1
|
Vidi PA, Liu J, Bonin K, Bloom K. Closing the loops: chromatin loop dynamics after DNA damage. Nucleus 2025; 16:2438633. [PMID: 39720924 DOI: 10.1080/19491034.2024.2438633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 11/29/2024] [Accepted: 11/30/2024] [Indexed: 12/26/2024] Open
Abstract
Chromatin is a dynamic polymer in constant motion. These motions are heterogeneous between cells and within individual cell nuclei and are profoundly altered in response to DNA damage. The shifts in chromatin motions following genomic insults depend on the temporal and physical scales considered. They are also distinct in damaged and undamaged regions. In this review, we emphasize the role of chromatin tethering and loop formation in chromatin dynamics, with the view that pulsing loops are key contributors to chromatin motions. Chromatin tethers likely mediate micron-scale chromatin coherence predicted by polymer models and measured experimentally, and we propose that remodeling of the tethers in response to DNA breaks enables uncoupling of damaged and undamaged chromatin regions.
Collapse
Affiliation(s)
| | - Jing Liu
- Department of Physics and Astronomy, Purdue University, West Lafayette, IN, USA
| | - Keith Bonin
- Department of Physics, Wake Forest University, Winston-Salem, NC, USA
| | - Kerry Bloom
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
2
|
Bellini NK, de Lima PLC, Pires DDS, da Cunha JPC. Hidden origami in Trypanosoma cruzi nuclei highlights its non-random 3D genomic organization. mBio 2025; 16:e0386124. [PMID: 40243368 PMCID: PMC12077095 DOI: 10.1128/mbio.03861-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Accepted: 03/24/2025] [Indexed: 04/18/2025] Open
Abstract
The protozoan Trypanosoma cruzi is the causative agent of Chagas disease and is known for its polycistronic transcription, with about 50% of its genome consisting of repetitive sequences, including coding (primarily multigenic families) and non-coding regions (such as ribosomal DNA, spliced leader [SL], and retroelements, etc). Here, we evaluated the genomic features associated with higher-order chromatin organization in T. cruzi (Brazil A4 strain) by extensive computational processing of high-throughput chromosome conformation capture (Hi-C). Through the mHi-C pipeline, designed to handle multimapping reads, we demonstrated that applying canonical Hi-C processing, which overlooks repetitive DNA sequences, results in a loss of DNA-DNA contacts, misidentifying them as chromatin-folding (CF) boundaries. Our analysis revealed that loci encoding multigenic families of virulence factors are enriched in chromatin loops and form shorter and tighter CF domains than the loci encoding core genes. We uncovered a non-random three-dimensional (3D) genomic organization in which nonprotein-coding RNA loci (transfer RNAs [tRNAs], small nuclear RNAs, and small nucleolar RNAs) and transcription termination sites are preferentially located at the boundaries of the CF domains. Our data indicate 3D clustering of tRNA loci, likely optimizing transcription by RNA polymerase III, and a complex interaction between spliced leader RNA and 18S rRNA loci, suggesting a link between RNA polymerase I and II machineries. Finally, we highlighted a group of genes encoding virulence factors that interact with SL-RNA loci, suggesting a potential regulatory role. Our findings provide insights into 3D genome organization in T. cruzi, contributing to the understanding of supranucleosomal-level chromatin organization and suggesting possible links between 3D architecture and gene expression.IMPORTANCEDespite the knowledge about the linear genome sequence and the identification of numerous virulence factors in the protozoan parasite Trypanosoma cruzi, there has been a limited understanding of how these genomic features are spatially organized within the nucleus and how this organization impacts gene regulation and pathogenicity. By providing a detailed analysis of the three-dimensional (3D) chromatin architecture in T. cruzi, our study contributed to narrowing this gap. We deciphered part of the origami structure hidden in the T. cruzi nucleus, showing the unidimensional genomic features are non-randomly 3D organized in the nuclear organelle. We uncovered the role of nonprotein-coding RNA loci (e.g., transfer RNAs, spliced leader RNA, and 18S RNA) in shaping genomic architecture, offering insights into an additional epigenetic layer that may influence gene expression.
Collapse
Affiliation(s)
- Natália Karla Bellini
- Cell Cycle Laboratory, Butantan Institute, São Paulo, Brazil
- Center of Toxins, Immune Response and Cell Signaling (CeTICS), Butantan Institute, São Paulo, Brazil
| | - Pedro Leonardo Carvalho de Lima
- Cell Cycle Laboratory, Butantan Institute, São Paulo, Brazil
- Center of Toxins, Immune Response and Cell Signaling (CeTICS), Butantan Institute, São Paulo, Brazil
| | - David da Silva Pires
- Cell Cycle Laboratory, Butantan Institute, São Paulo, Brazil
- Center of Toxins, Immune Response and Cell Signaling (CeTICS), Butantan Institute, São Paulo, Brazil
| | - Julia Pinheiro Chagas da Cunha
- Cell Cycle Laboratory, Butantan Institute, São Paulo, Brazil
- Center of Toxins, Immune Response and Cell Signaling (CeTICS), Butantan Institute, São Paulo, Brazil
| |
Collapse
|
3
|
Shibuya H. Telomeres, the nuclear lamina, and membrane remodeling: Orchestrating meiotic chromosome movements. J Cell Biol 2025; 224:e202412135. [PMID: 40261310 PMCID: PMC12013511 DOI: 10.1083/jcb.202412135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 04/03/2025] [Accepted: 04/03/2025] [Indexed: 04/24/2025] Open
Abstract
Telomeres, the DNA-protein complex located at the ends of linear eukaryotic chromosomes, not only safeguard genetic information from DNA erosion and aberrant activation of the DNA damage response pathways but also play a pivotal role in sexual reproduction. During meiotic prophase I, telomeres attach to the nuclear envelope and migrate along its surface, facilitating two-dimensional DNA homology searches that ensure precise pairing and recombination of the paternal and maternal chromosomes. Recent studies across diverse model systems have revealed intricate molecular mechanisms, including modifications to telomere- and nuclear envelope-binding proteins, the nuclear lamina, and even membrane composition. Emerging evidence reveals mutations in the genes encoding these meiotic telomere and nuclear envelope-associated proteins among infertile patients. This review highlights recent advances in the field of meiotic telomere research, particularly emphasizing mammalian model systems, contextualizes these findings through comparisons with other eukaryotes, and concludes by exploring potential future research directions in the field.
Collapse
Affiliation(s)
- Hiroki Shibuya
- Laboratory for Gametogenesis, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Japan
- Graduate School of Science, Osaka University, Osaka, Japan
| |
Collapse
|
4
|
Leeke BJ, Staffhorst I, Percharde M. Emerging roles for the nucleolus in development and stem cells. Development 2025; 152:dev204696. [PMID: 40366093 DOI: 10.1242/dev.204696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2025]
Abstract
The nucleolus is a membrane-less subnuclear compartment known for its role in ribosome biogenesis. However, emerging evidence suggests that nucleolar function extends beyond ribosome production and is particularly important during mammalian development. Nucleoli are dynamically reprogrammed post-fertilisation: totipotent early mouse embryos display non-canonical, immature nucleolar precursor bodies, and their remodelling to mature nucleoli is essential for the totipotency-to-pluripotency transition. Mounting evidence also links nucleolar disruption to various pathologies, including embryonic lethality in mouse mutants for nucleolar factors, human developmental disorders and observations of nucleolar changes in disease states. As well as its role in ribogenesis, new findings point to the nucleolus as an essential regulator of genome organisation and heterochromatin formation. This Review summarises the varied roles of nucleoli in development, primarily in mammals, highlighting the importance of nucleolar chromatin for genome regulation, and introduces new techniques for exploring nucleolar function.
Collapse
Affiliation(s)
- Bryony J Leeke
- MRC Laboratory of Medical Sciences, London W12 0HS, UK
- Institute of Clinical Sciences, Imperial College London, London W12 0HS, UK
| | - Imke Staffhorst
- MRC Laboratory of Medical Sciences, London W12 0HS, UK
- Institute of Clinical Sciences, Imperial College London, London W12 0HS, UK
| | - Michelle Percharde
- MRC Laboratory of Medical Sciences, London W12 0HS, UK
- Institute of Clinical Sciences, Imperial College London, London W12 0HS, UK
| |
Collapse
|
5
|
Liu Y, Zhangding Z, Liu X, Hu J. Chromatin-centric insights into DNA replication. Trends Genet 2025; 41:412-424. [PMID: 39765445 DOI: 10.1016/j.tig.2024.12.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 11/28/2024] [Accepted: 12/06/2024] [Indexed: 05/08/2025]
Abstract
DNA replication ensures the precise transmission of genetic information from parent to daughter cells. In eukaryotes, this process involves the replication of every base pair within a highly complex chromatin environment, encompassing multiple levels of chromatin structure and various chromatin metabolic processes. Recent evidence has demonstrated that DNA replication is strictly regulated in both temporal and spatial dimensions by factors such as 3D genome structure and transcription, which is crucial for maintaining genomic stability in each cell cycle. In this review, we discuss the diverse mechanisms that govern eukaryotic DNA replication, emphasizing the roles of chromatin architecture and transcriptional activity within the mammalian chromatin landscape. These insights provide a foundation for future investigations in this field.
Collapse
Affiliation(s)
- Yang Liu
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, PKU-THU Center for Life Sciences, Peking University, Beijing 100871, China; Department of Medical Genetics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Zhengrong Zhangding
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, PKU-THU Center for Life Sciences, Peking University, Beijing 100871, China
| | - Xuhao Liu
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, PKU-THU Center for Life Sciences, Peking University, Beijing 100871, China
| | - Jiazhi Hu
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, PKU-THU Center for Life Sciences, Peking University, Beijing 100871, China; Peking University Chengdu Academy for Advanced Interdisciplinary Biotechnologies, Chengdu, Sichuan 610213, China.
| |
Collapse
|
6
|
Korsak S, Banecki KH, Buka K, Górski PJ, Plewczynski D. Chromatin as a Coevolutionary Graph: Modeling the Interplay of Replication with Chromatin Dynamics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.31.646315. [PMID: 40236036 PMCID: PMC11996380 DOI: 10.1101/2025.03.31.646315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Modeling DNA replication poses significant challenges due to the intricate interplay of biophysical processes and the need for precise parameter optimization. In this study, we explore the interactions among three key biophysical factors that influence chromatin folding: replication, loop extrusion, and compartmentalization. Replication forks, known to act as barriers to the motion of loop extrusion factors, also correlate with the phase separation of chromatin into A and B compartments. Our approach integrates three components: (1) a numerical model that takes into advantage single-cell replication timing data to simulate replication fork propagation; (2) a stochastic Monte Carlo simulation that captures the interplay between the biophysical factors, with loop extrusion factors binding, unbinding, and extruding dynamically, while CTCF barriers and replication forks act as static and moving barriers, and a Potts Hamiltonian governs the spreading of epigenetic states driving chromatin compartmentalization; and (3) a 3D OpenMM simulation that reconstructs the chromatin's 3D structure based on the states generated by the stochastic model. To our knowledge, this is the first framework to dynamically integrate and simulate these three biophysical factors, enabling insights into chromatin behavior during replication. Furthermore, we investigate how replication stress alters these dynamics and affects chromatin structure.
Collapse
|
7
|
Takagui FH, Santana LP, Rubert M, Viana P, Affonso PRAM, Giuliano-Caetano L. The role of dispersal of repetitive DNAs in the diversification of bristlenose plecos (Loricariidae, Hypostominae, Ancistrus) from South Atlantic Coastal drainages. AN ACAD BRAS CIENC 2025; 97:e20240901. [PMID: 40172358 DOI: 10.1590/0001-3765202520240901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 12/27/2024] [Indexed: 04/04/2025] Open
Abstract
Sea-level changes during the Pleistocene and the geomorphological history have largely molded the intricate shaping of coastal drainages in Eastern South America. Therefore, freshwater fishes from this region are promising models to infer how riverine isolation and reconnections affected their genetic diversification and geographic distribution. In the present study, we provided a detailed cytogenomic analysis of Ancistrus multispinis and Ancistrus brevipinnis, including the physical mapping of repetitive DNA classes, to verify whether chromosome differentiation would be related to the split between two major watersheds in Southern Brazil. Both species of Ancistrus shared the same modal diploid number (2n=52) and karyotype formulae (14 metacentric, 8 submetacentric and 30 subtelo/acrocentric chromosomes), besides single and terminal 18S ribosomal cistrons, (CGG)10 microsatellite sequences interspersed with heterochromatin in nucleolar organizer regions and a dispersed content of (AC)15 and (GT)15 microsatellites. In turn, the patterns of heterochromatin distribution, number of (GAG)10 microsatellites and 5S rDNA clusters diverged between both taxa. Most likely, these microstructural differences were determined by independent evolutionary processes, strongly associated to the geographic isolation between watersheds. Furthermore, the mapping of repetitive DNAs revealed a dynamic reorganization of genomes of Ancistrus, being useful for the taxonomic disambiguation in this complex group of Neotropical fish.
Collapse
Affiliation(s)
- Fabio H Takagui
- Instituto Nacional de Pesquisas da Amazônia (INPA), Laboratório de Genética Animal, Av. André Araújo, 2936, 69067-375 Manaus, AM, Brazil
| | - Luís P Santana
- Universidade Estadual de Londrina (UEL), Departamento de Biologia Geral, Centro de Ciências Biológicas (CCB), Laboratório de Citogenética e Entomologia Molecular (LACEM), Rodovia Celso Garcia Cid, 445, km 380, 86057-970 Londrina, PR, Brazil
| | - Marceleia Rubert
- Universidade Estadual de Londrina (UEL), Departamento de Biologia Geral, Centro de Ciências Biológicas (CCB), Laboratório de Citogenética e Entomologia Molecular (LACEM), Rodovia Celso Garcia Cid, 445, km 380, 86057-970 Londrina, PR, Brazil
| | - Patrik Viana
- Instituto Nacional de Pesquisas da Amazônia (INPA), Laboratório de Genética Animal, Av. André Araújo, 2936, 69067-375 Manaus, AM, Brazil
| | - Paulo Roberto A M Affonso
- Universidade Estadual do Sudoeste da Bahia (UESB), Programa de Pós-Graduação em Genética, Biodiversidade e Conservação, Departamento de Ciências Biológicas, Av. José Moreira Sobrinho, s/n, 45206-190 Jequié, BA, Brazil
| | - Lucia Giuliano-Caetano
- Universidade Estadual de Londrina (UEL), Departamento de Biologia Geral, Centro de Ciências Biológicas (CCB), Laboratório de Citogenética e Entomologia Molecular (LACEM), Rodovia Celso Garcia Cid, 445, km 380, 86057-970 Londrina, PR, Brazil
| |
Collapse
|
8
|
Berná L. mSphere of Influence: Trypanosoma cruzi genome in 3D action. mSphere 2025; 10:e0061124. [PMID: 40008898 PMCID: PMC11934321 DOI: 10.1128/msphere.00611-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2025] Open
Abstract
Luisa Berná works in the field of comparative and evolutionary genomics in unicellular eukaryotes. In this mSphere of Influence article, she reflects on how advances in three-dimensional genome organization have reshaped our understanding of parasite biology. She discusses how recent findings uncover the distinctiveness of the three-dimensional architecture of Trypanosoma cruzi's genome and its functional implications. Berná argues that integrating structural genomics into parasite research is essential for advancing our understanding of genome organization and its role in shaping parasite biology, particularly in the context of neglected tropical diseases.
Collapse
Affiliation(s)
- Luisa Berná
- Laboratorio de Interacciones Hospedero-Patógeno-UBM, Institut Pasteur de Montevideo, Montevideo, Uruguay
- Laboratorio de Apicomplejos, Institut Pasteur de Montevideo, Montevideo, Uruguay
- Unidad de Bioinformática, Institut Pasteur de Montevideo, Montevideo, Uruguay
- Laboratorio de Genómica Evolutiva, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
9
|
Wang Q, Wang J, Mathur R, Youngblood MW, Jin Q, Hou Y, Stasiak LA, Luan Y, Zhao H, Hilz S, Hong C, Chang SM, Lupo JM, Phillips JJ, Costello JF, Yue F. Spatial 3D genome organization reveals intratumor heterogeneity in primary glioblastoma samples. SCIENCE ADVANCES 2025; 11:eadn2830. [PMID: 40073147 PMCID: PMC11900876 DOI: 10.1126/sciadv.adn2830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 02/05/2025] [Indexed: 03/14/2025]
Abstract
Glioblastoma (GBM) is the most prevalent malignant brain tumor with poor prognosis. Although chromatin intratumoral heterogeneity is a characteristic feature of GBM, most current studies are conducted at a single tumor site. To investigate the GBM-specific 3D genome organization and its heterogeneity, we conducted Hi-C experiments in 21 GBM samples from nine patients, along with three normal brain samples. We identified genome subcompartmentalization and chromatin interactions specific to GBM, as well as extensive intertumoral and intratumoral heterogeneity at these levels. We identified copy number variants (CNVs) and structural variations (SVs) and demonstrated how they disrupted 3D genome structures. SVs could not only induce enhancer hijacking but also cause the loss of enhancers to the same gene, both of which contributed to gene dysregulation. Our findings provide insights into the GBM-specific 3D genome organization and the intratumoral heterogeneity of this organization and open avenues for understanding this devastating disease.
Collapse
Affiliation(s)
- Qixuan Wang
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Juan Wang
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Radhika Mathur
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Mark W. Youngblood
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Qiushi Jin
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Ye Hou
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Institutes of Biomedical Sciences, College of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Lena Ann Stasiak
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Yu Luan
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Hengqiang Zhao
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Stephanie Hilz
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
- Genentech Inc., 1 DNA Way, South San Francisco, CA, USA
| | - Chibo Hong
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Susan M. Chang
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Janine M. Lupo
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Joanna J. Phillips
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Joseph F. Costello
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Feng Yue
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| |
Collapse
|
10
|
Coßmann J, Kos PI, Varamogianni-Mamatsi V, Assenheimer DS, Bischof TA, Kuhn T, Vomhof T, Papantonis A, Giorgetti L, Gebhardt JCM. Increasingly efficient chromatin binding of cohesin and CTCF supports chromatin architecture formation during zebrafish embryogenesis. Nat Commun 2025; 16:1833. [PMID: 39979259 PMCID: PMC11842872 DOI: 10.1038/s41467-025-56889-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 02/05/2025] [Indexed: 02/22/2025] Open
Abstract
The three-dimensional folding of chromosomes is essential for nuclear functions such as DNA replication and gene regulation. The emergence of chromatin architecture is thus an important process during embryogenesis. To shed light on the molecular and kinetic underpinnings of chromatin architecture formation, we characterized biophysical properties of cohesin and CTCF binding to chromatin and their changes upon cofactor depletion using single-molecule imaging in live developing zebrafish embryos. We found that chromatin-bound fractions of both cohesin and CTCF increased significantly between the 1000-cell and shield stages, which we could explain through changes in both their association and dissociation rates. Moreover, increasing binding of cohesin restricted chromatin motion, potentially via loop extrusion, and showed distinct stage-dependent nuclear distribution. Polymer simulations with experimentally derived parameters recapitulated the experimentally observed gradual emergence of chromatin architecture. Our findings reveal molecular kinetics underlying chromatin architecture formation during zebrafish embryogenesis.
Collapse
Affiliation(s)
- Jonas Coßmann
- Institute of Biophysics, Ulm University, Ulm, Germany
- Institute of Experimental Physics and IQST, Ulm University, Ulm, Germany
| | - Pavel I Kos
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | | | - Devin S Assenheimer
- Institute of Biophysics, Ulm University, Ulm, Germany
- Institute of Experimental Physics and IQST, Ulm University, Ulm, Germany
| | - Tobias A Bischof
- Institute of Biophysics, Ulm University, Ulm, Germany
- Institute of Experimental Physics and IQST, Ulm University, Ulm, Germany
| | - Timo Kuhn
- Institute of Biophysics, Ulm University, Ulm, Germany
| | - Thomas Vomhof
- Institute of Biophysics, Ulm University, Ulm, Germany
| | - Argyris Papantonis
- Institute of Pathology, University Medical Center Göttingen, Göttingen, Germany
| | - Luca Giorgetti
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - J Christof M Gebhardt
- Institute of Biophysics, Ulm University, Ulm, Germany.
- Institute of Experimental Physics and IQST, Ulm University, Ulm, Germany.
| |
Collapse
|
11
|
Delafrouz P, Farooq H, Du L, Ma A, Liang J. Effects of Lamina-Chromatin Attachment on Super Long-Range Chromatin Interactions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.13.638183. [PMID: 40027763 PMCID: PMC11870427 DOI: 10.1101/2025.02.13.638183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
The interactions between chromatin and lamin proteins localized on the nuclear envelope play a crucial role in the three-dimensional (3D) organization of the genome. This study investigates the influence of lamin associated domains (LADs) on genome organization at the chromosome level using 3D polymer models of mouse embryonic fibroblasts (MEFs) and embryonic stem cells (mESCs). By integrating genome-wide LAD maps from DamID assays, we simulated chromatin conformations with and without LAD attachment to the nuclear envelope. Our results show that incorporating LAD-lamin interactions yields a radial chromatin distribution consistent with experimental observations. Moreover, LAD-lamin interactions induce significant super long-range chromatin contacts across distant genomic regions. These findings suggest two distinct mechanisms driving induction of chromatin interactions by LAD-lamin attachment.
Collapse
Affiliation(s)
- Pourya Delafrouz
- Richard and Loan Hill Dept of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL 60607
| | - Hammad Farooq
- Richard and Loan Hill Dept of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL 60607
| | - Lin Du
- Richard and Loan Hill Dept of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL 60607
| | - Ao Ma
- Richard and Loan Hill Dept of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL 60607
| | - Jie Liang
- Richard and Loan Hill Dept of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL 60607
| |
Collapse
|
12
|
Fujishiro S, Sasai M. Three-dimensional memory of nuclear organization through cell cycles. J Chem Phys 2025; 162:065103. [PMID: 39945369 DOI: 10.1063/5.0242859] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 01/25/2025] [Indexed: 05/09/2025] Open
Abstract
The genome in the cell nucleus is organized by a dynamic process influenced by structural memory from mitosis. In this study, we develop a model of human genome dynamics through cell cycles by extending the previously developed whole-genome model to cover the mitotic phase. With this extension, we focus on the role of mitotic and cell cycle memory in genome organization. The simulation progresses from mitosis to interphase and the subsequent mitosis, leading to successive cell cycles. During mitosis, our model describes microtubule dynamics, showing how forces orchestrate the assembly of chromosomes into a rosette ring structure at metaphase. The model explains how the positioning of chromosomes depends on their size in metaphase. The memory of the metaphase configuration persists through mitosis and into interphase in dimensions perpendicular to the cell division axis, effectively guiding the distribution of chromosome territories over multiple cell cycles. At the onset of each G1 phase, phase separation of active and inactive chromatin domains occurs, leading to A/B compartmentalization. Our cycling simulations show that the compartments are unaffected by structural memory from previous cycles and are consistently established in each cell cycle. The genome model developed in this study highlights the interplay between chromosome dynamics and structural memory across cell cycles, providing insights for the analyses of cellular processes.
Collapse
Affiliation(s)
- Shin Fujishiro
- Fukui Institute for Fundamental Chemistry, Kyoto University, Kyoto 606-8103, Japan
| | - Masaki Sasai
- Fukui Institute for Fundamental Chemistry, Kyoto University, Kyoto 606-8103, Japan
- Department of Complex Systems Science, Nagoya University, Nagoya 464-8601, Japan
| |
Collapse
|
13
|
Yan M, Zhang XM, Yang Z, Jia M, Liao R, Li J. Visualization of chromosomal reorganization induced by heterologous fusions in the mammalian nucleus. Nat Commun 2025; 16:1485. [PMID: 39929797 PMCID: PMC11811026 DOI: 10.1038/s41467-024-55582-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 12/09/2024] [Indexed: 02/13/2025] Open
Abstract
Chromosomes are spatially organized and functionally folded into a specific macro-structure in the nucleus. Recently, we and others created haploid cells with chromosome fusions. However, there is still lack of an effective strategy for precisely investigating how the genome copes with fusions. Here, we developed a down-sampling method to convert the populational Hi-C dataset into single cell-like Khimaira Matrix (K-matrix). K-matrix preserves not only the most prominent functional genomic features but also cell-to-cell variations. K-matrix-originated genome 3D models display spatial approach of fused chromosomes and minor global structure alterations. Combined with a layered positional decomposition analysis, our models indicate slight re-adjustment of chromosome distributions accordingly with an increasing tendency following more fusions involved. Nevertheless, the radial distribution of the A/B compartment is not affected dramatically. By contrast, natural populations harboring Rb fusions display significant alterations of chromosome radial location. Overall, K-matrix-originated models enable visualization of chromosomal reorganization with high resolution.
Collapse
Affiliation(s)
- Meng Yan
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang, China.
- Key Laboratory of Multi-Cell Systems, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.
| | - Xiaoyu Merlin Zhang
- Key Laboratory of Multi-Cell Systems, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Zhenhua Yang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Miao Jia
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Rongyu Liao
- Key Laboratory of Multi-Cell Systems, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jinsong Li
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang, China.
- Key Laboratory of Multi-Cell Systems, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
| |
Collapse
|
14
|
Tsukamoto S, Mofrad MRK. Bridging scales in chromatin organization: Computational models of loop formation and their implications for genome function. J Chem Phys 2025; 162:054122. [PMID: 39918128 DOI: 10.1063/5.0232328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 11/18/2024] [Indexed: 05/08/2025] Open
Abstract
Chromatin loop formation plays a crucial role in 3D genome interactions, with misfolding potentially leading to irregular gene expression and various diseases. While experimental tools such as Hi-C have advanced our understanding of genome interactions, the biophysical principles underlying chromatin loop formation remain elusive. This review examines computational approaches to chromatin folding, focusing on polymer models that elucidate chromatin loop mechanics. We discuss three key models: (1) the multi-loop-subcompartment model, which investigates the structural effects of loops on chromatin conformation; (2) the strings and binders switch model, capturing thermodynamic chromatin aggregation; and (3) the loop extrusion model, revealing the role of structural maintenance of chromosome complexes. In addition, we explore advanced models that address chromatin clustering heterogeneity in biological processes and disease progression. The review concludes with an outlook on open questions and current trends in chromatin loop formation and genome interactions, emphasizing the physical and computational challenges in the field.
Collapse
Affiliation(s)
- Shingo Tsukamoto
- Molecular Cell Biomechanics Laboratory, Departments of Bioengineering and Mechanical Engineering, University of California, 208A Stanley Hall, Berkeley, California 94720-1762, USA
| | - Mohammad R K Mofrad
- Molecular Cell Biomechanics Laboratory, Departments of Bioengineering and Mechanical Engineering, University of California, 208A Stanley Hall, Berkeley, California 94720-1762, USA
- Molecular Biophysics and Integrative BioImaging Division, Lawrence Berkeley National Lab, Berkeley, California 94720, USA
| |
Collapse
|
15
|
Paganelli F, Poli A, Truocchio S, Martelli AM, Palumbo C, Lattanzi G, Chiarini F. At the nucleus of cancer: how the nuclear envelope controls tumor progression. MedComm (Beijing) 2025; 6:e70073. [PMID: 39866838 PMCID: PMC11758262 DOI: 10.1002/mco2.70073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 12/09/2024] [Accepted: 12/12/2024] [Indexed: 01/28/2025] Open
Abstract
Historically considered downstream effects of tumorigenesis-arising from changes in DNA content or chromatin organization-nuclear alterations have long been seen as mere prognostic markers within a genome-centric model of cancer. However, recent findings have placed the nuclear envelope (NE) at the forefront of tumor progression, highlighting its active role in mediating cellular responses to mechanical forces. Despite significant progress, the precise interplay between NE components and cancer progression remains under debate. In this review, we provide a comprehensive and up-to-date overview of how changes in NE composition affect nuclear mechanics and facilitate malignant transformation, grounded in the latest molecular and functional studies. We also review recent research that uses advanced technologies, including artificial intelligence, to predict malignancy risk and treatment outcomes by analyzing nuclear morphology. Finally, we discuss how progress in understanding nuclear mechanics has paved the way for mechanotherapy-a promising cancer treatment approach that exploits the mechanical differences between cancerous and healthy cells. Shifting the perspective on NE alterations from mere diagnostic markers to potential therapeutic targets, this review calls for further investigation into the evolving role of the NE in cancer, highlighting the potential for innovative strategies to transform conventional cancer therapies.
Collapse
Affiliation(s)
- Francesca Paganelli
- Department of Biomedical and Neuromotor SciencesAlma Mater StudiorumUniversity of BolognaBolognaItaly
| | - Alessandro Poli
- IFOM ETS ‐ The AIRC Institute of Molecular OncologyMilanItaly
| | - Serena Truocchio
- Department of Biomedical and Neuromotor SciencesAlma Mater StudiorumUniversity of BolognaBolognaItaly
| | - Alberto M. Martelli
- Department of Biomedical and Neuromotor SciencesAlma Mater StudiorumUniversity of BolognaBolognaItaly
| | - Carla Palumbo
- Department of BiomedicalMetabolic and Neural SciencesUniversity of Modena and Reggio EmiliaModenaItaly
| | - Giovanna Lattanzi
- CNR Institute of Molecular Genetics “Luigi Luca Cavalli‐Sforza”Unit of BolognaBolognaItaly
- IRCCS Istituto Ortopedico RizzoliBolognaItaly
| | - Francesca Chiarini
- Department of BiomedicalMetabolic and Neural SciencesUniversity of Modena and Reggio EmiliaModenaItaly
| |
Collapse
|
16
|
Ji F, Dai E, Kang R, Klionsky DJ, Liu T, Hu Y, Tang D, Zhu K. Mammalian nucleophagy: process and function. Autophagy 2025:1-17. [PMID: 39827882 DOI: 10.1080/15548627.2025.2455158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/19/2024] [Accepted: 01/14/2025] [Indexed: 01/22/2025] Open
Abstract
The nucleus is a highly specialized organelle that houses the cell's genetic material and regulates key cellular activities, including growth, metabolism, protein synthesis, and cell division. Its structure and function are tightly regulated by multiple mechanisms to ensure cellular integrity and genomic stability. Increasing evidence suggests that nucleophagy, a selective form of autophagy that targets nuclear components, plays a critical role in preserving nuclear integrity by clearing dysfunctional nuclear materials such as nuclear proteins (lamins, SIRT1, and histones), DNA-protein crosslinks, micronuclei, and chromatin fragments. Impaired nucleophagy has been implicated in aging and various pathological conditions, including cancer, neurodegeneration, autoimmune disorders, and neurological injury. In this review, we focus on nucleophagy in mammalian cells, discussing its mechanisms, regulation, and cargo selection, as well as evaluating its therapeutic potential in promoting human health and mitigating disease.Abbreviations: 5-FU: 5-fluorouracil; AMPK, AMP-activated protein kinase; ATG, autophagy related; CMA, chaperone-mediated autophagy; DRPLA: dentatorubral-pallidoluysian atrophy; ER, endoplasmic reticulum; ESCRT: endosomal sorting complex required for transport; HOPS, homotypic fusion and vacuole protein sorting; LIR: LC3-interacting region; MEFs: mouse embryonic fibroblasts; mRNA: messenger RNA; MTORC1: mechanistic target of rapamycin kinase complex 1; PCa: prostate cancer; PE: phosphatidylethanolamine; PI3K, phosphoinositide 3-kinase; PtdIns3K: class III phosphatidylinositol 3-kinase; PtdIns3P: phosphatidylinositol-3-phosphate; rRNA: ribosomal RNA; SCI: spinal cord injury; SCLC: small cell lung cancer; SNARE: soluble N-ethylmaleimide-sensitive factor attachment protein receptor; SupraT: supraphysiological levels of testosterone; TOP1cc: TOP1 cleavage complexes.
Collapse
Affiliation(s)
- Fujian Ji
- Department of Gastrointestinal and Colorectal Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Enyong Dai
- 2nd ward of Oncology Department, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Rui Kang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, USA
| | - Daniel J Klionsky
- Life Sciences Institute and Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Tong Liu
- Department of Gastrointestinal and Colorectal Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Yu Hu
- Department of Pathology, Chian-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Daolin Tang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, USA
| | - Kun Zhu
- Department of Pharmacy, China-Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|
17
|
Wagh K, Stavreva DA, Hager GL. Transcription dynamics and genome organization in the mammalian nucleus: Recent advances. Mol Cell 2025; 85:208-224. [PMID: 39413793 PMCID: PMC11741928 DOI: 10.1016/j.molcel.2024.09.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/31/2024] [Accepted: 09/19/2024] [Indexed: 10/18/2024]
Abstract
Single-molecule tracking (SMT) has emerged as the dominant technology to investigate the dynamics of chromatin-transcription factor (TF) interactions. How long a TF needs to bind to a regulatory site to elicit a transcriptional response is a fundamentally important question. However, highly divergent estimates of TF binding have been presented in the literature, stemming from differences in photobleaching correction and data analysis. TF movement is often interpreted as specific or non-specific association with chromatin, yet the dynamic nature of the chromatin polymer is often overlooked. In this perspective, we highlight how recent SMT studies have reshaped our understanding of TF dynamics, chromatin mobility, and genome organization in the mammalian nucleus, focusing on the technical details and biological implications of these approaches. In a remarkable convergence of fixed and live-cell imaging, we show how super-resolution and SMT studies of chromatin have dovetailed to provide a convincing nanoscale view of genome organization.
Collapse
Affiliation(s)
- Kaustubh Wagh
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Diana A Stavreva
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Gordon L Hager
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
18
|
DeMeis J, Roberts J, Delcher H, Godang N, Coley A, Brown C, Shaw M, Naaz S, Dahal A, Alqudah S, Nguyen K, Nguyen A, Paudel S, Shell J, Patil S, Dang H, O’Neal W, Knowles M, Houserova D, Gillespie M, Borchert G. Long G4-rich enhancers target promoters via a G4 DNA-based mechanism. Nucleic Acids Res 2025; 53:gkae1180. [PMID: 39658038 PMCID: PMC11754661 DOI: 10.1093/nar/gkae1180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 10/11/2024] [Accepted: 11/12/2024] [Indexed: 12/12/2024] Open
Abstract
Several studies have now described instances where G-rich sequences in promoters and enhancers regulate gene expression through forming G-quadruplex (G4) structures. Relatedly, our group recently identified 301 long genomic stretches significantly enriched for minimal G4 motifs (LG4s) in humans and found the majority of these overlap annotated enhancers, and furthermore, that the promoters regulated by these LG4 enhancers are similarly enriched with G4-capable sequences. While the generally accepted model for enhancer:promoter specificity maintains that interactions are dictated by enhancer- and promoter-bound transcriptional activator proteins, the current study tested an alternative hypothesis: that LG4 enhancers interact with cognate promoters via a direct G4:G4 DNA-based mechanism. This work establishes the nuclear proximity of LG4 enhancer:promoter pairs, biochemically demonstrates the ability of individual LG4 single-stranded DNAs (ssDNAs) to directly interact target promoter ssDNAs, and confirms that these interactions, as well as the ability of LG4 enhancers to activate target promoters in culture, are mediated by G4 DNA.
Collapse
Affiliation(s)
- Jeffrey D DeMeis
- Department of Pharmacology, University of South Alabama, 5795 USA Drive North, Mobile, AL 36688, USA
| | - Justin T Roberts
- Department of Pharmacology, University of South Alabama, 5795 USA Drive North, Mobile, AL 36688, USA
| | - Haley A Delcher
- Department of Pharmacology, University of South Alabama, 5795 USA Drive North, Mobile, AL 36688, USA
| | - Noel L Godang
- Department of Pharmacology, University of South Alabama, 5795 USA Drive North, Mobile, AL 36688, USA
| | - Alexander B Coley
- Department of Pharmacology, University of South Alabama, 5795 USA Drive North, Mobile, AL 36688, USA
| | - Cana L Brown
- Department of Pharmacology, University of South Alabama, 5795 USA Drive North, Mobile, AL 36688, USA
| | - Michael H Shaw
- Department of Pharmacology, University of South Alabama, 5795 USA Drive North, Mobile, AL 36688, USA
| | - Sayema Naaz
- Department of Pharmacology, University of South Alabama, 5795 USA Drive North, Mobile, AL 36688, USA
| | - Ayush Dahal
- Department of Engineering, University of South Alabama, 150 Student Services Drive, Mobile, AL 36688, USA
| | - Shahem Y Alqudah
- Department of Biomedical Sciences, University of South Alabama, 5721 USA Drive North, Mobile, AL 36688, USA
| | - Kevin N Nguyen
- Department of Biomedical Sciences, University of South Alabama, 5721 USA Drive North, Mobile, AL 36688, USA
| | - Anita D Nguyen
- Department of Biomedical Sciences, University of South Alabama, 5721 USA Drive North, Mobile, AL 36688, USA
| | - Sunita S Paudel
- Department of Pharmacology, University of South Alabama, 5795 USA Drive North, Mobile, AL 36688, USA
| | - John E Shell
- Department of Pharmacology, University of South Alabama, 5795 USA Drive North, Mobile, AL 36688, USA
| | - Suhas S Patil
- Department of Pharmacology, University of South Alabama, 5795 USA Drive North, Mobile, AL 36688, USA
| | - Hong Dang
- Marsico Lung Institute, University of North Carolina at Chapel Hill School of Medicine Cystic Fibrosis/Pulmonary Research & Treatment Center, 125 Mason Farm Road, Chapel Hill, NC 27599-7248, USA
| | - Wanda K O’Neal
- Marsico Lung Institute, University of North Carolina at Chapel Hill School of Medicine Cystic Fibrosis/Pulmonary Research & Treatment Center, 125 Mason Farm Road, Chapel Hill, NC 27599-7248, USA
| | - Michael R Knowles
- Marsico Lung Institute, University of North Carolina at Chapel Hill School of Medicine Cystic Fibrosis/Pulmonary Research & Treatment Center, 125 Mason Farm Road, Chapel Hill, NC 27599-7248, USA
| | - Dominika Houserova
- Center for Cellular and Molecular Therapeutics at Children’s Hospital of Philadelphia, 3501 Civic Center Boulevard, Philadelphia, PA 19104, USA
| | - Mark N Gillespie
- Department of Pharmacology, University of South Alabama, 5795 USA Drive North, Mobile, AL 36688, USA
| | - Glen M Borchert
- Department of Pharmacology, University of South Alabama, 5795 USA Drive North, Mobile, AL 36688, USA
| |
Collapse
|
19
|
Cai P, Casas CJ, Quintero Plancarte G, Mikawa T, Hua LL. Ipsilateral restriction of chromosome movement along a centrosome, and apical-basal axis during the cell cycle. Chromosome Res 2025; 33:1. [PMID: 39751905 PMCID: PMC11698895 DOI: 10.1007/s10577-024-09760-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/02/2024] [Accepted: 12/03/2024] [Indexed: 01/04/2025]
Abstract
Little is known about how distance between homologous chromosomes are controlled during the cell cycle. Here, we show that the distribution of centromere components display two discrete clusters placed to either side of the centrosome and apical/basal axis from prophase to G1 interphase. 4-Dimensional live cell imaging analysis of centromere and centrosome tracking reveals that centromeres oscillate largely within one cluster, but do not cross over to the other cluster. We propose a model of an axis-dependent ipsilateral restriction of chromosome oscillations throughout mitosis.
Collapse
Affiliation(s)
- Pingping Cai
- Cardiovascular Research Institute, University of California, San Francisco, CA, USA
| | - Christian J Casas
- Department of Biology, Sonoma State University, Rohnert Park, CA, USA
| | | | - Takashi Mikawa
- Cardiovascular Research Institute, University of California, San Francisco, CA, USA.
| | - Lisa L Hua
- Department of Biology, Sonoma State University, Rohnert Park, CA, USA.
| |
Collapse
|
20
|
Villano DJ, Prahlad M, Singhal A, Sanbonmatsu KY, Landweber LF. Widespread 3D genome reorganization precedes programmed DNA rearrangement in Oxytricha trifallax. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.12.31.630814. [PMID: 39803579 PMCID: PMC11722245 DOI: 10.1101/2024.12.31.630814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
Genome organization recapitulates function, yet ciliates like Oxytricha trifallax possess highly-specialized germline genomes, which are largely transcriptionally silent. During post-zygotic development, Oxytricha's germline undergoes large-scale genome editing, rearranging precursor genome elements into a transcriptionally-active genome with thousands of gene-sized nanochromosomes. Transgenerationally-inherited RNAs, derived from the parental somatic genome, program the retention and reordering of germline fragments. Retained and eliminated DNA must be distinguished and processed separately, but the role of chromatin organization in this process is unknown. We developed tools for studying Oxytricha nuclei and apply them to map the 3D organization of precursor and developmental states using Hi-C. We find that the precursor conformation primes the germline for development, while a massive spatial reorganization during development differentiates retained from eliminated regions before DNA rearrangement. Further experiments suggest a role for RNA-DNA interactions and chromatin remodeling in this process, implying a critical role for 3D architecture in programmed genome rearrangement.
Collapse
Affiliation(s)
- Danylo J Villano
- Departments of Biochemistry & Molecular Biophysics and Biological Sciences, Columbia University, New York, NY 10032, USA
| | - Manasa Prahlad
- Departments of Biochemistry & Molecular Biophysics and Biological Sciences, Columbia University, New York, NY 10032, USA
- Department of Neurobiology & Committee on Genetics, Genomics, and Systems Biology, University of Chicago, Chicago, IL 60637, USA
| | - Ankush Singhal
- Theoretical Biology and Biophysics, Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Karissa Y Sanbonmatsu
- Theoretical Biology and Biophysics, Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
- New Mexico Consortium, Los Alamos, NM 87544
| | - Laura F Landweber
- Departments of Biochemistry & Molecular Biophysics and Biological Sciences, Columbia University, New York, NY 10032, USA
| |
Collapse
|
21
|
Liao Q, Wang X. Using Chromosome Conformation Capture Combined with Deep Sequencing (Hi-C) to Study Genome Organization in Bacteria. Methods Mol Biol 2025; 2866:231-243. [PMID: 39546206 DOI: 10.1007/978-1-0716-4192-7_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
Genome organization is fundamental to all living organisms. Long DNA molecules are organized in hierarchical orders to be accommodated into eukaryotic nuclei or bacterial cells, which are thousands of folds shorter. Over the past two decades, chromosome conformation capture (3C) techniques substantially advanced our understanding of genome folding inside cells. 3C involves crosslinking and proximity ligation, and quantifies the physical contacts between two DNA regions within the genome. Coupled with high-throughput sequencing, 3C-seq and Hi-C techniques detect genome-wide DNA interactions, providing a comprehensive view of global genome organization. Here, we describe a detailed method to prepare Hi-C libraries using Bacillus subtilis, which includes procedures of crosslinking chromatin, digesting the crosslinked genome, labeling DNA ends with biotin, ligating DNA, and preparing the DNA library for sequencing using an Illumina platform.
Collapse
Affiliation(s)
- Qin Liao
- Department of Biology, Indiana University, Bloomington, IN, USA
| | - Xindan Wang
- Department of Biology, Indiana University, Bloomington, IN, USA.
| |
Collapse
|
22
|
Yang QL, Xie Y, Qiao K, Lim JYS, Wu S. Modern biology of extrachromosomal DNA: A decade-long voyage of discovery. Cell Res 2025; 35:11-22. [PMID: 39748050 PMCID: PMC11701097 DOI: 10.1038/s41422-024-01054-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 11/07/2024] [Indexed: 01/04/2025] Open
Abstract
Genomic instability is a hallmark of cancer and is a major driving force of tumorigenesis. A key manifestation of genomic instability is the formation of extrachromosomal DNAs (ecDNAs) - acentric, circular DNA molecules ranging from 50 kb to 5 Mb in size, distinct from chromosomes. Ontological studies have revealed that ecDNA serves as a carrier of oncogenes, immunoregulatory genes, and enhancers, capable of driving elevated transcription of its cargo genes and cancer heterogeneity, leading to rapid tumor evolution and therapy resistance. Although ecDNA was documented over half a century ago, the past decade has witnessed a surge in breakthrough discoveries about its biological functions. Here, we systematically review the modern biology of ecDNA uncovered over the last ten years, focusing on how discoveries during this pioneering stage have illuminated our understanding of ecDNA-driven transcription, heterogeneity, and cancer progression. Furthermore, we discuss ongoing efforts to target ecDNA as a novel approach to cancer therapy. This burgeoning field is entering a new phase, poised to reshape our knowledge of cancer biology and therapeutic strategies.
Collapse
Affiliation(s)
- Qing-Lin Yang
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Yipeng Xie
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Kailiang Qiao
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jun Yi Stanley Lim
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Sihan Wu
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
23
|
Fussner-Dupas E, Li R, Strauss M. Correlative Electron Spectroscopic Imaging (ESI) and Electron Tomography of Chromatin. Methods Mol Biol 2025; 2919:109-131. [PMID: 40257560 DOI: 10.1007/978-1-0716-4486-7_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2025]
Abstract
Generating three-dimensional element-specific images of chromatin, its surrounding protein, and RNA bodies is not routinely practiced in cell or structural biology, but it is an exceptional and powerful tool for understanding chromatin structure in situ. This electron microscopic technique may be a fruitful avenue for those interested in understanding local chromatin structure, the structure-functional relationship of histone modifications on gene expression, or phase separation and RNA regulation of the genome. Here, we describe an approach for performing correlative light and electron spectroscopic imaging tomography, which yields stunning high-resolution structures of chromatin in situ using elemental mapping. Traditional electron spectroscopic imaging (ESI), as all conventional transmission electron microscopy (TEM) image acquisition methods, is restricted to a single image plane, and consequently, information about the z-dimension is collapsed in the image. To overcome this projection limitation, electron tomography approaches are combined with energy-loss imaging; by acquiring and computationally combining a tilt series of image sets, the overlapping fibers of chromatin regions that appear indistinct in 2D are resolved to reveal their 3D architecture. Further combining this approach with correlative light images of the same physical section, structures which are associated with specific proteins of interest can be located and analyzed. Herein, we describe a detailed method for sample preparation, image acquisition, and data analysis and have attached in the Notes the scripts built in-house for ease of use.
Collapse
Affiliation(s)
- Eden Fussner-Dupas
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
| | - Ren Li
- Cell Biology Program, Hospital for Sick Children, Toronto, ON, Canada
| | - Mike Strauss
- Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada.
| |
Collapse
|
24
|
Makeyev EV, Huang S. The perinucleolar compartment: structure, function, and utility in anti-cancer drug development. Nucleus 2024; 15:2306777. [PMID: 38281066 PMCID: PMC10824145 DOI: 10.1080/19491034.2024.2306777] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 01/12/2024] [Indexed: 01/29/2024] Open
Abstract
The perinucleolar compartment (PNC) was initially identified as a nuclear structure enriched for the polypyrimidine tract-binding protein. Since then, the PNC has been implicated in carcinogenesis. The prevalence of this compartment is positively correlated with disease progression in various types of cancer, and its expression in primary tumors is linked to worse patient outcomes. Using the PNC as a surrogate marker for anti-cancer drug efficacy has led to the development of a clinical candidate for anti-metastasis therapies. The PNC is a multicomponent nuclear body situated at the periphery of the nucleolus. Thus far, several non-coding RNAs and RNA-binding proteins have been identified as the PNC components. Here, we summarize the current understanding of the structure and function of the PNC, as well as its recurrent links to cancer progression and metastasis.
Collapse
Affiliation(s)
- Eugene V. Makeyev
- Centre for Developmental Neurobiology, King’s College London, London, UK
| | - Sui Huang
- Department of Cell and Developmental Biology, Northwestern University, Chicago, IL, USA
| |
Collapse
|
25
|
Korsak S, Banecki K, Plewczynski D. Multiscale molecular modeling of chromatin with MultiMM: From nucleosomes to the whole genome. Comput Struct Biotechnol J 2024; 23:3537-3548. [PMID: 39435339 PMCID: PMC11492436 DOI: 10.1016/j.csbj.2024.09.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/28/2024] [Accepted: 09/29/2024] [Indexed: 10/23/2024] Open
Abstract
Motivation: We present a user-friendly 3D chromatin simulation model for the human genome based on OpenMM, addressing the challenges posed by existing models with use-specific implementations. Our approach employs a multi-scale energy minimization strategy, capturing chromatin's hierarchical structure. Initiating with a Hilbert curve-based structure, users can input files specifying nucleosome positioning, loops, compartments, or subcompartments. Results: The model utilizes an energy minimization approach with a large choice of numerical integrators, providing the entire genome's structure within minutes. Output files include the generated structures for each chromosome, offering a versatile and accessible tool for chromatin simulation in bioinformatics studies. Furthermore, MultiMM is capable of producing nucleosome-resolution structures by making simplistic geometric assumptions about the structure and the density of nucleosomes on the DNA. Code availability: Open-source software and the manual are freely available on https://github.com/SFGLab/MultiMM or via pip https://pypi.org/project/MultiMM/.
Collapse
Affiliation(s)
- Sevastianos Korsak
- Faculty of Mathematics and Information Science, Warsaw University of Technology, Warsaw, Poland
- Centre of New Technologies, University of Warsaw, Warsaw, Poland
| | - Krzysztof Banecki
- Faculty of Mathematics and Information Science, Warsaw University of Technology, Warsaw, Poland
- Centre of New Technologies, University of Warsaw, Warsaw, Poland
| | - Dariusz Plewczynski
- Faculty of Mathematics and Information Science, Warsaw University of Technology, Warsaw, Poland
- Centre of New Technologies, University of Warsaw, Warsaw, Poland
| |
Collapse
|
26
|
Nickerson JA, Momen-Heravi F. Long non-coding RNAs: roles in cellular stress responses and epigenetic mechanisms regulating chromatin. Nucleus 2024; 15:2350180. [PMID: 38773934 PMCID: PMC11123517 DOI: 10.1080/19491034.2024.2350180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 04/22/2024] [Indexed: 05/24/2024] Open
Abstract
Most of the genome is transcribed into RNA but only 2% of the sequence codes for proteins. Non-coding RNA transcripts include a very large number of long noncoding RNAs (lncRNAs). A growing number of identified lncRNAs operate in cellular stress responses, for example in response to hypoxia, genotoxic stress, and oxidative stress. Additionally, lncRNA plays important roles in epigenetic mechanisms operating at chromatin and in maintaining chromatin architecture. Here, we address three lncRNA topics that have had significant recent advances. The first is an emerging role for many lncRNAs in cellular stress responses. The second is the development of high throughput screening assays to develop causal relationships between lncRNAs across the genome with cellular functions. Finally, we turn to recent advances in understanding the role of lncRNAs in regulating chromatin architecture and epigenetics, advances that build on some of the earliest work linking RNA to chromatin architecture.
Collapse
Affiliation(s)
- Jeffrey A Nickerson
- Division of Genes & Development, Department of Pediatrics, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Fatemeh Momen-Heravi
- College of Dental Medicine, Columbia University Medical Center, New York, NY, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
| |
Collapse
|
27
|
Kania EE, Fenix A, Marciniak DM, Lin Q, Bianchi S, Hristov B, Li S, Camplisson CK, Fields R, Beliveau BJ, Schweppe DK, Noble WS, Ong SE, Bertero A, Murry CE, Shechner DM. Nascent transcript O-MAP reveals the molecular architecture of a single-locus subnuclear compartment built by RBM20 and the TTN RNA. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.05.622011. [PMID: 39574693 PMCID: PMC11580901 DOI: 10.1101/2024.11.05.622011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/24/2024]
Abstract
Eukaryotic nuclei adopt a highly compartmentalized architecture that influences nearly all genomic processes. Understanding how this architecture impacts gene expression has been hindered by a lack of tools for elucidating the molecular interactions at individual genomic loci. Here, we adapt oligonucleotide-mediated proximity-interactome mapping (O-MAP) to biochemically characterize discrete, micron-scale nuclear neighborhoods. By targeting O-MAP to introns within the TTN pre-mRNA, we systematically map the chromatin loci, RNAs, and proteins within a muscle-specific RNA factory organized around the TTN locus. This reveals an unanticipated compartmental architecture that organizes cis - and trans -interacting chromosomal domains, including a hub of transcriptionally silenced chromatin. The factory also recruits dozens of unique RNA-binding and chromatin-scaffolding factors, including QKI and SAFB, along with their target transcripts. Loss of the cardiac-specific splicing factor RBM20-a master regulator of TTN splicing that is mutated in dilated cardiomyopathy-remodels nearly every facet of this architecture. This establishes O-MAP as a pioneering method for probing single-locus, microcompartment-level interactions that are opaque to conventional tools. Our findings suggest new mechanisms by which coding genes can "moonlight" in nuclear-architectural roles.
Collapse
|
28
|
Mokhtaridoost M, Chalmers JJ, Soleimanpoor M, McMurray BJ, Lato DF, Nguyen SC, Musienko V, Nash JO, Espeso-Gil S, Ahmed S, Delfosse K, Browning JWL, Barutcu AR, Wilson MD, Liehr T, Shlien A, Aref S, Joyce EF, Weise A, Maass PG. Inter-chromosomal contacts demarcate genome topology along a spatial gradient. Nat Commun 2024; 15:9813. [PMID: 39532865 PMCID: PMC11557711 DOI: 10.1038/s41467-024-53983-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
Non-homologous chromosomal contacts (NHCCs) between different chromosomes participate considerably in gene and genome regulation. Due to analytical challenges, NHCCs are currently considered as singular, stochastic events, and their extent and fundamental principles across cell types remain controversial. We develop a supervised and unsupervised learning algorithm, termed Signature, to call NHCCs in Hi-C datasets to advance our understanding of genome topology. Signature reveals 40,282 NHCCs and their properties across 62 Hi-C datasets of 53 diploid human cell types. Genomic regions of NHCCs are gene-dense, highly expressed, and harbor genes for cell-specific and sex-specific functions. Extensive inter-telomeric and inter-centromeric clustering occurs across cell types [Rabl's configuration] and 61 NHCCs are consistently found at the nuclear speckles. These constitutive 'anchor loci' facilitate an axis of genome activity whilst cell-type-specific NHCCs act in discrete hubs. Our results suggest that non-random chromosome positioning is supported by constitutive NHCCs that shape genome topology along an off-centered spatial gradient of genome activity.
Collapse
Affiliation(s)
- Milad Mokhtaridoost
- Genetics and Genome Biology Program, SickKids Research Institute, Toronto, ON, M5G 0A4, Canada
| | - Jordan J Chalmers
- Genetics and Genome Biology Program, SickKids Research Institute, Toronto, ON, M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Marzieh Soleimanpoor
- Genetics and Genome Biology Program, SickKids Research Institute, Toronto, ON, M5G 0A4, Canada
| | - Brandon J McMurray
- Genetics and Genome Biology Program, SickKids Research Institute, Toronto, ON, M5G 0A4, Canada
| | - Daniella F Lato
- Genetics and Genome Biology Program, SickKids Research Institute, Toronto, ON, M5G 0A4, Canada
| | - Son C Nguyen
- Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Viktoria Musienko
- Jena University Hospital, Friedrich Schiller University, Institute of Human Genetics, Am Klinikum 1, 07747, Jena, Germany
| | - Joshua O Nash
- Genetics and Genome Biology Program, SickKids Research Institute, Toronto, ON, M5G 0A4, Canada
- Laboratory of Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Sergio Espeso-Gil
- Genetics and Genome Biology Program, SickKids Research Institute, Toronto, ON, M5G 0A4, Canada
| | - Sameen Ahmed
- Genetics and Genome Biology Program, SickKids Research Institute, Toronto, ON, M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Kate Delfosse
- Genetics and Genome Biology Program, SickKids Research Institute, Toronto, ON, M5G 0A4, Canada
| | - Jared W L Browning
- Genetics and Genome Biology Program, SickKids Research Institute, Toronto, ON, M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - A Rasim Barutcu
- Donnelly Centre, University of Toronto, Toronto, ON, M5S 3E1, Canada
| | - Michael D Wilson
- Genetics and Genome Biology Program, SickKids Research Institute, Toronto, ON, M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Thomas Liehr
- Jena University Hospital, Friedrich Schiller University, Institute of Human Genetics, Am Klinikum 1, 07747, Jena, Germany
| | - Adam Shlien
- Genetics and Genome Biology Program, SickKids Research Institute, Toronto, ON, M5G 0A4, Canada
- Laboratory of Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Samin Aref
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON, M5S3G8, Canada
| | - Eric F Joyce
- Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Anja Weise
- Jena University Hospital, Friedrich Schiller University, Institute of Human Genetics, Am Klinikum 1, 07747, Jena, Germany
| | - Philipp G Maass
- Genetics and Genome Biology Program, SickKids Research Institute, Toronto, ON, M5G 0A4, Canada.
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada.
| |
Collapse
|
29
|
Cremer C, Schock F, Failla AV, Birk U. Modulated illumination microscopy: Application perspectives in nuclear nanostructure analysis. J Microsc 2024; 296:121-128. [PMID: 38618985 DOI: 10.1111/jmi.13297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 02/26/2024] [Accepted: 03/19/2024] [Indexed: 04/16/2024]
Abstract
The structure of the cell nucleus of higher organisms has become a major topic of advanced light microscopy. So far, a variety of methods have been applied, including confocal laser scanning fluorescence microscopy, 4Pi, STED and localisation microscopy approaches, as well as different types of patterned illumination microscopy, modulated either laterally (in the object plane) or axially (along the optical axis). Based on our experience, we discuss here some application perspectives of Modulated Illumination Microscopy (MIM) and its combination with single-molecule localisation microscopy (SMLM). For example, spatially modulated illumination microscopy/SMI (illumination modulation along the optical axis) has been used to determine the axial extension (size) of small, optically isolated fluorescent objects between ≤ 200 nm and ≥ 40 nm diameter with a precision down to the few nm range; it also allows the axial positioning of such structures down to the 1 nm scale; combined with laterally structured illumination/SIM, a 3D localisation precision of ≤1 nm is expected using fluorescence yields typical for SMLM applications. Together with the nanosizing capability of SMI, this can be used to analyse macromolecular nuclear complexes with a resolution approaching that of cryoelectron microscopy.
Collapse
Affiliation(s)
- Christoph Cremer
- Kirchhoff Institute for Physics (KIP), Heidelberg, Germany
- Interdisciplinary Centre for Scientific Computing (IWR), University of Heidelberg, Heidelberg, Germany
- Max Planck Institute for Polymer Research, Mainz, Germany
| | - Florian Schock
- Kirchhoff Institute for Physics (KIP), Heidelberg, Germany
| | - Antonio Virgilio Failla
- UKE Microscopy Imaging Facility, University Medical Centre Hamburg Eppendorf, Hamburg, Germany
| | - Udo Birk
- Institute for Photonics and Robotics (IPR), Department of Applied Future Technologies, University of Applied Sciences of the Grisons (FH Graubünden), Chur, Switzerland
| |
Collapse
|
30
|
Hristov BH, Noble WS, Bertero A. Systematic identification of interchromosomal interaction networks supports the existence of specialized RNA factories. Genome Res 2024; 34:1610-1623. [PMID: 39322282 PMCID: PMC11529845 DOI: 10.1101/gr.278327.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 08/30/2024] [Indexed: 09/27/2024]
Abstract
Most studies of genome organization have focused on intrachromosomal (cis) contacts because they harbor key features such as DNA loops and topologically associating domains. Interchromosomal (trans) contacts have received much less attention, and tools for interrogating potential biologically relevant trans structures are lacking. Here, we develop a computational framework that uses Hi-C data to identify sets of loci that jointly interact in trans This method, trans-C, initiates probabilistic random walks with restarts from a set of seed loci to traverse an input Hi-C contact network, thereby identifying sets of trans-contacting loci. We validate trans-C in three increasingly complex models of established trans contacts: the Plasmodium falciparum var genes, the mouse olfactory receptor "Greek islands," and the human RBM20 cardiac splicing factory. We then apply trans-C to systematically test the hypothesis that genes coregulated by the same trans-acting element (i.e., a transcription or splicing factor) colocalize in three dimensions to form "RNA factories" that maximize the efficiency and accuracy of RNA biogenesis. We find that many loci with multiple binding sites of the same DNA-binding proteins interact with one another in trans, especially those bound by factors with intrinsically disordered domains. Similarly, clustered binding of a subset of RNA-binding proteins correlates with trans interaction of the encoding loci. We observe that these trans-interacting loci are close to nuclear speckles. These findings support the existence of trans- interacting chromatin domains (TIDs) driven by RNA biogenesis. Trans-C provides an efficient computational framework for studying these and other types of trans interactions, empowering studies of a poorly understood aspect of genome architecture.
Collapse
Affiliation(s)
| | - William Stafford Noble
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195, USA
- Paul G. Allen School of Computer Science and Engineering, University of Washington, Seattle, Washington 98195, USA
| | - Alessandro Bertero
- Molecular Biotechnology Center "Guido Tarone," Department of Molecular Biotechnology and Health Sciences, University of Turin, 10126 Torino, Italy
| |
Collapse
|
31
|
Monteagudo-Sánchez A, Richard Albert J, Scarpa M, Noordermeer D, Greenberg MC. The impact of the embryonic DNA methylation program on CTCF-mediated genome regulation. Nucleic Acids Res 2024; 52:10934-10950. [PMID: 39180406 PMCID: PMC11472158 DOI: 10.1093/nar/gkae724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 07/23/2024] [Accepted: 08/21/2024] [Indexed: 08/26/2024] Open
Abstract
During mammalian embryogenesis, both the 5-cytosine DNA methylation (5meC) landscape and three dimensional (3D) chromatin architecture are profoundly remodeled during a process known as 'epigenetic reprogramming.' An understudied aspect of epigenetic reprogramming is how the 5meC flux, per se, affects the 3D genome. This is pertinent given the 5meC-sensitivity of DNA binding for a key regulator of chromosome folding: CTCF. We profiled the CTCF binding landscape using a mouse embryonic stem cell (ESC) differentiation protocol that models embryonic 5meC dynamics. Mouse ESCs lacking DNA methylation machinery are able to exit naive pluripotency, thus allowing for dissection of subtle effects of CTCF on gene expression. We performed CTCF HiChIP in both wild-type and mutant conditions to assess gained CTCF-CTCF contacts in the absence of 5meC. We performed H3K27ac HiChIP to determine the impact that ectopic CTCF binding has on cis-regulatory contacts. Using 5meC epigenome editing, we demonstrated that the methyl-mark is able to impair CTCF binding at select loci. Finally, a detailed dissection of the imprinted Zdbf2 locus showed how 5meC-antagonism of CTCF allows for proper gene regulation during differentiation. This work provides a comprehensive overview of how 5meC impacts the 3D genome in a relevant model for early embryonic events.
Collapse
Affiliation(s)
| | | | - Margherita Scarpa
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013 Paris, France
| | - Daan Noordermeer
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), F-91998 Gif-sur-Yvette, France
| | | |
Collapse
|
32
|
Ning Y, Shang D, Xin H, Ni R, Wang Z, Zhen Y, Liu G, Xi M. Establishing of 3D-FISH on frozen section and its applying in chromosome territories analysis in Populus trichocarpa. PLANT CELL REPORTS 2024; 43:255. [PMID: 39375198 DOI: 10.1007/s00299-024-03342-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 09/23/2024] [Indexed: 10/09/2024]
Abstract
KEY MESSAGE Fluorescence in situ hybridization with frozen sections of root tips showed difference of chromosome territories distribution between autosome and sex-chromosome homologous pairs in Populus trichocarpa. The spatial organization of chromatin within the interphase nucleus and the interactions between chromosome territories (CTs) are essential for various biologic processes. Three-dimensional fluorescence in situ hybridization (3D-FISH) is a powerful tool for analyzing CTs, but its application in plants is limited. In this study, we established a 3D-FISH technique using frozen sections of Populus trichocarpa root tips, which was an improvement over the use of paraffin sections and enabled us to acquire good FISH signals. Using chromosome-specific oligo probes, we were able to analyze CTs in interphase nuclei in three dimensions. The distribution of chromosome pairs 17 and 19 in the 3D-preserved nuclei of P. trichocarpa root tip cells were analyzed and showed that the autosome pair 17 associated more often than sex chromosome 19. This research lays a foundation for further study of the spatial position of chromosomes in the nucleus and the relationship between gene expression and spatial localization of chromosomes in poplar.
Collapse
Affiliation(s)
- Yihang Ning
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, 210037, China
| | - Daxin Shang
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, 210037, China
| | - Haoyang Xin
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, 210037, China
| | - Runxin Ni
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, 210037, China
| | - Ziyue Wang
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, 210037, China
| | - Yan Zhen
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, 210037, China
| | - Guangxin Liu
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, 210037, China.
| | - Mengli Xi
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, 210037, China.
| |
Collapse
|
33
|
Ciabrelli F, Atinbayeva N, Pane A, Iovino N. Epigenetic inheritance and gene expression regulation in early Drosophila embryos. EMBO Rep 2024; 25:4131-4152. [PMID: 39285248 PMCID: PMC11467379 DOI: 10.1038/s44319-024-00245-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/13/2024] [Accepted: 08/21/2024] [Indexed: 10/12/2024] Open
Abstract
Precise spatiotemporal regulation of gene expression is of paramount importance for eukaryotic development. The maternal-to-zygotic transition (MZT) during early embryogenesis in Drosophila involves the gradual replacement of maternally contributed mRNAs and proteins by zygotic gene products. The zygotic genome is transcriptionally activated during the first 3 hours of development, in a process known as "zygotic genome activation" (ZGA), by the orchestrated activities of a few pioneer factors. Their decisive role during ZGA has been characterized in detail, whereas the contribution of chromatin factors to this process has been historically overlooked. In this review, we aim to summarize the current knowledge of how chromatin regulation impacts the first stages of Drosophila embryonic development. In particular, we will address the following questions: how chromatin factors affect ZGA and transcriptional silencing, and how genome architecture promotes the integration of these processes early during development. Remarkably, certain chromatin marks can be intergenerationally inherited, and their presence in the early embryo becomes critical for the regulation of gene expression at later stages. Finally, we speculate on the possible roles of these chromatin marks as carriers of epialleles during transgenerational epigenetic inheritance (TEI).
Collapse
Affiliation(s)
- Filippo Ciabrelli
- Max Planck Institute of Immunobiology and Epigenetics, 79108, Freiburg im Breisgau, Germany
| | - Nazerke Atinbayeva
- Max Planck Institute of Immunobiology and Epigenetics, 79108, Freiburg im Breisgau, Germany
| | - Attilio Pane
- Institute of Biomedical Sciences/UFRJ, 21941902, Rio de Janeiro, Brazil
| | - Nicola Iovino
- Max Planck Institute of Immunobiology and Epigenetics, 79108, Freiburg im Breisgau, Germany.
| |
Collapse
|
34
|
Solovei I, Mirny L. Spandrels of the cell nucleus. Curr Opin Cell Biol 2024; 90:102421. [PMID: 39180905 DOI: 10.1016/j.ceb.2024.102421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 07/18/2024] [Accepted: 08/02/2024] [Indexed: 08/27/2024]
Abstract
S.J. Gould and R. Lewontin in their famous "Spandrels paper" (1979) argued that many anatomical elements arise in evolution not due to their "current utility" but rather due to other "reasons for origin", such as other developmental processes, physical constraints and mechanical forces. Here, in the same spirit, we argue that a variety of molecular processes, physical constraints, and mechanical forces, alone or together, generate structures that are detectable in the cell nucleus, yet these structures themselves may not carry any specific function, being a mere reflection of processes that produced them.
Collapse
Affiliation(s)
- Irina Solovei
- Biocenter, Ludwig Maximilians University Munich, Planegg-Martinsried, Germany.
| | - Leonid Mirny
- Institute for Medical Engineering and Science, Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
35
|
Labade AS, Chiang ZD, Comenho C, Reginato PL, Payne AC, Earl AS, Shrestha R, Duarte FM, Habibi E, Zhang R, Church GM, Boyden ES, Chen F, Buenrostro JD. Expansion in situ genome sequencing links nuclear abnormalities to hotspots of aberrant euchromatin repression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.24.614614. [PMID: 39386718 PMCID: PMC11463693 DOI: 10.1101/2024.09.24.614614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Microscopy and genomics are both used to characterize cell function, but approaches to connect the two types of information are lacking, particularly at subnuclear resolution. While emerging multiplexed imaging methods can simultaneously localize genomic regions and nuclear proteins, their ability to accurately measure DNA-protein interactions is constrained by the diffraction limit of optical microscopy. Here, we describe expansion in situ genome sequencing (ExIGS), a technology that enables sequencing of genomic DNA and superresolution localization of nuclear proteins in single cells. We applied ExIGS to fibroblast cells derived from an individual with Hutchinson-Gilford progeria syndrome to characterize how variation in nuclear morphology affects spatial chromatin organization. Using this data, we discovered that lamin abnormalities are linked to hotspots of aberrant euchromatin repression that may erode cell identity. Further, we show that lamin abnormalities heterogeneously increase the repressive environment of the nucleus in tissues and aged cells. These results demonstrate that ExIGS may serve as a generalizable platform for connecting nuclear abnormalities to changes in gene regulation across disease contexts.
Collapse
|
36
|
Jha A, Hristov B, Wang X, Wang S, Greenleaf WJ, Kundaje A, Aiden EL, Bertero A, Noble WS. Prediction and functional interpretation of inter-chromosomal genome architecture from DNA sequence with TwinC. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.16.613355. [PMID: 39345598 PMCID: PMC11429679 DOI: 10.1101/2024.09.16.613355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Three-dimensional nuclear DNA architecture comprises well-studied intra-chromosomal (cis) folding and less characterized inter-chromosomal (trans) interfaces. Current predictive models of 3D genome folding can effectively infer pairwise cis-chromatin interactions from the primary DNA sequence but generally ignore trans contacts. There is an unmet need for robust models of trans-genome organization that provide insights into their underlying principles and functional relevance. We present TwinC, an interpretable convolutional neural network model that reliably predicts trans contacts measurable through genome-wide chromatin conformation capture (Hi-C). TwinC uses a paired sequence design from replicate Hi-C experiments to learn single base pair relevance in trans interactions across two stretches of DNA. The method achieves high predictive accuracy (AUROC=0.80) on a cross-chromosomal test set from Hi-C experiments in heart tissue. Mechanistically, the neural network learns the importance of compartments, chromatin accessibility, clustered transcription factor binding and G-quadruplexes in forming trans contacts. In summary, TwinC models and interprets trans genome architecture, shedding light on this poorly understood aspect of gene regulation.
Collapse
Affiliation(s)
- Anupama Jha
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Borislav Hristov
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Xiao Wang
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Paul G. Allen Center for Computer Science & Engineering, University of Washington, Seattle, WA, USA
| | - Sheng Wang
- Paul G. Allen Center for Computer Science & Engineering, University of Washington, Seattle, WA, USA
| | - William J Greenleaf
- Department of Genetics, Stanford University, Stanford, CA, USA
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, CA, USA
- Department of Applied Physics, Stanford University, Stanford, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Anshul Kundaje
- Department of Genetics, Stanford University, Stanford, CA, USA
- Department of Computer Science, Stanford University Stanford, CA, USA
| | - Erez Lieberman Aiden
- The Center for Genome Architecture, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Center for Theoretical Biological Physics, Rice University, Houston, TX, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Computer Science, Rice University, Houston, TX, USA
- Department of Computational and Applied Mathematics, Rice University, Houston, TX, USA
| | - Alessandro Bertero
- Molecular Biotechnology Center "Guido Tarone," Department of Molecular Biotechnology and Health Sciences, University of Turin, Torino, Italy
| | - William Stafford Noble
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Paul G. Allen Center for Computer Science & Engineering, University of Washington, Seattle, WA, USA
| |
Collapse
|
37
|
Taghbalout A, Tung CH, Clow PA, Wang P, Tjong H, Wong CH, Mao DD, Maurya R, Huang MF, Ngan CY, Kim AH, Wei CL. Extrachromosomal DNA Associates with Nuclear Condensates and Reorganizes Chromatin Structures to Enhance Oncogenic Transcription. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.17.613488. [PMID: 39345460 PMCID: PMC11429754 DOI: 10.1101/2024.09.17.613488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Extrachromosomal, circular DNA (ecDNA) is a prevalent oncogenic alteration in cancer genomes, often associated with aggressive tumor behavior and poor patient outcome. While previous studies proposed a chromatin-based mobile enhancer model for ecDNA-driven oncogenesis, its precise mechanism and impact remains unclear across diverse cancer types. Our study, utilizing advanced multi-omics profiling, epigenetic editing, and imaging approaches in three cancer models, reveals that ecDNA hubs are an integrated part of nuclear condensates and exhibit cancer-type specific chromatin connectivity. Epigenetic silencing of the ecDNA-specific regulatory modules or chemically disrupting liquid-liquid phase separation breaks down ecDNA hubs, displaces MED1 co-activator binding, inhibits oncogenic transcription, and promotes cell death. These findings substantiate the trans -activator function of ecDNA and underscore a structural mechanism driving oncogenesis. This refined understanding expands our views of oncogene regulation and opens potential avenues for novel therapeutic strategies in cancer treatment.
Collapse
|
38
|
Royba E, Shuryak I, Ponnaiya B, Repin M, Pampou S, Karan C, Turner H, Garty G, Brenner DJ. Multiwell-based G0-PCC assay for radiation biodosimetry. Sci Rep 2024; 14:19789. [PMID: 39187542 PMCID: PMC11347619 DOI: 10.1038/s41598-024-69243-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 08/02/2024] [Indexed: 08/28/2024] Open
Abstract
In major radiological events, rapid assays to detect ionizing radiation exposure are crucial for effective medical interventions. The purpose of these assays is twofold: to categorize affected individuals into groups for initial treatments, and to provide definitive dose estimates for continued care and epidemiology. However, existing high-throughput cytogenetic biodosimetry assays take about 3 days to yield results, which delays critical interventions. We have developed a multiwell-based variant of the chemical-induced G0-phase Premature Chromosome Condensation Assay that delivers same-day results. Our findings revealed that using a concentration of phosphatase inhibitor lower than recommended significantly increases the yield of cells with highly condensed chromosomes. These chromosomes exhibited increased fragmentation in a dose-dependent manner, enabling to quantify radiation damage using a custom Deep Learning algorithm. This algorithm demonstrated reasonable performance in categorizing doses into distinct treatment groups (84% and 80% accuracy for three and four iso-treatment dose bins, respectively) and showed reliability in determining the actual doses received (correlation coefficient of 0.879). This method is amendable to full automation and has the potential to address the need for same-day, high-throughput cytogenetic test for both dose categorization and dose reconstruction in large-scale radiation emergencies.
Collapse
Affiliation(s)
- Ekaterina Royba
- Center for Radiological Research, Columbia University Irving Medical Center, New York, NY, 10032, USA.
| | - Igor Shuryak
- Center for Radiological Research, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Brian Ponnaiya
- Radiological Research Accelerator Facility, Columbia University, Irvington, NY, 10533, USA
| | - Mikhail Repin
- Center for Radiological Research, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Sergey Pampou
- Columbia Genome Center High-Throughput Screening Facility, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Charles Karan
- Columbia Genome Center High-Throughput Screening Facility, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Helen Turner
- Center for Radiological Research, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Guy Garty
- Center for Radiological Research, Columbia University Irving Medical Center, New York, NY, 10032, USA
- Radiological Research Accelerator Facility, Columbia University, Irvington, NY, 10533, USA
| | - David J Brenner
- Center for Radiological Research, Columbia University Irving Medical Center, New York, NY, 10032, USA
| |
Collapse
|
39
|
Steinek C, Guirao-Ortiz M, Stumberger G, Tölke AJ, Hörl D, Carell T, Harz H, Leonhardt H. Generation of densely labeled oligonucleotides for the detection of small genomic elements. CELL REPORTS METHODS 2024; 4:100840. [PMID: 39137784 PMCID: PMC11384094 DOI: 10.1016/j.crmeth.2024.100840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 06/16/2024] [Accepted: 07/22/2024] [Indexed: 08/15/2024]
Abstract
The genome contains numerous regulatory elements that may undergo complex interactions and contribute to the establishment, maintenance, and change of cellular identity. Three-dimensional genome organization can be explored with fluorescence in situ hybridization (FISH) at the single-cell level, but the detection of small genomic loci remains challenging. Here, we provide a rapid and simple protocol for the generation of bright FISH probes suited for the detection of small genomic elements. We systematically optimized probe design and synthesis, screened polymerases for their ability to incorporate dye-labeled nucleotides, and streamlined purification conditions to yield nanoscopy-compatible oligonucleotides with dyes in variable arrays (NOVA probes). With these probes, we detect genomic loci ranging from genome-wide repetitive regions down to non-repetitive loci below the kilobase scale. In conclusion, we introduce a simple workflow to generate densely labeled oligonucleotide pools that facilitate detection and nanoscopic measurements of small genomic elements in single cells.
Collapse
Affiliation(s)
- Clemens Steinek
- Faculty of Biology and Center for Molecular Biosystems (BioSysM), Human Biology and BioImaging, Ludwig-Maximilians-Universität München, 81377 Munich, Germany.
| | - Miguel Guirao-Ortiz
- Faculty of Biology and Center for Molecular Biosystems (BioSysM), Human Biology and BioImaging, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Gabriela Stumberger
- Faculty of Biology and Center for Molecular Biosystems (BioSysM), Human Biology and BioImaging, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Annika J Tölke
- Department of Chemistry, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - David Hörl
- Faculty of Biology and Center for Molecular Biosystems (BioSysM), Human Biology and BioImaging, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Thomas Carell
- Department of Chemistry, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Hartmann Harz
- Faculty of Biology and Center for Molecular Biosystems (BioSysM), Human Biology and BioImaging, Ludwig-Maximilians-Universität München, 81377 Munich, Germany.
| | - Heinrich Leonhardt
- Faculty of Biology and Center for Molecular Biosystems (BioSysM), Human Biology and BioImaging, Ludwig-Maximilians-Universität München, 81377 Munich, Germany.
| |
Collapse
|
40
|
Nahali N, Oshaghi M, Paulsen J. Modeling properties of chromosome territories using polymer filaments in diverse confinement geometries. Chromosome Res 2024; 32:11. [PMID: 39126507 PMCID: PMC11316705 DOI: 10.1007/s10577-024-09753-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 06/06/2024] [Accepted: 06/20/2024] [Indexed: 08/12/2024]
Abstract
Interphase chromosomes reside within distinct nuclear regions known as chromosome territories (CTs). Recent observations from Hi-C analyses, a method mapping chromosomal interactions, have revealed varied decay in contact probabilities among different chromosomes. Our study explores the relationship between this contact decay and the particular shapes of the chromosome territories they occupy. For this, we employed molecular dynamics (MD) simulations to examine how confined polymers, resembling chromosomes, behave within different confinement geometries similar to chromosome territory boundaries. Our simulations unveil so far unreported relationships between contact probabilities and end-to-end distances varying based on different confinement geometries. These findings highlight the crucial impact of chromosome territories on shaping the larger-scale properties of 3D genome organization. They emphasize the intrinsic connection between the shapes of these territories and the contact behaviors exhibited by chromosomes. Understanding these correlations is key to accurately interpret Hi-C and microscopy data, and offers vital insights into the foundational principles governing genomic organization.
Collapse
Affiliation(s)
- Negar Nahali
- Department of Informatics, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway.
| | - Mohammadsaleh Oshaghi
- Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
| | - Jonas Paulsen
- Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
| |
Collapse
|
41
|
Rossini R, Oshaghi M, Nekrasov M, Bellanger A, Domaschenz R, Dijkwel Y, Abdelhalim M, Collas P, Tremethick D, Paulsen J. Loss of multi-level 3D genome organization during breast cancer progression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.26.568711. [PMID: 38076897 PMCID: PMC10705249 DOI: 10.1101/2023.11.26.568711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Breast cancer entails intricate alterations in genome organization and expression. However, how three-dimensional (3D) chromatin structure changes in the progression from a normal to a breast cancer malignant state remains unknown. To address this, we conducted an analysis combining Hi-C data with lamina-associated domains (LADs), epigenomic marks, and gene expression in an in vitro model of breast cancer progression. Our results reveal that while the fundamental properties of topologically associating domains (TADs) are overall maintained, significant changes occur in the organization of compartments and subcompartments. These changes are closely correlated with alterations in the expression of oncogenic genes. We also observe a restructuring of TAD-TAD interactions, coinciding with a loss of spatial compartmentalization and radial positioning of the 3D genome. Notably, we identify a previously unrecognized interchromosomal insertion event, wherein a locus on chromosome 8 housing the MYC oncogene is inserted into a highly active subcompartment on chromosome 10. This insertion is accompanied by the formation of de novo enhancer contacts and activation of MYC, illustrating how structural genomic variants can alter the 3D genome to drive oncogenic states. In summary, our findings provide evidence for the loss of genome organization at multiple scales during breast cancer progression revealing novel relationships between genome 3D structure and oncogenic processes.
Collapse
Affiliation(s)
- Roberto Rossini
- Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, 0316 Oslo, Norway
| | - Mohammadsaleh Oshaghi
- Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, 0316 Oslo, Norway
| | - Maxim Nekrasov
- Department of Genome Sciences, The John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Aurélie Bellanger
- Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, 0317 Oslo, Norway
| | - Renae Domaschenz
- Department of Genome Sciences, The John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Yasmin Dijkwel
- Department of Genome Sciences, The John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Mohamed Abdelhalim
- Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, 0317 Oslo, Norway
| | - Philippe Collas
- Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, 0317 Oslo, Norway
- Department of Immunology and Transfusion Medicine, Oslo University Hospital, 0424 Oslo, Norway
| | - David Tremethick
- Department of Genome Sciences, The John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Jonas Paulsen
- Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, 0316 Oslo, Norway
- Centre for Bioinformatics, Department of Informatics, University of Oslo, 0316 Oslo, Norway
| |
Collapse
|
42
|
Kiri S, Ryba T. Cancer, metastasis, and the epigenome. Mol Cancer 2024; 23:154. [PMID: 39095874 PMCID: PMC11295362 DOI: 10.1186/s12943-024-02069-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 07/22/2024] [Indexed: 08/04/2024] Open
Abstract
Cancer is the second leading cause of death worldwide and disease burden is expected to increase globally throughout the next several decades, with the majority of cancer-related deaths occurring in metastatic disease. Cancers exhibit known hallmarks that endow them with increased survival and proliferative capacities, frequently as a result of de-stabilizing mutations. However, the genomic features that resolve metastatic clones from primary tumors are not yet well-characterized, as no mutational landscape has been identified as predictive of metastasis. Further, many cancers exhibit no known mutation signature. This suggests a larger role for non-mutational genome re-organization in promoting cancer evolution and dissemination. In this review, we highlight current critical needs for understanding cell state transitions and clonal selection advantages for metastatic cancer cells. We examine links between epigenetic states, genome structure, and misregulation of tumor suppressors and oncogenes, and discuss how recent technologies for understanding domain-scale regulation have been leveraged for a more complete picture of oncogenic and metastatic potential.
Collapse
Affiliation(s)
- Saurav Kiri
- College of Medicine, University of Central Florida, 6850 Lake Nona Blvd., Orlando, 32827, Florida, USA.
| | - Tyrone Ryba
- Department of Natural Sciences, New College of Florida, 5800 Bay Shore Rd., Sarasota, 34243, Florida, USA.
| |
Collapse
|
43
|
Nikjoo H, Rahmanian S, Taleei R. Modelling DNA damage-repair and beyond. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2024; 190:1-18. [PMID: 38754703 DOI: 10.1016/j.pbiomolbio.2024.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 03/27/2024] [Accepted: 05/10/2024] [Indexed: 05/18/2024]
Abstract
The paper presents a review of mechanistic modelling studies of DNA damage and DNA repair, and consequences to follow in mammalian cell nucleus. We hypothesize DNA deletions are consequences of repair of double strand breaks leading to the modifications of genome that play crucial role in long term development of genetic inheritance and diseases. The aim of the paper is to review formation mechanisms underlying naturally occurring DNA deletions in the human genome and their potential relevance for bridging the gap between induced DNA double strand breaks and deletions in damaged human genome from endogenous and exogenous events. The model of the cell nucleus presented enables simulation of DNA damage at molecular level identifying the spectrum of damage induced in all chromosomal territories and loops. Our mechanistic modelling of DNA repair for double stand breaks (DSB), single strand breaks (SSB) and base damage (BD), shows the complexity of DNA damage is responsible for the longer repair times and the reason for the biphasic feature of mammalian cells repair curves. In the absence of experimentally determined data, the mechanistic model of repair predicts the in vivo rate constants for the proteins involved in the repair of DSB, SSB, and of BD.
Collapse
Affiliation(s)
- Hooshang Nikjoo
- Department of Physiology, Anatomy and Genetics (DPAG), Oxford University, Oxford, OX1 3PT, UK.
| | | | - Reza Taleei
- Medical Physics Division, Department of Radiation Oncology Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA, 19107, USA.
| |
Collapse
|
44
|
Dror I, Tan T, Plath K. A critical role for X-chromosome architecture in mammalian X-chromosome dosage compensation. Curr Opin Genet Dev 2024; 87:102235. [PMID: 39053028 DOI: 10.1016/j.gde.2024.102235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 07/02/2024] [Accepted: 07/05/2024] [Indexed: 07/27/2024]
Abstract
To regulate gene expression, the macromolecular components of the mammalian interphase nucleus are spatially organized into a myriad of functional compartments. Over the past decade, increasingly sophisticated genomics, microscopy, and functional approaches have probed this organization in unprecedented detail. These investigations have linked chromatin-associated noncoding RNAs to specific nuclear compartments and uncovered mechanisms by which these RNAs establish such domains. In this review, we focus on the long non-coding RNA Xist and summarize new evidence demonstrating the significance of chromatin reconfiguration in creating the inactive X-chromosome compartment. Differences in chromatin compaction correlate with distinct levels of gene repression on the X-chromosome, potentially explaining how human XIST can induce chromosome-wide dampening and silencing of gene expression at different stages of human development.
Collapse
Affiliation(s)
- Iris Dror
- Department of Biological Chemistry, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Tiao Tan
- Department of Biological Chemistry, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Kathrin Plath
- Department of Biological Chemistry, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, CA 90095, USA; Molecular Biology Institute, Jonsson Comprehensive Cancer Center, Brain Research Institute, Graduate Program in the Biosciences, Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
45
|
Lin G, Huang Z, Yue T, Chai J, Li Y, Yang H, Qin W, Yang G, Murphy RW, Zhang YP, Zhang Z, Zhou W, Luo J. Puzzle Hi-C: An accurate scaffolding software. PLoS One 2024; 19:e0298564. [PMID: 39008464 PMCID: PMC11249255 DOI: 10.1371/journal.pone.0298564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 06/25/2024] [Indexed: 07/17/2024] Open
Abstract
High-quality, chromosome-scale genomes are essential for genomic analyses. Analyses, including 3D genomics, epigenetics, and comparative genomics rely on a high-quality genome assembly, which is often accomplished with the assistance of Hi-C data. Curation of genomes reveal that current Hi-C-assisted scaffolding algorithms either generate ordering and orientation errors or fail to assemble high-quality chromosome-level scaffolds. Here, we offer the software Puzzle Hi-C, which uses Hi-C reads to accurately assign contigs or scaffolds to chromosomes. Puzzle Hi-C uses the triangle region instead of the square region to count interactions in a Hi-C heatmap. This strategy dramatically diminishes scaffolding interference caused by long-range interactions. This software also introduces a dynamic, triangle window strategy during assembly. Initially small, the window expands with interactions to produce more effective clustering. Puzzle Hi-C outperforms available scaffolding tools.
Collapse
Affiliation(s)
- Guoliang Lin
- State Key Laboratory for Conservation and Utilization of Bio-resource, School of Ecology and Environment, School of Life Sciences and School of Medicine, Yunnan University, Kunming, Yunnan, China
| | - Zhiru Huang
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
| | - Tingsong Yue
- State Key Laboratory for Conservation and Utilization of Bio-resource, School of Ecology and Environment, School of Life Sciences and School of Medicine, Yunnan University, Kunming, Yunnan, China
| | - Jing Chai
- State Key Laboratory for Conservation and Utilization of Bio-resource, School of Ecology and Environment, School of Life Sciences and School of Medicine, Yunnan University, Kunming, Yunnan, China
| | - Yan Li
- State Key Laboratory for Conservation and Utilization of Bio-resource, School of Ecology and Environment, School of Life Sciences and School of Medicine, Yunnan University, Kunming, Yunnan, China
| | - Huimin Yang
- State Key Laboratory for Conservation and Utilization of Bio-resource, School of Ecology and Environment, School of Life Sciences and School of Medicine, Yunnan University, Kunming, Yunnan, China
| | - Wanting Qin
- State Key Laboratory for Conservation and Utilization of Bio-resource, School of Ecology and Environment, School of Life Sciences and School of Medicine, Yunnan University, Kunming, Yunnan, China
| | - Guobing Yang
- State Key Laboratory for Conservation and Utilization of Bio-resource, School of Ecology and Environment, School of Life Sciences and School of Medicine, Yunnan University, Kunming, Yunnan, China
| | | | - Ya-ping Zhang
- State Key Laboratory for Conservation and Utilization of Bio-resource, School of Ecology and Environment, School of Life Sciences and School of Medicine, Yunnan University, Kunming, Yunnan, China
- Southwest United Graduate School, Yunnan University, Kunming, Yunnan, China
| | - Zijie Zhang
- State Key Laboratory for Conservation and Utilization of Bio-resource, School of Ecology and Environment, School of Life Sciences and School of Medicine, Yunnan University, Kunming, Yunnan, China
- Southwest United Graduate School, Yunnan University, Kunming, Yunnan, China
| | - Wei Zhou
- National Pilot School of Software, Yunnan University, Kunming, Yunnan, China
| | - Jing Luo
- State Key Laboratory for Conservation and Utilization of Bio-resource, School of Ecology and Environment, School of Life Sciences and School of Medicine, Yunnan University, Kunming, Yunnan, China
- Southwest United Graduate School, Yunnan University, Kunming, Yunnan, China
| |
Collapse
|
46
|
Zeaiter L, Dabbous A, Baldini F, Pagano A, Bianchini P, Vergani L, Diaspro A. Unveiling nuclear chromatin distribution using IsoConcentraChromJ: A flourescence imaging plugin for IsoRegional and IsoVolumetric based ratios analysis. PLoS One 2024; 19:e0305809. [PMID: 38954704 PMCID: PMC11218964 DOI: 10.1371/journal.pone.0305809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 06/05/2024] [Indexed: 07/04/2024] Open
Abstract
Chromatin exhibits non-random distribution within the nucleus being arranged into discrete domains that are spatially organized throughout the nuclear space. Both the spatial distribution and structural rearrangement of chromatin domains in the nucleus depend on epigenetic modifications of DNA and/or histones and structural elements such as the nuclear envelope. These components collectively contribute to the organization and rearrangement of chromatin domains, thereby influencing genome architecture and functional regulation. This study develops an innovative, user-friendly, ImageJ-based plugin, called IsoConcentraChromJ, aimed quantitatively delineating the spatial distribution of chromatin regions in concentric patterns. The IsoConcentraChromJ can be applied to quantitative chromatin analysis in both two- and three-dimensional spaces. After DNA and histone staining with fluorescent probes, high-resolution images of nuclei have been obtained using advanced fluorescence microscopy approaches, including confocal and stimulated emission depletion (STED) microscopy. IsoConcentraChromJ workflow comprises the following sequential steps: nucleus segmentation, thresholding, masking, normalization, and trisection with specified ratios for either 2D or 3D acquisitions. The effectiveness of the IsoConcentraChromJ has been validated and demonstrated using experimental datasets consisting in nuclei images of pre-adipocytes and mature adipocytes, encompassing both 2D and 3D imaging. The outcomes allow to characterize the nuclear architecture by calculating the ratios between specific concentric nuclear areas/volumes of acetylated chromatin with respect to total acetylated chromatin and/or total DNA. The novel IsoConcentrapChromJ plugin could represent a valuable resource for researchers investigating the rearrangement of chromatin architecture driven by epigenetic mechanisms using nuclear images obtained by different fluorescence microscopy methods.
Collapse
Affiliation(s)
- Lama Zeaiter
- Department for the Earth, Environment and Life Sciences, University of Genoa, Genova, Italy
- Nanoscopy, Istituto Italiano Tecnologia, Genoa, Italy
| | - Ali Dabbous
- Department of Electrical, Electronic and Telecommunication Engineering, University of Genoa, Genova, Italy
| | | | - Aldo Pagano
- Department of Experimental Medicine, University of Genoa, Genova, Italy
- IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | | | - Laura Vergani
- Department for the Earth, Environment and Life Sciences, University of Genoa, Genova, Italy
| | - Alberto Diaspro
- Nanoscopy, Istituto Italiano Tecnologia, Genoa, Italy
- Department of Physics, University of Genoa, Genova, Italy
| |
Collapse
|
47
|
Lopes M, Louzada S, Gama-Carvalho M, Chaves R. Pericentromeric satellite RNAs as flexible protein partners in the regulation of nuclear structure. WILEY INTERDISCIPLINARY REVIEWS. RNA 2024; 15:e1868. [PMID: 38973000 DOI: 10.1002/wrna.1868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/17/2024] [Accepted: 05/28/2024] [Indexed: 07/09/2024]
Abstract
Pericentromeric heterochromatin is mainly composed of satellite DNA sequences. Although being historically associated with transcriptional repression, some pericentromeric satellite DNA sequences are transcribed. The transcription events of pericentromeric satellite sequences occur in highly flexible biological contexts. Hence, the apparent randomness of pericentromeric satellite transcription incites the discussion about the attribution of biological functions. However, pericentromeric satellite RNAs have clear roles in the organization of nuclear structure. Silencing pericentromeric heterochromatin depends on pericentromeric satellite RNAs, that, in a feedback mechanism, contribute to the repression of pericentromeric heterochromatin. Moreover, pericentromeric satellite RNAs can also act as scaffolding molecules in condensate subnuclear structures (e.g., nuclear stress bodies). Since the formation/dissociation of nuclear condensates provides cell adaptability, pericentromeric satellite RNAs can be an epigenetic platform for regulating (sub)nuclear structure. We review current knowledge about pericentromeric satellite RNAs that, irrespective of the meaning of biological function, should be functionally addressed in regular and disease settings. This article is categorized under: RNA Methods > RNA Analyses in Cells RNA in Disease and Development > RNA in Disease.
Collapse
Affiliation(s)
- Mariana Lopes
- CytoGenomics Lab-Department of Genetics and Biotechnology (DGB), University of Trás os Montes and Alto Douro (UTAD), Vila Real, Portugal
- BioISI: Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, Lisbon, Portugal
| | - Sandra Louzada
- CytoGenomics Lab-Department of Genetics and Biotechnology (DGB), University of Trás os Montes and Alto Douro (UTAD), Vila Real, Portugal
- BioISI: Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, Lisbon, Portugal
| | - Margarida Gama-Carvalho
- BioISI: Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, Lisbon, Portugal
| | - Raquel Chaves
- CytoGenomics Lab-Department of Genetics and Biotechnology (DGB), University of Trás os Montes and Alto Douro (UTAD), Vila Real, Portugal
- BioISI: Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, Lisbon, Portugal
- RISE-Health: Health Research Network, Faculty of Medicine, University of Porto, Porto, Portugal
- CACTMAD: Trás-os-Montes and Alto Douro Academic Clinic Center,University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
| |
Collapse
|
48
|
Lakadamyali M. From feulgen to modern methods: marking a century of DNA imaging advances. Histochem Cell Biol 2024; 162:13-22. [PMID: 38753186 PMCID: PMC11227465 DOI: 10.1007/s00418-024-02291-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/18/2024] [Indexed: 07/07/2024]
Abstract
The mystery of how human DNA is compactly packaged into a nucleus-a space a hundred thousand times smaller-while still allowing for the regulation of gene function, has long been one of the greatest enigmas in cell biology. This puzzle is gradually being solved, thanks in part to the advent of new technologies. Among these, innovative genome-labeling techniques combined with high-resolution imaging methods have been pivotal. These methods facilitate the visualization of DNA within intact nuclei and have significantly contributed to our current understanding of genome organization. This review will explore various labeling and imaging approaches that are revolutionizing our understanding of the three-dimensional organization of the genome, shedding light on the relationship between its structure and function.
Collapse
Affiliation(s)
- Melike Lakadamyali
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA.
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA.
- Perelman School of Medicine, Epigenetics Institute, University of Pennsylvania, Philadelphia, USA.
| |
Collapse
|
49
|
Phan LMU, Yeo WH, Zhang HF, Huang S. Dynamic chromosome association with nuclear organelles in living cells. Histochem Cell Biol 2024; 162:149-159. [PMID: 38811432 DOI: 10.1007/s00418-024-02288-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/08/2024] [Indexed: 05/31/2024]
Abstract
The development of progressively sophisticated tools complemented by the integration of live cell imaging enhances our understanding of the four-dimensional (4D) nucleome, revealing elaborate molecular interactions and chromatin states. Yet, the dynamics of chromosomes in relation to nuclear organelles or to each other across cell cycle in living cells are underexplored. We have developed photoconvertible GFP H3-Dendra2 stably expressing in PC3M cells. The nuclear lamina and perinucleolar associated heterochromatin or diffuse chromosome regions were photoconverted through a single-point activation using a confocal microscope. The results demonstrated a dynamic nature for both types of chromosomes in the same cell cycle and across mitosis. While some chromosome domains were heritably associated with either nuclear lamina or nucleoli, others changed alliance to different nuclear organelles postmitotically. In addition, co-photoconverted chromosome domains often do not stay together within the same cell cycle and across mitosis, suggesting a transient nature of chromosome neighborhoods. Long-range spreading and movement of chromosomes were also observed. Interestingly, when cells were treated with a low concentration of actinomycin D that inhibits Pol I transcription through intercalating GC-rich DNA, chromosome movement was significantly blocked. Treatment with another Pol I inhibitor, metarrestin, which does not impact DNA, had little effect on the movement, suggesting that the DNA structure itself plays a role in chromosome dynamics. Furthermore, inhibition of Pol II transcription with α-amanitin also reduced the chromosome movement, demonstrating that Pol II, but not Pol I transcription, is important for chromosome dynamics in the nucleus.
Collapse
Affiliation(s)
- Lam Minh Uyen Phan
- Department of Cell and Developmental Biology, Northwestern University, Chicago, IL, USA
| | - Wei-Hong Yeo
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
| | - Hao F Zhang
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
| | - Sui Huang
- Department of Cell and Developmental Biology, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
50
|
Rossnerova A, Chvojkova I, Elzeinova F, Pelclova D, Klusackova P, Zdimal V, Ondrackova L, Bradna P, Roubickova A, Simova Z, Rossner P. Genetic alteration profiling in middle-aged women acutely exposed during the mechanical processing of dental nanocomposites. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 108:104462. [PMID: 38710242 DOI: 10.1016/j.etap.2024.104462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 04/23/2024] [Accepted: 05/02/2024] [Indexed: 05/08/2024]
Abstract
Nanoparticles (NPs) have become an important part of everyday life, including their application in dentistry. Aside from their undoubted benefits, questions regarding their risk to human health, and/or genome have arisen. However, studies concerning cytogenetic effects are completely absent. A group of women acutely exposed to an aerosol released during dental nanocomposite grinding was sampled before and after the work. Exposure monitoring including nano (PM0.1) and respirable (PM4) fractions was performed. Whole-chromosome painting for autosomes #1, #4, and gonosome X was applied to estimate the pattern of cytogenetic damage including structural and numerical alterations. The results show stable genomic frequency of translocations (FG/100), in contrast to a significant 37.8% (p<0.05) increase of numerical aberrations caused by monosomies (p<0.05), but not trisomies. Monosomies were mostly observed for chromosome X. In conclusion, exposure to nanocomposites in stomatology may lead to an increase in numerical aberrations which can be dangerous for dividing cells.
Collapse
Affiliation(s)
- Andrea Rossnerova
- Department of Toxicology and Molecular Epidemiology, Institute of Experimental Medicine CAS, Czech Republic.
| | - Irena Chvojkova
- Department of Toxicology and Molecular Epidemiology, Institute of Experimental Medicine CAS, Czech Republic
| | - Fatima Elzeinova
- Department of Toxicology and Molecular Epidemiology, Institute of Experimental Medicine CAS, Czech Republic
| | - Daniela Pelclova
- Department of Occupational Medicine, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Czech Republic
| | - Pavlina Klusackova
- Department of Occupational Medicine, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Czech Republic
| | - Vladimir Zdimal
- Department of Aerosol Chemistry and Physics, Institute of Chemical Process Fundamentals CAS, Czech Republic
| | - Lucie Ondrackova
- Department of Aerosol Chemistry and Physics, Institute of Chemical Process Fundamentals CAS, Czech Republic
| | - Pavel Bradna
- Institute of Dental Medicine, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Czech Republic
| | - Adela Roubickova
- Institute of Dental Medicine, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Czech Republic
| | - Zuzana Simova
- Department of Toxicology and Molecular Epidemiology, Institute of Experimental Medicine CAS, Czech Republic
| | - Pavel Rossner
- Department of Toxicology and Molecular Epidemiology, Institute of Experimental Medicine CAS, Czech Republic
| |
Collapse
|