shown that for very short time intervals, cells exhibit an additional fast diffusive regime. Our simulations' MSD curves reproduce the three experimentally observed temporal regimes, with fast diffusion for short time intervals, slow diffusion for long time intervals, and intermediate time -interval-ballistic motion. The resulting parameterization of the trajectories for both experiments and simulations allows the definition of time- and length scales that translate between computational and laboratory units. Rescaling by these scales allows direct quantitative comparisons among MSD curves and between velocity autocorrelation functions from experiments and simulations. Although our simulations replicate experimentally observed spontaneous symmetry breaking, short-timescale diffusive motion, and spontaneous cell-motion reorientation, their computational cost is low, allowing their use in multiscale virtual-tissue simulations. Comparisons between experimental and simulated cell motion support the hypothesis that short-time actomyosin dynamics affects longer-time cell motility. The success of the base cell-migration simulation model suggests its future application in more complex situations, including chemotaxis, migration through complex 3D matrices, and collective cell motion.
Collapse
Affiliation(s)
- Ismael Fortuna
- Instituto de Física, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Gabriel C Perrone
- Instituto de Física, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Monique S Krug
- Instituto de Física, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Eduarda Susin
- Instituto de Física, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Julio M Belmonte
- Biocomplexity Institute and Department of Intelligent Systems Engineering, Indiana University, Bloomington, Indiana; Department of Physics, North Carolina State University, Raleigh, North Carolina
| | - Gilberto L Thomas
- Instituto de Física, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil.
| | - James A Glazier
- Biocomplexity Institute and Department of Intelligent Systems Engineering, Indiana University, Bloomington, Indiana
| | - Rita M C de Almeida
- Instituto de Física, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil; Instituto Nacional de Ciência e Tecnologia, Sistemas Complexos, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil; Program de Pós Graduação em Bioinformática, Universidade Federal do Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil.
| |
Collapse
|
15
|
Ierushalmi N, Malik-Garbi M, Manhart A, Abu Shah E, Goode BL, Mogilner A, Keren K. Centering and symmetry breaking in confined contracting actomyosin networks. eLife 2020; 9:55368. [PMID: 32314730 PMCID: PMC7173961 DOI: 10.7554/elife.55368] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 03/19/2020] [Indexed: 11/13/2022] Open
Abstract
Centering and decentering of cellular components is essential for internal organization of cells and their ability to perform basic cellular functions such as division and motility. How cells achieve proper localization of their organelles is still not well-understood, especially in large cells such as oocytes. Here, we study actin-based positioning mechanisms in artificial cells with persistently contracting actomyosin networks, generated by encapsulating cytoplasmic Xenopus egg extracts into cell-sized ‘water-in-oil’ droplets. We observe size-dependent localization of the contraction center, with a symmetric configuration in larger cells and a polar one in smaller cells. Centering is achieved via a hydrodynamic mechanism based on Darcy friction between the contracting network and the surrounding cytoplasm. During symmetry breaking, transient attachments to the cell boundary drive the contraction center to a polar location. The centering mechanism is cell-cycle dependent and weakens considerably during interphase. Our findings demonstrate a robust, yet tunable, mechanism for subcellular localization. In order to survive, cells need to react to their environment and change their shape or the localization of their internal components. For example, the nucleus – the compartment that contains the genetic information – is often localized at the center of the cell, but it can also be positioned at the side, for instance when cells move or divide asymmetrically. Cells use multiple positioning mechanisms to move their internal components, including a process that relies on networks of filaments made of a protein known as actin. These networks are constantly remodeled as actin proteins are added and removed from the network. Embedded molecular motors can cause the network of actin filaments to contract and push or pull on the compartments. Yet, the exact way these networks localize components in the cell remains unclear, especially in eggs and other large cells. To investigate this question, Ierushalmi et al. studied the actin networks in artificial cells that they created by enclosing the contents of frog eggs in small droplets surrounded by oil. This showed that the networks contracted either to the center of the cell or to its side. Friction between the contracting actin network and the fluid in the cell generated a force that tends to push the contraction center towards the middle of the cell. In larger cells, this led to the centering of the actin network. In smaller cells however, the network transiently attached to the boundary of the cell, leading the contraction center to be pulled to one side. By developing simpler artificial cells that mimic the positioning processes seen in real-life cells, Ierushalmi et al. discovered new mechanisms for how cells may center or de-center their components. This knowledge may be useful to understand diseases that can emerge when the nucleus or other compartments fail to move to the right location, and which are associated with certain organs developing incorrectly.
Collapse
Affiliation(s)
- Niv Ierushalmi
- Department of Physics, Technion- Israel Institute of Technology, Haifa, Israel
| | - Maya Malik-Garbi
- Department of Physics, Technion- Israel Institute of Technology, Haifa, Israel
| | - Angelika Manhart
- Department of Mathematics, University College London, London, United Kingdom
| | - Enas Abu Shah
- Department of Physics, Technion- Israel Institute of Technology, Haifa, Israel.,Kennedy Institute of Rheumatology, University of Oxford, Oxford, United Kingdom
| | - Bruce L Goode
- Department of Biology, Brandeis University, Waltham, United States
| | - Alex Mogilner
- Courant Institute of Mathematical Sciences and Department of Biology, New York University, New York, United States
| | - Kinneret Keren
- Department of Physics, Technion- Israel Institute of Technology, Haifa, Israel.,Network Biology Research Laboratories and Russell Berrie Nanotechnology Institute, Technion - Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
16
|
Kumari S, Mak M, Poh YC, Tohme M, Watson N, Melo M, Janssen E, Dustin M, Geha R, Irvine DJ. Cytoskeletal tension actively sustains the migratory T-cell synaptic contact. EMBO J 2020; 39:e102783. [PMID: 31894880 PMCID: PMC7049817 DOI: 10.15252/embj.2019102783] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 11/12/2019] [Accepted: 11/18/2019] [Indexed: 01/06/2023] Open
Abstract
When migratory T cells encounter antigen-presenting cells (APCs), they arrest and form radially symmetric, stable intercellular junctions termed immunological synapses which facilitate exchange of crucial biochemical information and are critical for T-cell immunity. While the cellular processes underlying synapse formation have been well characterized, those that maintain the symmetry, and thereby the stability of the synapse, remain unknown. Here we identify an antigen-triggered mechanism that actively promotes T-cell synapse symmetry by generating cytoskeletal tension in the plane of the synapse through focal nucleation of actin via Wiskott-Aldrich syndrome protein (WASP), and contraction of the resultant actin filaments by myosin II. Following T-cell activation, WASP is degraded, leading to cytoskeletal unraveling and tension decay, which result in synapse breaking. Thus, our study identifies and characterizes a mechanical program within otherwise highly motile T cells that sustains the symmetry and stability of the T cell-APC synaptic contact.
Collapse
Affiliation(s)
- Sudha Kumari
- Koch Institute of Integrative Research, MIT, Cambridge, MA, USA.,Ragon Institute of Harvard, MIT and MGH, Cambridge, MA, USA
| | - Michael Mak
- Department of Mechanical Engineering, MIT, Cambridge, MA, USA
| | - Yeh-Chuin Poh
- Koch Institute of Integrative Research, MIT, Cambridge, MA, USA.,Department of Mechanical Engineering, MIT, Cambridge, MA, USA
| | - Mira Tohme
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Nicki Watson
- Whitehead Institute of Biomedical Research, Cambridge, MA, USA
| | - Mariane Melo
- Koch Institute of Integrative Research, MIT, Cambridge, MA, USA.,Ragon Institute of Harvard, MIT and MGH, Cambridge, MA, USA
| | - Erin Janssen
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Michael Dustin
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Raif Geha
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Darrell J Irvine
- Koch Institute of Integrative Research, MIT, Cambridge, MA, USA.,Ragon Institute of Harvard, MIT and MGH, Cambridge, MA, USA.,Department of Biological Engineering, MIT, Cambridge, MA, USA.,Howard Hughes Medical Institute, Chevy Chase, MD, USA
| |
Collapse
|
17
|
Chandrasekaran A, Upadhyaya A, Papoian GA. Remarkable structural transformations of actin bundles are driven by their initial polarity, motor activity, crosslinking, and filament treadmilling. PLoS Comput Biol 2019; 15:e1007156. [PMID: 31287817 PMCID: PMC6615854 DOI: 10.1371/journal.pcbi.1007156] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 06/06/2019] [Indexed: 12/12/2022] Open
Abstract
Bundled actin structures play a key role in maintaining cellular shape, in aiding force transmission to and from extracellular substrates, and in affecting cellular motility. Recent studies have also brought to light new details on stress generation, force transmission and contractility of actin bundles. In this work, we are primarily interested in the question of what determines the stability of actin bundles and what network geometries do unstable bundles eventually transition to. To address this problem, we used the MEDYAN mechano-chemical force field, modeling several micron-long actin bundles in 3D, while accounting for a comprehensive set of chemical, mechanical and transport processes. We developed a hierarchical clustering algorithm for classification of the different long time scale morphologies in our study. Our main finding is that initially unipolar bundles are significantly more stable compared with an apolar initial configuration. Filaments within the latter bundles slide easily with respect to each other due to myosin activity, producing a loose network that can be subsequently severely distorted. At high myosin concentrations, a morphological transition to aster-like geometries was observed. We also investigated how actin treadmilling rates influence bundle dynamics, and found that enhanced treadmilling leads to network fragmentation and disintegration, while this process is opposed by myosin and crosslinking activities. Interestingly, treadmilling bundles with an initial apolar geometry eventually evolve to a whole gamut of network morphologies based on relative positions of filament ends, such as sarcomere-like organization. We found that apolar bundles show a remarkable sensitivity to environmental conditions, which may be important in enabling rapid cytoskeletal structural reorganization and adaptation in response to intracellular and extracellular cues.
Collapse
Affiliation(s)
- Aravind Chandrasekaran
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland, United States of America
- Institute for Physical Science and Technology, University of Maryland, College Park, Maryland, United States of America
| | - Arpita Upadhyaya
- Institute for Physical Science and Technology, University of Maryland, College Park, Maryland, United States of America
- Department of Physics, University of Maryland, College Park, United States of America
| | - Garegin A. Papoian
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland, United States of America
- Institute for Physical Science and Technology, University of Maryland, College Park, Maryland, United States of America
| |
Collapse
|
18
|
Azote S, Müller-Nedebock KK. Density fields for branching, stiff networks in rigid confining regions. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2019; 42:23. [PMID: 30788631 DOI: 10.1140/epje/i2019-11784-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 01/23/2019] [Indexed: 06/09/2023]
Abstract
We develop a formalism to describe the equilibrium distributions for segments of confined branched networks consisting of stiff filaments. This is applicable to certain situations of cytoskeleton in cells, such as for example actin filaments with branching due to the Arp2/3 complex. We develop a grand ensemble formalism that enables the computation of segment density and polarisation profiles within the confines of the cell. This is expressed in terms of the solution to nonlinear integral equations for auxiliary functions. We find three specific classes of behaviour depending on filament length, degree of branching and the ratio of persistence length to the dimensions of the geometry. Our method allows a numerical approach for semi-flexible filaments that are networked.
Collapse
Affiliation(s)
- Somiéalo Azote
- Institute of Theoretical Physics, Department of Physics, Stellenbosch University, Stellenbosch, South Africa.
| | - Kristian K Müller-Nedebock
- Institute of Theoretical Physics, Department of Physics, Stellenbosch University, Stellenbosch, South Africa
- National Institute for Theoretical Physics, Stellenbosch, South Africa
| |
Collapse
|
19
|
Korenić A, Perović S, Ćirković MM, Miquel PA. Symmetry breaking and functional incompleteness in biological systems. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2019; 150:1-12. [PMID: 30776381 DOI: 10.1016/j.pbiomolbio.2019.02.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 12/31/2018] [Accepted: 02/05/2019] [Indexed: 12/20/2022]
Abstract
Symmetry-based explanations using symmetry breaking (SB) as the key explanatory tool have complemented and replaced traditional causal explanations in various domains of physics. The process of spontaneous SB is now a mainstay of contemporary explanatory accounts of large chunks of condensed-matter physics, quantum field theory, nonlinear dynamics, cosmology, and other disciplines. A wide range of empirical research into various phenomena related to symmetries and SB across biological scales has accumulated as well. Led by these results, we identify and explain some common features of the emergence, propagation, and cascading of SB-induced layers across the biosphere. These features are predicated on the thermodynamic openness and intrinsic functional incompleteness of the systems at stake and have not been systematically analyzed from a general philosophical and methodological perspective. We also consider possible continuity of SB across the physical and biological world and discuss the connection between Darwinism and SB-based analysis of the biosphere and its history.
Collapse
Affiliation(s)
- Andrej Korenić
- The Centre for Laser Microscopy, Institute for Physiology and Biochemistry, Faculty of Biology, University of Belgrade, Serbia
| | | | | | | |
Collapse
|
20
|
Kim EJY, Korotkevich E, Hiiragi T. Coordination of Cell Polarity, Mechanics and Fate in Tissue Self-organization. Trends Cell Biol 2018; 28:541-550. [DOI: 10.1016/j.tcb.2018.02.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 02/20/2018] [Accepted: 02/20/2018] [Indexed: 02/06/2023]
|
21
|
Tan TH, Malik-Garbi M, Abu-Shah E, Li J, Sharma A, MacKintosh FC, Keren K, Schmidt CF, Fakhri N. Self-organized stress patterns drive state transitions in actin cortices. SCIENCE ADVANCES 2018; 4:eaar2847. [PMID: 29881775 PMCID: PMC5990313 DOI: 10.1126/sciadv.aar2847] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2017] [Accepted: 04/27/2018] [Indexed: 05/22/2023]
Abstract
Biological functions rely on ordered structures and intricately controlled collective dynamics. This order in living systems is typically established and sustained by continuous dissipation of energy. The emergence of collective patterns of motion is unique to nonequilibrium systems and is a manifestation of dynamic steady states. Mechanical resilience of animal cells is largely controlled by the actomyosin cortex. The cortex provides stability but is, at the same time, highly adaptable due to rapid turnover of its components. Dynamic functions involve regulated transitions between different steady states of the cortex. We find that model actomyosin cortices, constructed to maintain turnover, self-organize into distinct nonequilibrium steady states when we vary cross-link density. The feedback between actin network structure and organization of stress-generating myosin motors defines the symmetries of the dynamic steady states. A marginally cross-linked state displays divergence-free long-range flow patterns. Higher cross-link density causes structural symmetry breaking, resulting in a stationary converging flow pattern. We track the flow patterns in the model actomyosin cortices using fluorescent single-walled carbon nanotubes as novel probes. The self-organization of stress patterns we have observed in a model system can have direct implications for biological functions.
Collapse
Affiliation(s)
- Tzer Han Tan
- Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Maya Malik-Garbi
- Department of Physics, Technion—Israel Institute of Technology, Haifa, Israel
| | - Enas Abu-Shah
- Department of Physics, Technion—Israel Institute of Technology, Haifa, Israel
- Russell Berrie Nanotechnology Institute, Technion—Israel Institute of Technology, Haifa, Israel
| | - Junang Li
- Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Abhinav Sharma
- Department of Physics and Astronomy, Vrije Universiteit, Amsterdam, Netherlands
- Third Institute of Physics—Biophysics, University of Göttingen, Göttingen, Germany
| | - Fred C. MacKintosh
- Department of Physics and Astronomy, Vrije Universiteit, Amsterdam, Netherlands
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX 77005, USA
- Center for Theoretical Biophysics, Rice University, Houston, TX 77005, USA
| | - Kinneret Keren
- Department of Physics, Technion—Israel Institute of Technology, Haifa, Israel
- Russell Berrie Nanotechnology Institute, Technion—Israel Institute of Technology, Haifa, Israel
- Network Biology Research Laboratories, Technion—Israel Institute of Technology, Haifa, Israel
- Corresponding author. (K.K.); (C.F.S.); (N.F.)
| | - Christoph F. Schmidt
- Third Institute of Physics—Biophysics, University of Göttingen, Göttingen, Germany
- German Center for Cardiovascular Research (DZHK), Göttingen, Germany
- Department of Physics, Duke University, Durham, NC 27708, USA
- Corresponding author. (K.K.); (C.F.S.); (N.F.)
| | - Nikta Fakhri
- Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Corresponding author. (K.K.); (C.F.S.); (N.F.)
| |
Collapse
|
22
|
Yadav A, Gupta AK, Steiner A, Boomishankar R. Mapping the Assembly of Metal-Organic Cages into Complex Coordination Networks. Chemistry 2017; 23:18296-18302. [PMID: 29076576 DOI: 10.1002/chem.201704585] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Indexed: 11/09/2022]
Abstract
Structural transformations of supramolecular assemblies play an important role in the synthesis of complex metal-organic materials. Nonetheless, often little is known of the assembly pathways that lead to the final product. This work describes the conversion of cubic metal-organic polyhedra to connected-cage networks of varying topologies. The neutral cubic cage assembly of formula {Pd3 [PO(NiPr)3 ]}8 (PZDC)12 has been synthesized from {Pd3 [(NiPr)3 PO](OAc)2 (OH)}2 ⋅2 (CH3 )2 SO and 2,5-pyrazenedicarboxilic acid (PZDC-2H). This 42-component self-assembly is the largest known among the neutral cages with PdII ions. The cage contains twenty-four vacant carboxylate O-sites at the PZDC ligands that are available for further coordination. Post-assembly reactions of the cubic cage with FeII and ZnII ions produced cage-connected networks of dia and qtz topologies, respectively. During these reactions, the discrete cubic cage transforms into a network of tetrahedral cages that are bridged by the 3D metal ions. The robustness of the [Pd3 {[PO(NiPr)3 }]3+ molecular building units made it possible to map the post-assembly reactions in detail, which revealed a variety of intermediate 1D and 2D cage networks. Such step-by-step mapping of the transformation of discrete cages to cage-connected frameworks is unprecedented in the chemistry of coordination driven assemblies.
Collapse
Affiliation(s)
- Ashok Yadav
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune Dr. Homi Bhabha Road, Pune, 411008, India
| | - Arvind K Gupta
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune Dr. Homi Bhabha Road, Pune, 411008, India
| | - Alexander Steiner
- Department of Chemistry, University of Liverpool, Crown Street, Liverpool, L69 7ZD, UK
| | - Ramamoorthy Boomishankar
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune Dr. Homi Bhabha Road, Pune, 411008, India.,Centre for Energy Science, Indian Institute of Science Education and Research (IISER), Pune Dr. Homi Bhabha Road, Pune, 411008, India
| |
Collapse
|
23
|
Sarkar S, Khatun S, Dutta M, Roy S. Trans-generational transmission of altered phenotype resulting from flubendiamide-induced changes in apoptosis in larval imaginal discs of Drosophila melanogaster. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2017; 56:350-360. [PMID: 29121551 DOI: 10.1016/j.etap.2017.11.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 10/30/2017] [Accepted: 11/02/2017] [Indexed: 06/07/2023]
Abstract
The eye and wing morphology of Drosophila melanogaster maintain unique, stable pattern of genesis from larval eye and wing imaginal discs. Increased apoptosis in cells of eye and wing discs was found to be associated with flubendiamide (fluoride containing insecticide) exposure (at the range 0.25-10μg/mL) in D. melanogaster larvae. The chemical fed larvae on attaining adulthood revealed alterations in morphology and symmetry of their compound eyes and wings through scanning electron microscopy. Nearly 40% and 30% of flies (P generation) demonstrated alterations in eyes and wings respectively. Transmission electron microscopic study (at the range 1-20μg/mL) also established variation in the rhabdomere and pigment cell orientation as well as in the shape of the ommatidium. Subsequent SEM study with F1 and F2 generation flies also revealed structural variation in eye and wing. Decrease in percentage of altered eye and wing phenotype was noted in subsequent generations (P> F1>F2). Thus, the diamide insecticide, flubendiamide, expected to be environmentally safe at sub-lethal concentrations was found to increase apoptosis in larvae and thereby cause morphological alteration in the adult D. melanogaster. This study further demonstrated trans-generational transmission of altered phenotype in three subsequent generations of a non-target insect model, D. melanogaster.
Collapse
Affiliation(s)
- Saurabh Sarkar
- Toxicology Research Unit, Cytogenetics Laboratory, Department of Zoology, The University of Burdwan, Burdwan, West Bengal, 713104, India
| | - Salma Khatun
- Toxicology Research Unit, Cytogenetics Laboratory, Department of Zoology, The University of Burdwan, Burdwan, West Bengal, 713104, India
| | - Moumita Dutta
- Toxicology Research Unit, Cytogenetics Laboratory, Department of Zoology, The University of Burdwan, Burdwan, West Bengal, 713104, India
| | - Sumedha Roy
- Toxicology Research Unit, Cytogenetics Laboratory, Department of Zoology, The University of Burdwan, Burdwan, West Bengal, 713104, India.
| |
Collapse
|
24
|
Actomyosin polarisation through PLC-PKC triggers symmetry breaking of the mouse embryo. Nat Commun 2017; 8:921. [PMID: 29030553 PMCID: PMC5640629 DOI: 10.1038/s41467-017-00977-8] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 08/09/2017] [Indexed: 11/21/2022] Open
Abstract
Establishment of cell polarity in the mammalian embryo is fundamental for the first cell fate decision that sets aside progenitor cells for both the new organism and the placenta. Yet the sequence of events and molecular mechanism that trigger this process remain unknown. Here, we show that de novo polarisation of the mouse embryo occurs in two distinct phases at the 8-cell stage. In the first phase, an apical actomyosin network is formed. This is a pre-requisite for the second phase, in which the Par complex localises to the apical domain, excluding actomyosin and forming a mature apical cap. Using a variety of approaches, we also show that phospholipase C-mediated PIP2 hydrolysis is necessary and sufficient to trigger the polarisation of actomyosin through the Rho-mediated recruitment of myosin II to the apical cortex. Together, these results reveal the molecular framework that triggers de novo polarisation of the mouse embryo. The molecular trigger that establishes cell polarity in the mammalian embryo is unclear. Here, the authors show that de novo polarisation of the mouse embryo at the 8-cell stage is directed by Phospholipase C and Protein kinase C and occurs in two phases: polarisation of actomyosin followed by the Par complex.
Collapse
|
25
|
Chen L, Wang KX, Doyle PS. Effect of internal architecture on microgel deformation in microfluidic constrictions. SOFT MATTER 2017; 13:1920-1928. [PMID: 28186522 DOI: 10.1039/c6sm02674e] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The study of how soft particles deform to pass through narrow openings is important for understanding the transit of biological cells, as well as for designing deformable drug delivery carriers. In this work, we systematically explore how soft microparticles with various internal architectures deform during passage through microfluidic constrictions. We synthesize hydrogel particles with well-defined internal structure using lithography-based UV polymerization in microfluidic channels (stop-flow lithography). Using this in situ technique, we explore a range of 2D particle architectures and their effect on particle deformation. We observe that particles undergo buckling of internal supports and reorient at the constriction entrance in order to adopt preferred shapes that correspond to minimum energy configurations. Using finite element simulations of elastic deformation under compression, we accurately predict the optimal deformation configuration of these structured particles.
Collapse
Affiliation(s)
- Lynna Chen
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Kai Xi Wang
- Department of Chemical Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Patrick S Doyle
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
26
|
Luxenburg C, Geiger B. Multiscale View of Cytoskeletal Mechanoregulation of Cell and Tissue Polarity. Handb Exp Pharmacol 2017; 235:263-284. [PMID: 27807694 DOI: 10.1007/164_2016_34] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The ability of cells to generate, maintain, and repair tissues with complex architecture, in which distinct cells function as coherent units, relies on polarity cues. Polarity can be described as an asymmetry along a defined axis, manifested at the molecular, structural, and functional levels. Several types of cell and tissue polarities were described in the literature, including front-back, apical-basal, anterior-posterior, and left-right polarity. Extensive research provided insights into the specific regulators of each polarization process, as well as into generic elements that affect all types of polarities. The actin cytoskeleton and the associated adhesion structures are major regulators of most, if not all, known forms of polarity. Actin filaments exhibit intrinsic polarity and their ability to bind many proteins including the mechanosensitive adhesion and motor proteins, such as myosins, play key roles in cell polarization. The actin cytoskeleton can generate mechanical forces and together with the associated adhesions, probe the mechanical, structural, and chemical properties of the environment, and transmit signals that impact numerous biological processes, including cell polarity. In this article we highlight novel mechanisms whereby the mechanical forces and actin-adhesion complexes regulate cell and tissue polarity in a variety of natural and experimental systems.
Collapse
Affiliation(s)
- Chen Luxenburg
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel.
| | - Benjamin Geiger
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, 76100, Israel.
| |
Collapse
|
27
|
Pearson YE, Lund AW, Lin AWH, Ng CP, Alsuwaidi A, Azzeh S, Gater DL, Teo JCM. Non-invasive single-cell biomechanical analysis using live-imaging datasets. J Cell Sci 2016; 129:3351-64. [PMID: 27422102 DOI: 10.1242/jcs.191205] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 07/12/2016] [Indexed: 12/31/2022] Open
Abstract
The physiological state of a cell is governed by a multitude of processes and can be described by a combination of mechanical, spatial and temporal properties. Quantifying cell dynamics at multiple scales is essential for comprehensive studies of cellular function, and remains a challenge for traditional end-point assays. We introduce an efficient, non-invasive computational tool that takes time-lapse images as input to automatically detect, segment and analyze unlabeled live cells; the program then outputs kinematic cellular shape and migration parameters, while simultaneously measuring cellular stiffness and viscosity. We demonstrate the capabilities of the program by testing it on human mesenchymal stem cells (huMSCs) induced to differentiate towards the osteoblastic (huOB) lineage, and T-lymphocyte cells (T cells) of naïve and stimulated phenotypes. The program detected relative cellular stiffness differences in huMSCs and huOBs that were comparable to those obtained with studies that utilize atomic force microscopy; it further distinguished naïve from stimulated T cells, based on characteristics necessary to invoke an immune response. In summary, we introduce an integrated tool to decipher spatiotemporal and intracellular dynamics of cells, providing a new and alternative approach for cell characterization.
Collapse
Affiliation(s)
- Yanthe E Pearson
- Department of Applied Mathematics and Sciences, Khalifa University, P.O. Box 127788, Abu Dhabi, UAE
| | - Amanda W Lund
- Department of Cell, Developmental and Cancer Biology, Oregon Health and Science University, Portland, OR 97239, USA
| | - Alex W H Lin
- Endothelix, Inc., 2500 West Loop, South Houston, TX 77027, USA
| | - Chee P Ng
- Singapore-MIT Alliance for Research and Technology, 1 CREATE Way, Singapore 138602 Mimetas BV, JH Oortweg 19, Leiden 2333 CH, The Netherlands
| | - Aysha Alsuwaidi
- Department of Biomedical Engineering, Khalifa University, P.O. Box 127788, Abu Dhabi, UAE
| | - Sara Azzeh
- Department of Biomedical Engineering, Khalifa University, P.O. Box 127788, Abu Dhabi, UAE
| | - Deborah L Gater
- Department of Applied Mathematics and Sciences, Khalifa University, P.O. Box 127788, Abu Dhabi, UAE
| | - Jeremy C M Teo
- Department of Biomedical Engineering, Khalifa University, P.O. Box 127788, Abu Dhabi, UAE
| |
Collapse
|
28
|
Extracellular Matrix Revisited: Roles in Tissue Engineering. Int Neurourol J 2016; 20:S23-29. [PMID: 27230457 PMCID: PMC4895908 DOI: 10.5213/inj.1632600.318] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 05/14/2016] [Indexed: 01/11/2023] Open
Abstract
The extracellular matrix (ECM) is a heterogeneous, connective network composed of fibrous glycoproteins that coordinate in vivo to provide the physical scaffolding, mechanical stability, and biochemical cues necessary for tissue morphogenesis and homeostasis. This review highlights some of the recently raised aspects of the roles of the ECM as related to the fields of biophysics and biomedical engineering. Fundamental aspects of focus include the role of the ECM as a basic cellular structure, for novel spontaneous network formation, as an ideal scaffold in tissue engineering, and its essential contribution to cell sheet technology. As these technologies move from the laboratory to clinical practice, they are bound to shape the vast field of tissue engineering for medical transplantations.
Collapse
|
29
|
Klímová Z, Bráborec V, Maninová M, Čáslavský J, Weber MJ, Vomastek T. Symmetry breaking in spreading RAT2 fibroblasts requires the MAPK/ERK pathway scaffold RACK1 that integrates FAK, p190A-RhoGAP and ERK2 signaling. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:2189-200. [PMID: 27212270 DOI: 10.1016/j.bbamcr.2016.05.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 04/22/2016] [Accepted: 05/17/2016] [Indexed: 11/28/2022]
Abstract
The spreading of adhering cells is a morphogenetic process during which cells break spherical or radial symmetry and adopt migratory polarity with spatially segregated protruding cell front and non-protruding cell rear. The organization and regulation of these symmetry-breaking events, which are both complex and stochastic, are not fully understood. Here we show that in radially spreading cells, symmetry breaking commences with the development of discrete non-protruding regions characterized by large but sparse focal adhesions and long peripheral actin bundles. Establishment of this non-protruding static region specifies the distally oriented protruding cell front and thus determines the polarity axis and the direction of cell migration. The development of non-protruding regions requires ERK2 and the ERK pathway scaffold protein RACK1. RACK1 promotes adhesion-mediated activation of ERK2 that in turn inhibits p190A-RhoGAP signaling by reducing the peripheral localization of p190A-RhoGAP. We propose that sustained ERK signaling at the prospective cell rear induces p190A-RhoGAP depletion from the cell periphery resulting in peripheral actin bundles and cell rear formation. Since cell adhesion activates both ERK and p190A-RhoGAP signaling this constitutes a spatially confined incoherent feed-forward signaling circuit.
Collapse
Affiliation(s)
| | | | | | | | - Michael J Weber
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA, USA
| | - Tomáš Vomastek
- Institute of Microbiology AS CR, Prague, Czech Republic.
| |
Collapse
|
30
|
Mao Q, Lecuit T. Mechanochemical Interplay Drives Polarization in Cellular and Developmental Systems. Curr Top Dev Biol 2016; 116:633-57. [DOI: 10.1016/bs.ctdb.2015.11.039] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
31
|
Tsimbouri PM. Adult Stem Cell Responses to Nanostimuli. J Funct Biomater 2015; 6:598-622. [PMID: 26193326 PMCID: PMC4598673 DOI: 10.3390/jfb6030598] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 06/29/2015] [Accepted: 07/08/2015] [Indexed: 12/31/2022] Open
Abstract
Adult or mesenchymal stem cells (MSCs) have been found in different tissues in the body, residing in stem cell microenvironments called "stem cell niches". They play different roles but their main activity is to maintain tissue homeostasis and repair throughout the lifetime of an organism. Their ability to differentiate into different cell types makes them an ideal tool to study tissue development and to use them in cell-based therapies. This differentiation process is subject to both internal and external forces at the nanoscale level and this response of stem cells to nanostimuli is the focus of this review.
Collapse
Affiliation(s)
- Penelope M Tsimbouri
- Centre for Cell Engineering, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, Joseph Black Building, University of Glasgow, Glasgow G12 8QQ, UK.
| |
Collapse
|
32
|
Modeling large-scale dynamic processes in the cell: polarization, waves, and division. Q Rev Biophys 2015; 47:221-48. [PMID: 25124728 DOI: 10.1017/s0033583514000079] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The past decade has witnessed significant developments in molecular biology techniques, fluorescent labeling, and super-resolution microscopy, and together these advances have vastly increased our quantitative understanding of the cell. This detailed knowledge has concomitantly opened the door for biophysical modeling on a cellular scale. There have been comprehensive models produced describing many processes such as motility, transport, gene regulation, and chemotaxis. However, in this review we focus on a specific set of phenomena, namely cell polarization, F-actin waves, and cytokinesis. In each case, we compare and contrast various published models, highlight the relevant aspects of the biology, and provide a sense of the direction in which the field is moving.
Collapse
|
33
|
Balance between cell-substrate adhesion and myosin contraction determines the frequency of motility initiation in fish keratocytes. Proc Natl Acad Sci U S A 2015; 112:5045-50. [PMID: 25848042 DOI: 10.1073/pnas.1417257112] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Cells are dynamic systems capable of spontaneously switching among stable states. One striking example of this is spontaneous symmetry breaking and motility initiation in fish epithelial keratocytes. Although the biochemical and mechanical mechanisms that control steady-state migration in these cells have been well characterized, the mechanisms underlying symmetry breaking are less well understood. In this work, we have combined experimental manipulations of cell-substrate adhesion strength and myosin activity, traction force measurements, and mathematical modeling to develop a comprehensive mechanical model for symmetry breaking and motility initiation in fish epithelial keratocytes. Our results suggest that stochastic fluctuations in adhesion strength and myosin localization drive actin network flow rates in the prospective cell rear above a critical threshold. Above this threshold, high actin flow rates induce a nonlinear switch in adhesion strength, locally switching adhesions from gripping to slipping and further accelerating actin flow in the prospective cell rear, resulting in rear retraction and motility initiation. We further show, both experimentally and with model simulations, that the global levels of adhesion strength and myosin activity control the stability of the stationary state: The frequency of symmetry breaking decreases with increasing adhesion strength and increases with increasing myosin contraction. Thus, the relative strengths of two opposing mechanical forces--contractility and cell-substrate adhesion--determine the likelihood of spontaneous symmetry breaking and motility initiation.
Collapse
|
34
|
Abu Shah E, Malik-Garbi M, Keren K. Reconstitution of cortical actin networks within water-in-oil emulsions. Methods Cell Biol 2015; 128:287-301. [DOI: 10.1016/bs.mcb.2015.01.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
35
|
Abstract
Directed cell migration requires a spatially polarized distribution of polymerized actin. We develop and treat a mechanical model of cell polarization based on polymerization and depolymerization of actin filaments at the two ends of a cell, modulated by forces at either end that are coupled by the cell membrane. We solve this model using both a simulation approach that treats filament nucleation, polymerization, and depolymerization stochastically, and a rate-equation approach based on key properties such as the number of filaments N and the number of polymerized subunits F at either end of the cell. The rate-equation approach agrees closely with the stochastic approach at steady state and, when appropriately generalized, also predicts the dynamic behavior accurately. The calculated transitions from symmetric to polarized states show that polarization is enhanced by a high free-actin concentration, a large pointed-end off-rate, a small barbed-end off-rate, and a small spontaneous nucleation rate. The rate-equation approach allows us to perform a linear-stability analysis to pin down the key interactions that drive the polarization. The polarization is driven by a positive-feedback loop having two interactions. First, an increase in F at one side of the cell lengthens the filaments and thus reduces the decay rate of N (increasing N); second, increasing N enhances F because the force per growing filament tip is reduced. We find that the transitions induced by changing system properties result from supercritical pitchfork bifurcations. The filament lifetime depends strongly on the average filament length, and this effect is crucial for obtaining polarization correctly.
Collapse
Affiliation(s)
- Xinxin Wang
- Department of Physics, Washington University, One Brookings Drive, Campus Box 1105, USA
| | | |
Collapse
|
36
|
Curtis AS, Tsimbouri PM. Epigenesis: roles of nanotopography, nanoforces and nanovibration. Expert Rev Med Devices 2014; 11:417-23. [DOI: 10.1586/17434440.2014.916205] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
37
|
Abstract
The actin cortex plays a pivotal role in cell division, in generating and maintaining cell polarity and in motility. In all these contexts, the cortical network has to break symmetry to generate polar cytoskeletal dynamics. Despite extensive research, the mechanisms responsible for regulating cortical dynamics in vivo and inducing symmetry breaking are still unclear. Here we introduce a reconstituted system that self-organizes into dynamic actin cortices at the inner interface of water-in-oil emulsions. This artificial system undergoes spontaneous symmetry breaking, driven by myosin-induced cortical actin flows, which appears remarkably similar to the initial polarization of the embryo in many species. Our in vitro model system recapitulates the rich dynamics of actin cortices in vivo, revealing the basic biophysical and biochemical requirements for cortex formation and symmetry breaking. Moreover, this synthetic system paves the way for further exploration of artificial cells towards the realization of minimal model systems that can move and divide. DOI:http://dx.doi.org/10.7554/eLife.01433.001 Cells are extremely complex because they have to perform a vast number of processes. However, this also makes it difficult for researchers to figure out how the individual parts of the cell work. There is interest, therefore, in developing simple artificial cells that can accurately mimic how specific parts of a cell behave. An important process for a cell is called polarization. This is where the contents of the cell arrange themselves in a way that is not symmetrical. Polarization is necessary for many cellular functions, and is particularly important during embryonic development where it helps to form the complex shape of the developing embryo. The cytoskeleton—a dynamic structure that supports the cell and enables it to move—is crucial for polarization. An important part of the cytoskeleton is the actin cortex. This is a thin active sheet made up of a network of tiny filaments of a protein called actin that assembles at the inner face of the cell membrane. Many aspects of the structure and behavior of the actin cortex are not understood. Abu Shah and Keren have now developed an artificial cell system using aqueous droplets surrounded by oil that can reproduce the behavior of actin cortices in real cells. An actin cortex forms upon the localization of specific nucleation factors at the inner surface of the droplets. The artificial cortices are capable of spontaneous symmetry breaking, similar to the initial polarization in embryonic cells during development. This symmetry breaking is driven by molecular motors called myosins and depends on the connectivity of the actin network in the cortex. Experiments on the artificial cells also rule out several other mechanisms that have been proposed to explain symmetry breaking. The work of Abu Shah and Keren represents a further step towards the goal of creating simple artificial cells that can move and divide. DOI:http://dx.doi.org/10.7554/eLife.01433.002
Collapse
Affiliation(s)
- Enas Abu Shah
- Department of Physics, Technion-Israel Institute of Technology, Haifa, Israel The Russell Berrie Nanotechnology Institute, Technion-Israel Institute of Technology, Haifa, Israel
| | - Kinneret Keren
- Department of Physics, Technion-Israel Institute of Technology, Haifa, Israel The Russell Berrie Nanotechnology Institute, Technion-Israel Institute of Technology, Haifa, Israel Network Biology Research Laboratories, Technion-Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
38
|
Kiss B, Kellermayer MSZ. Stretching desmin filaments with receding meniscus reveals large axial tensile strength. J Struct Biol 2014; 186:472-80. [PMID: 24746912 DOI: 10.1016/j.jsb.2014.04.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 04/06/2014] [Accepted: 04/08/2014] [Indexed: 11/25/2022]
Abstract
Desmin forms the intermediate filament system of muscle cells where it plays important role in maintaining mechanical integrity and elasticity. Although the importance of intermediate-filament elasticity in cellular mechanics is being increasingly recognized, the molecular basis of desmin's elasticity is not fully understood. We explored desmin elasticity by molecular combing with forces calculated to be as large as 4nN. Average filament contour length increased 1.55-fold axial on average. Molecular combing together with EGTA-treatment caused the fragmentation of the filament into short, 60 to 120-nm-long and 4-nm-wide structures. The fragments display a surface periodicity of 38nm, suggesting that they are composed of laterally attached desmin dimers. The axis of the fragments may deviate significantly from that of the overstretched filament, indicating that they have a large orientational freedom in spite of being axially interconnected. The emergence of protofibril fragments thus suggests that the interconnecting head or tail domains of coiled-coil desmin dimers are load-bearing elements during axial stretch.
Collapse
Affiliation(s)
- Balázs Kiss
- Department of Biophysics and Radiation Biology, MTA-SE Molecular Biophysics Research Group, Semmelweis University, 1094 Budapest, Tűzoltó u. 37-47, Hungary.
| | - Miklós S Z Kellermayer
- Department of Biophysics and Radiation Biology, MTA-SE Molecular Biophysics Research Group, Semmelweis University, 1094 Budapest, Tűzoltó u. 37-47, Hungary
| |
Collapse
|
39
|
Alvarado J, Mulder BM, Koenderink GH. Alignment of nematic and bundled semiflexible polymers in cell-sized confinement. SOFT MATTER 2014; 10:2354-2364. [PMID: 24623093 DOI: 10.1039/c3sm52421c] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The finite size of cells poses severe spatial constraints on the network of semiflexible filaments called the cytoskeleton, a main determinant of cell shape. At the same time, the high packing density of cytoskeletal filaments poses mutual packing constraints. Here we investigate the competition between excluded volume interactions in the bulk and surface packing constraints on the orientational ordering of confined actin filaments as a function of filament density and the presence of crosslinks. We grow fluorescently labeled actin filaments in shallow (thickness dz 3 μm), rectangular microchambers with a systematically varied length (dy between 5 and 100 μm) and in-plane aspect ratio (dx/dy between 1 and 10). We determine the nematic director field by image analysis of fluorescence confocal images. We find that high-density (nematic) solutions respond sensitively to changes in the size and aspect ratio of the chambers. In small chambers (dy ≤ 20 μm), filaments align parallel to the long walls as soon as the aspect ratio is ≥1.5, indicating that surface-induced ordering dominates. In larger chambers, the filaments instead align along the chamber diagonal, indicating that bulk packing constraints dominate. The nematic order parameter is maximal in small and highly anisometric chambers. In contrast to the nematic solutions, low-density (isotropic) solutions are rather insensitive to confinement. Bundled actin solutions behave similarly to nematic solutions, but are less well-ordered. Our observations imply that the orientational order of actin filaments in flat confining geometries is primarily determined by a balance between bulk and surface packing constraints with a minimal effect of the enthalpic cost of filament bending. Our assay provides an interesting platform for the future reconstitution of more complex, active cytoskeletal systems with actively treadmilling filaments or molecular motors.
Collapse
Affiliation(s)
- José Alvarado
- FOM Institute AMOLF, Science Park 104, 1098 XG Amsterdam, Netherlands.
| | | | | |
Collapse
|
40
|
Beloussov LV. Morphogenesis can be driven by properly parametrised mechanical feedback. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2013; 36:132. [PMID: 24264054 DOI: 10.1140/epje/i2013-13132-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Revised: 06/23/2013] [Accepted: 10/15/2013] [Indexed: 06/02/2023]
Abstract
A fundamental problem of morphogenesis is whether it presents itself as a succession of links that are each driven by its own specific cause-effect relationship, or whether all of the links can be embraced by a common law that is possible to formulate in physical terms. We suggest that a common biophysical background for most, if not all, morphogenetic processes is based upon feedback between mechanical stresses (MS) that are imposed to a given part of a developing embryo by its other parts and MS that are actively generated within that part. The latter are directed toward hyper-restoration (restoration with an overshoot) of the initial MS values. We show that under mechanical constraints imposed by other parts, these tendencies drive forth development. To provide specificity for morphogenetic reactions, this feedback should be modulated by long-term parameters and/or initial conditions that are set up by genetic factors. The experimental and model data related to this concept are reviewed.
Collapse
Affiliation(s)
- L V Beloussov
- Laboratory of Developmental Biophysics, Faculty of Biology, Moscow State University, 119992, Moscow, Russia,
| |
Collapse
|
41
|
Freida D, Lecourt S, Cras A, Vanneaux V, Letort G, Gidrol X, Guyon L, Larghero J, Thery M. Human Bone Marrow Mesenchymal Stem Cells Regulate Biased DNA Segregation in Response to Cell Adhesion Asymmetry. Cell Rep 2013; 5:601-10. [DOI: 10.1016/j.celrep.2013.09.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Revised: 07/12/2013] [Accepted: 09/12/2013] [Indexed: 01/01/2023] Open
|
42
|
Juanes MA, Twyman H, Tunnacliffe E, Guo Z, ten Hoopen R, Segal M. Spindle pole body history intrinsically links pole identity with asymmetric fate in budding yeast. Curr Biol 2013; 23:1310-9. [PMID: 23810537 DOI: 10.1016/j.cub.2013.05.057] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Revised: 05/01/2013] [Accepted: 05/29/2013] [Indexed: 10/26/2022]
Abstract
BACKGROUND Budding yeast is a unique model for exploring differential fate in a cell dividing asymmetrically. In yeast, spindle orientation begins with the old spindle pole body (SPB) (from the preceding cell cycle) contacting the bud by its existing astral microtubules (aMTs) while the new pole delays astral microtubule organization. This appears to prime the inheritance of the old pole by the bud. The basis for this asymmetry and the discrimination of the poles by virtue of their history remain a mystery. RESULTS Here, we report that asymmetric aMT organization stems from an outstanding structural asymmetry linked to the SPB cycle. We show that the γ-tubulin nucleation complex (γTC) favors the old spindle pole, an asymmetry inherent to the outer plaque (the cytoplasmic face of the SPB). Indeed, Spc72 (the receptor for the γTC) is acquired by the new SPB outer plaque partway through spindle assembly. The significance of this asymmetry was explored in cells expressing an Spc72(1-276)-Cnm67 fusion that forced symmetric nucleation at the SPB outer plaques. This manipulation triggered simultaneous aMT organization by both spindle poles from the outset and led to symmetric contacts between poles and the bud, effectively disrupting the program for spindle polarity. Temporally symmetric aMT organization perturbed Kar9 polarization by randomizing the choice of the pole to be guided toward the bud. Accordingly, the pattern of SPB inheritance was also randomized. CONCLUSIONS Spc72 differential recruitment imparting asymmetric aMT organization represents the most upstream determinant linking SPB historical identity and fate.
Collapse
Affiliation(s)
- M Angeles Juanes
- Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EH, UK
| | | | | | | | | | | |
Collapse
|
43
|
Non-uniform membrane diffusion enables steady-state cell polarization via vesicular trafficking. Nat Commun 2013; 4:1380. [PMID: 23340420 DOI: 10.1038/ncomms2370] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Accepted: 12/06/2012] [Indexed: 12/18/2022] Open
Abstract
Actin-based vesicular trafficking of Cdc42, leading to a polarized concentration of the GTPase, has been implicated in cell polarization, but it was recently debated whether this mechanism allows stable maintenance of cell polarity. Here we show that endocytosis and exocytosis are spatially segregated in the polar plasma membrane, with sites of exocytosis correlating with microdomains of higher concentration and slower diffusion of Cdc42 compared with surrounding regions. Numerical simulations using experimentally obtained diffusion coefficients and trafficking geometry revealed that non-uniform membrane diffusion of Cdc42 in fact enables temporally sustained cell polarity. We show further that phosphatidylserine, a phospholipid recently found to be crucial for cell polarity, is enriched in Cdc42 microdomains. Weakening a potential interaction between phosphatidylserine and Cdc42 enhances Cdc42 diffusion in the microdomains but impedes the strength of polarization. These findings demonstrate a critical role for membrane microdomains in vesicular trafficking-mediated cell polarity.
Collapse
|
44
|
Abstract
Here we describe the phenomenon of symmetry breaking within a series of M4L6 container molecules. These containers were synthesized using planar rigid bis-bidentate ligands based on 2,6-substituted naphthalene, anthracene, or anthraquinone spacers and Fe(II) ions. The planarity of the ligand spacer favors a stereochemical configuration in which each cage contains two metal centers of opposite handedness to the other two, which would ordinarily result in an S4-symmetric, achiral configuration. Reduction of symmetry from S4 to C1 is achieved by the spatial offset between each ligand's pair of binding sites, which breaks the S4 symmetry axis. Using larger Cd(II) or Co(II) ions instead of Fe(II) resulted, in some cases, in the observation of dynamic motion of the symmetry-breaking ligands in solution. NMR spectra of these dynamic complexes thus reflected apparent S4 symmetry owing to rapid interconversion between energetically degenerate, enantiomeric C1-symmetric conformations.
Collapse
|
45
|
Abstract
Nearly every cell type exhibits some form of polarity, yet the molecular mechanisms vary widely. Here we examine what we term 'chemical systems' where cell polarization arises through biochemical interactions in signaling pathways, 'mechanical systems' where cells polarize due to forces, stresses and transport, and 'mechanochemical systems' where polarization results from interplay between mechanics and chemical signaling. To reveal potentially unifying principles, we discuss mathematical conceptualizations of several prototypical examples. We suggest that the concept of local activation and global inhibition - originally developed to explain spatial patterning in reaction-diffusion systems - provides a framework for understanding many cases of cell polarity. Importantly, we find that the core ingredients in this framework - symmetry breaking, self-amplifying feedback, and long-range inhibition - involve processes that can be chemical, mechanical, or even mechanochemical in nature.
Collapse
|
46
|
Vignaud T, Blanchoin L, Théry M. Directed cytoskeleton self-organization. Trends Cell Biol 2012; 22:671-82. [PMID: 23026031 DOI: 10.1016/j.tcb.2012.08.012] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Revised: 08/30/2012] [Accepted: 08/31/2012] [Indexed: 12/13/2022]
Abstract
The cytoskeleton architecture supports many cellular functions. Cytoskeleton networks form complex intracellular structures that vary during the cell cycle and between different cell types according to their physiological role. These structures do not emerge spontaneously. They result from the interplay between intrinsic self-organization properties and the conditions imposed by spatial boundaries. Along these boundaries, cytoskeleton filaments are anchored, repulsed, aligned, or reoriented. Such local effects can propagate alterations throughout the network and guide cytoskeleton assembly over relatively large distances. The experimental manipulation of spatial boundaries using microfabrication methods has revealed the underlying physical processes directing cytoskeleton self-organization. Here we review, step-by-step, from molecules to tissues, how the rules that govern assembly have been identified. We describe how complementary approaches, all based on controlling geometric conditions, from in vitro reconstruction to in vivo observation, shed new light on these fundamental organizing principles.
Collapse
Affiliation(s)
- Timothée Vignaud
- Laboratoire de Physiologie Cellulaire et Végétale, Institut de Recherche en Technologies et Sciences pour le Vivant, CNRS/UJF/INRA/CEA, 17 Rue des Martyrs, 38054, Grenoble, France
| | | | | |
Collapse
|
47
|
Abstract
In vivo, F-actin flows are observed at different cell life stages and participate in various developmental processes during asymmetric divisions in vertebrate oocytes, cell migration, or wound healing. Here, we show that confinement has a dramatic effect on F-actin spatiotemporal organization. We reconstitute in vitro the spontaneous generation of F-actin flow using Xenopus meiotic extracts artificially confined within a geometry mimicking the cell boundary. Perturbations of actin polymerization kinetics or F-actin nucleation sites strongly modify the network flow dynamics. A combination of quantitative image analysis and biochemical perturbations shows that both spatial localization of F-actin nucleators and actin turnover play a decisive role in generating flow. Interestingly, our in vitro assay recapitulates several symmetry-breaking processes observed in oocytes and early embryonic cells.
Collapse
|
48
|
Hu X, Kuhn JR. Actin filament attachments for sustained motility in vitro are maintained by filament bundling. PLoS One 2012; 7:e31385. [PMID: 22359589 PMCID: PMC3281059 DOI: 10.1371/journal.pone.0031385] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2011] [Accepted: 01/06/2012] [Indexed: 02/06/2023] Open
Abstract
We reconstructed cellular motility in vitro from individual proteins to investigate how actin filaments are organized at the leading edge. Using total internal reflection fluorescence microscopy of actin filaments, we tested how profilin, Arp2/3, and capping protein (CP) function together to propel thin glass nanofibers or beads coated with N-WASP WCA domains. Thin nanofibers produced wide comet tails that showed more structural variation in actin filament organization than did bead substrates. During sustained motility, physiological concentrations of Mg(2+) generated actin filament bundles that processively attached to the nanofiber. Reduction of total Mg(2+) abolished particle motility and actin attachment to the particle surface without affecting actin polymerization, Arp2/3 nucleation, or filament capping. Analysis of similar motility of microspheres showed that loss of filament bundling did not affect actin shell formation or symmetry breaking but eliminated sustained attachments between the comet tail and the particle surface. Addition of Mg(2+), Lys-Lys(2+), or fascin restored both comet tail attachment and sustained particle motility in low Mg(2+) buffers. TIRF microscopic analysis of filaments captured by WCA-coated beads in the absence of Arp2/3, profilin, and CP showed that filament bundling by polycation or fascin addition increased barbed end capture by WCA domains. We propose a model in which CP directs barbed ends toward the leading edge and polycation-induced filament bundling sustains processive barbed end attachment to the leading edge.
Collapse
Affiliation(s)
- Xiaohua Hu
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Jeffrey R. Kuhn
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, United States of America
| |
Collapse
|
49
|
Spiliotis ET, Gladfelter AS. Spatial guidance of cell asymmetry: septin GTPases show the way. Traffic 2011; 13:195-203. [PMID: 21883761 DOI: 10.1111/j.1600-0854.2011.01268.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Revised: 08/18/2011] [Accepted: 08/18/2011] [Indexed: 11/30/2022]
Abstract
Eukaryotic cells develop asymmetric shapes suited for specific physiological functions. Morphogenesis of polarized domains and structures requires the amplification of molecular asymmetries by scaffold proteins and regulatory feedback loops. Small monomeric GTPases signal polarity, but how their downstream effectors and targets are spatially co-ordinated to break cell symmetry is poorly understood. Septins comprise a novel family of GTPases that polymerize into non-polar filamentous structures which scaffold and restrict protein localization. Recent studies show that septins demarcate distinct plasma membrane domains and cytoskeletal tracks, enabling the formation of intracellular asymmetries. Here, we review these findings and discuss emerging mechanisms by which septins promote cell asymmetry in fungi and animals.
Collapse
Affiliation(s)
- Elias T Spiliotis
- Department of Biology, Drexel University, Philadelphia, PA 19104, USA.
| | | |
Collapse
|
50
|
Yu Z, Ho LY, Lin Q. Rapid, photoactivatable turn-on fluorescent probes based on an intramolecular photoclick reaction. J Am Chem Soc 2011; 133:11912-5. [PMID: 21736329 PMCID: PMC3150427 DOI: 10.1021/ja204758c] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Photoactivatable fluorescent probes are invaluable tools for the study of biological processes with high resolution in space and time. Numerous strategies have been developed in generating photoactivatable fluorescent probes, most of which rely on the photo-"uncaging" and photoisomerization reactions. To broaden photoactivation modalities, here we report a new strategy in which the fluorophore is generated in situ through an intramolecular tetrazole-alkene cycloaddition reaction ("photoclick chemistry"). By conjugating a specific microtubule-binding taxoid core to the tetrazole/alkene prefluorophores, robust photoactivatable fluorescent probes were obtained with fast photoactivation (∼1 min) and high fluorescence turn-on ratio (up to 112-fold) in acetonitrile/PBS (1:1). Highly efficient photoactivation of the taxoid-tetrazoles inside the mammalian cells was also observed under a confocal fluorescence microscope when the treated cells were exposed to either a metal halide lamp light passing through a 300/395 filter or a 405 nm laser beam. Furthermore, a spatially controlled fluorescent labeling of microtubules in live CHO cells was demonstrated with a long-wavelength photoactivatable taxoid-tetrazole probe. Because of its modular design and tunability of the photoactivation efficiency and photophysical properties, this intramolecular photoclick reaction based approach should provide a versatile platform for designing photoactivatable fluorescent probes for various biological processes.
Collapse
Affiliation(s)
- Zhipeng Yu
- Department of Chemistry, State University of New York at Buffalo, Buffalo, New York 14260-3000, United States
| | - Lok Yin Ho
- Department of Chemistry, State University of New York at Buffalo, Buffalo, New York 14260-3000, United States
| | - Qing Lin
- Department of Chemistry, State University of New York at Buffalo, Buffalo, New York 14260-3000, United States
| |
Collapse
|