1
|
Whitley KD, Middlemiss S, Jukes C, Dekker C, Holden S. High-resolution imaging of bacterial spatial organization with vertical cell imaging by nanostructured immobilization (VerCINI). Nat Protoc 2022; 17:847-869. [DOI: 10.1038/s41596-021-00668-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 11/19/2021] [Indexed: 11/09/2022]
|
2
|
Chaudhary R, Mishra S, Kota S, Misra H. Molecular interactions and their predictive roles in cell pole determination in bacteria. Crit Rev Microbiol 2021; 47:141-161. [PMID: 33423591 DOI: 10.1080/1040841x.2020.1857686] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Bacterial cell cycle is divided into well-coordinated phases; chromosome duplication and segregation, cell elongation, septum formation, and cytokinesis. The temporal separation of these phases depends upon the growth rates and doubling time in different bacteria. The entire process of cell division starts with the assembly of divisome complex at mid-cell position followed by constriction of the cell wall and septum formation. In the mapping of mid-cell position for septum formation, the gradient of oscillating Min proteins across the poles plays a pivotal role in several bacteria genus. The cues in the cell that defines the poles and plane of cell division are not fully characterized in cocci. Recent studies have shed some lights on molecular interactions at the poles and the underlying mechanisms involved in pole determination in non-cocci. In this review, we have brought forth recent findings on these aspects together, which would suggest a model to explain the mechanisms of pole determination in rod shaped bacteria and could be extrapolated as a working model in cocci.
Collapse
Affiliation(s)
- Reema Chaudhary
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India.,Life Sciences, Homi Bhabha National Institute, Mumbai, India
| | - Shruti Mishra
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India.,Life Sciences, Homi Bhabha National Institute, Mumbai, India
| | - Swathi Kota
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India.,Life Sciences, Homi Bhabha National Institute, Mumbai, India
| | - Hari Misra
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India.,Life Sciences, Homi Bhabha National Institute, Mumbai, India
| |
Collapse
|
3
|
Irastortza-Olaziregi M, Amster-Choder O. RNA localization in prokaryotes: Where, when, how, and why. WILEY INTERDISCIPLINARY REVIEWS-RNA 2020; 12:e1615. [PMID: 32851805 DOI: 10.1002/wrna.1615] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/27/2020] [Accepted: 06/02/2020] [Indexed: 12/27/2022]
Abstract
Only recently has it been recognized that the transcriptome of bacteria and archaea can be spatiotemporally regulated. All types of prokaryotic transcripts-rRNAs, tRNAs, mRNAs, and regulatory RNAs-may acquire specific localization and these patterns can be temporally regulated. In some cases bacterial RNAs reside in the vicinity of the transcription site, but in many others, transcripts show distinct localizations to the cytoplasm, the inner membrane, or the pole of rod-shaped species. This localization, which often overlaps with that of the encoded proteins, can be achieved either in a translation-dependent or translation-independent fashion. The latter implies that RNAs carry sequence-level features that determine their final localization with the aid of RNA-targeting factors. Localization of transcripts regulates their posttranscriptional fate by affecting their degradation and processing, translation efficiency, sRNA-mediated regulation, and/or propensity to undergo RNA modifications. By facilitating complex assembly and liquid-liquid phase separation, RNA localization is not only a consequence but also a driver of subcellular spatiotemporal complexity. We foresee that in the coming years the study of RNA localization in prokaryotes will produce important novel insights regarding the fundamental understanding of membrane-less subcellular organization and lead to practical outputs with biotechnological and therapeutic implications. This article is categorized under: RNA Export and Localization > RNA Localization Regulatory RNAs/RNAi/Riboswitches > Regulatory RNAs RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications.
Collapse
Affiliation(s)
- Mikel Irastortza-Olaziregi
- Department of Microbiology and Molecular Genetics, IMRIC, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Orna Amster-Choder
- Department of Microbiology and Molecular Genetics, IMRIC, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
4
|
Herrou J, Mignot T. Dynamic polarity control by a tunable protein oscillator in bacteria. Curr Opin Cell Biol 2019; 62:54-60. [PMID: 31627169 DOI: 10.1016/j.ceb.2019.09.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 08/09/2019] [Accepted: 09/05/2019] [Indexed: 01/30/2023]
Abstract
In bacteria, cell polarization involves the controlled targeting of specific proteins to the poles, defining polar identity and function. How a specific protein is targeted to one pole and what are the processes that facilitate its dynamic relocalization to the opposite pole is still unclear. The Myxococcus xanthus polarization example illustrates how the dynamic and asymmetric localization of polar proteins enable a controlled and fast switch of polarity. In M. xanthus, the opposing polar distribution of the small GTPase MglA and its cognate activating protein MglB defines the direction of movement of the cell. During a reversal event, the switch of direction is triggered by the Frz chemosensory system, which controls polarity reversals through a so-called gated relaxation oscillator. In this review, we discuss how this genetic architecture can provoke sharp behavioral transitions depending on Frz activation levels, which is central to multicellular behaviors in this bacterium.
Collapse
Affiliation(s)
- Julien Herrou
- Laboratoire de Chimie Bactérienne, CNRS - Aix Marseille University UMR 7283, Institut de Microbiologie de la Méditerranée, Marseille, France
| | - Tâm Mignot
- Laboratoire de Chimie Bactérienne, CNRS - Aix Marseille University UMR 7283, Institut de Microbiologie de la Méditerranée, Marseille, France.
| |
Collapse
|
5
|
Kannaiah S, Livny J, Amster-Choder O. Spatiotemporal Organization of the E. coli Transcriptome: Translation Independence and Engagement in Regulation. Mol Cell 2019; 76:574-589.e7. [PMID: 31540875 DOI: 10.1016/j.molcel.2019.08.013] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 06/28/2019] [Accepted: 08/13/2019] [Indexed: 12/22/2022]
Abstract
RNA localization in eukaryotes is a mechanism to regulate transcripts fate. Conversely, bacterial transcripts were not assumed to be specifically localized. We previously demonstrated that E. coli mRNAs may localize to where their products localize in a translation-independent manner, thus challenging the transcription-translation coupling extent. However, the scope of RNA localization in bacteria remained unknown. Here, we report the distribution of the E. coli transcriptome between the membrane, cytoplasm, and poles by combining cell fractionation with deep-sequencing (Rloc-seq). Our results reveal asymmetric RNA distribution on a transcriptome-wide scale, significantly correlating with proteome localization and prevalence of translation-independent RNA localization. The poles are enriched with stress-related mRNAs and small RNAs, the latter becoming further enriched upon stress in an Hfq-dependent manner. Genome organization may play a role in localizing membrane protein-encoding transcripts. Our results show an unexpected level of intricacy in bacterial transcriptome organization and highlight the poles as hubs for regulation.
Collapse
Affiliation(s)
- Shanmugapriya Kannaiah
- Department of Microbiology and Molecular Genetics, IMRIC, The Hebrew University Faculty of Medicine, P.O. Box 12272, Jerusalem 91120, Israel
| | - Jonathan Livny
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA 02140, USA
| | - Orna Amster-Choder
- Department of Microbiology and Molecular Genetics, IMRIC, The Hebrew University Faculty of Medicine, P.O. Box 12272, Jerusalem 91120, Israel.
| |
Collapse
|
6
|
Collet C, Thomassin JL, Francetic O, Genevaux P, Tran Van Nhieu G. Protein polarization driven by nucleoid exclusion of DnaK(HSP70)-substrate complexes. Nat Commun 2018; 9:2027. [PMID: 29795186 PMCID: PMC5966378 DOI: 10.1038/s41467-018-04414-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2017] [Accepted: 04/23/2018] [Indexed: 11/18/2022] Open
Abstract
Many bacterial proteins require specific subcellular localization for function. How Escherichia coli proteins localize at one pole, however, is still not understood. Here, we show that the DnaK (HSP70) chaperone controls unipolar localization of the Shigella IpaC type III secretion substrate. While preventing the formation of lethal IpaC aggregates, DnaK promoted the incorporation of IpaC into large and dynamic complexes (LDCs) restricted at the bacterial pole through nucleoid occlusion. Unlike stable polymers and aggregates, LDCs show dynamic behavior indicating that nucleoid occlusion also applies to complexes formed through transient interactions. Fluorescence recovery after photobleaching analysis shows DnaK-IpaC exchanges between opposite poles and DnaKJE-mediated incorporation of immature substrates in LDCs. These findings reveal a key role for LDCs as reservoirs of functional DnaK-substrates that can be rapidly mobilized for secretion triggered upon bacterial contact with host cells. Many bacterial proteins exhibit spatially defined localization important for function. Here the authors show that the polar localization of Shigella IpaC type III secretion substrate is mediated by its interaction with the DnaK chaperone and occlusion by the bacterial nucleoid.
Collapse
Affiliation(s)
- Clémence Collet
- Equipe Communication Intercellulaire et Infections Microbiennes. Centre de Recherche Interdisciplinaire en Biologie (CIRB). Collège de France, 11, Place Marcelin Berthelot, 75005, Paris, France.,Institut National de la Santé et de la Recherche Médicale (Inserm) U1050, Paris, Cedex 15, France.,Centre National de la Recherche Scientifique (CNRS) UMR7241, 75016, Paris, France.,MEMOLIFE Laboratory of excellence and Paris Science Lettre, Paris, Cedex 15, France
| | - Jenny-Lee Thomassin
- Equipe Communication Intercellulaire et Infections Microbiennes. Centre de Recherche Interdisciplinaire en Biologie (CIRB). Collège de France, 11, Place Marcelin Berthelot, 75005, Paris, France.,Institut National de la Santé et de la Recherche Médicale (Inserm) U1050, Paris, Cedex 15, France.,Centre National de la Recherche Scientifique (CNRS) UMR7241, 75016, Paris, France.,MEMOLIFE Laboratory of excellence and Paris Science Lettre, Paris, Cedex 15, France
| | - Olivera Francetic
- Biochemistry of Macromolecular Interactions Unit, Institut Pasteur, Department of Structural Biology and Chemistry, CNRS UMR3528, 28 rue du Dr Roux, 75724, Paris, Cedex 15, France
| | - Pierre Genevaux
- Laboratoire de Microbiologie et de Génétique Moléculaires, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, 118 route de Narbonne, 31062, Toulouse, Cedex 9, France
| | - Guy Tran Van Nhieu
- Equipe Communication Intercellulaire et Infections Microbiennes. Centre de Recherche Interdisciplinaire en Biologie (CIRB). Collège de France, 11, Place Marcelin Berthelot, 75005, Paris, France. .,Institut National de la Santé et de la Recherche Médicale (Inserm) U1050, Paris, Cedex 15, France. .,Centre National de la Recherche Scientifique (CNRS) UMR7241, 75016, Paris, France. .,MEMOLIFE Laboratory of excellence and Paris Science Lettre, Paris, Cedex 15, France.
| |
Collapse
|
7
|
Bergé M, Viollier PH. End-in-Sight: Cell Polarization by the Polygamic Organizer PopZ. Trends Microbiol 2017; 26:363-375. [PMID: 29198650 DOI: 10.1016/j.tim.2017.11.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 11/02/2017] [Accepted: 11/09/2017] [Indexed: 12/18/2022]
Abstract
Understanding how asymmetries in cellular constituents are achieved and how such positional information directs the construction of structures in a nonrandom fashion is a fundamental problem in cell biology. The recent identification of determinants that self-assemble into macromolecular complexes at the bacterial cell pole provides new insight into the underlying organizational principles in bacterial cells. Specifically, polarity studies in host-associated or free-living α-proteobacteria, a lineage of Gram-negative (diderm) bacteria, reveals that functional and cytological mono- and bipolarity is often conferred by the multivalent polar organizer PopZ, originally identified as a component of a polar chromosome anchor in the cell cycle model system Caulobacter crescentus. PopZ-dependent polarization appears to be widespread and also functional in obligate intracellular pathogens. Here, we discuss how PopZ polarization and the establishment of polar complexes occurs, and we detail the physiological roles of these complexes.
Collapse
Affiliation(s)
- Matthieu Bergé
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Rue Michel Servet 1, CH-1211 Geneva, Switzerland.
| | - Patrick H Viollier
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Rue Michel Servet 1, CH-1211 Geneva, Switzerland.
| |
Collapse
|
8
|
More than a Tad: spatiotemporal control of Caulobacter pili. Curr Opin Microbiol 2017; 42:79-86. [PMID: 29161615 DOI: 10.1016/j.mib.2017.10.017] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 10/20/2017] [Accepted: 10/22/2017] [Indexed: 01/09/2023]
Abstract
The Type IV pilus (T4P) is a powerful and sophisticated bacterial nanomachine involved in numerous cellular processes, including adhesion, DNA uptake and motility. Aside from the well-described subtype T4aP of the Gram-negative genera, including Myxococcus, Pseudomonas and Neisseria, the Tad (tight adherence) pilus secretion system re-shuffles homologous parts from other secretion systems along with uncharacterized components into a new type of protein translocation apparatus. A representative of the Tad apparatus, the Caulobacter crescentus pilus assembly (Cpa) machine is built exclusively at the newborn cell pole once per cell cycle. Recent comprehensive genetic analyses unearthed a myriad of spatiotemporal determinants acting on the Tad/Cpa system, many of which are conserved in other α-proteobacteria, including obligate intracellular pathogens and symbionts.
Collapse
|
9
|
Hallez R, Delaby M, Sanselicio S, Viollier PH. Hit the right spots: cell cycle control by phosphorylated guanosines in alphaproteobacteria. Nat Rev Microbiol 2017; 15:137-148. [PMID: 28138140 DOI: 10.1038/nrmicro.2016.183] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The class Alphaproteobacteria includes Gram-negative free-living, symbiotic and obligate intracellular bacteria, as well as important plant, animal and human pathogens. Recent work has established the key antagonistic roles that phosphorylated guanosines, cyclic-di-GMP (c-di-GMP) and the alarmones guanosine tetraphosphate and guanosine pentaphosphate (collectively referred to as (p)ppGpp), have in the regulation of the cell cycle in these bacteria. In this Review, we discuss the insights that have been gained into the regulation of the initiation of DNA replication and cytokinesis by these second messengers, with a particular focus on the cell cycle of Caulobacter crescentus. We explore how the fluctuating levels of c-di-GMP and (p)ppGpp during the progression of the cell cycle and under conditions of stress control the synthesis and proteolysis of key regulators of the cell cycle. As these signals also promote bacterial interactions with host cells, the enzymes that control (p)ppGpp and c-di-GMP are attractive antibacterial targets.
Collapse
Affiliation(s)
- Régis Hallez
- Bacterial Cell cycle and Development (BCcD), Unité de recherche en biologie des micro-organismes (URBM), University of Namur, 61 Rue de Bruxelles, Namur 5000, Belgium
| | - Marie Delaby
- Department of Microbiology and Molecular Medicine, Institute of Genetics &Genomics in Geneva (iGE3), Faculty of Medicine, University of Geneva, CH-1211 Geneva, Switzerland
| | - Stefano Sanselicio
- Department of Microbiology and Molecular Medicine, Institute of Genetics &Genomics in Geneva (iGE3), Faculty of Medicine, University of Geneva, CH-1211 Geneva, Switzerland.,Present address: Molecular Genetics Group, Groningen Biomolecular Sciences and Biotechnology Institute, Centre for Synthetic Biology, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Patrick H Viollier
- Department of Microbiology and Molecular Medicine, Institute of Genetics &Genomics in Geneva (iGE3), Faculty of Medicine, University of Geneva, CH-1211 Geneva, Switzerland
| |
Collapse
|
10
|
Bergé M, Campagne S, Mignolet J, Holden S, Théraulaz L, Manley S, Allain FHT, Viollier PH. Modularity and determinants of a (bi-)polarization control system from free-living and obligate intracellular bacteria. eLife 2016; 5. [PMID: 28008852 PMCID: PMC5182065 DOI: 10.7554/elife.20640] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 12/07/2016] [Indexed: 11/24/2022] Open
Abstract
Although free-living and obligate intracellular bacteria are both polarized it is unclear whether the underlying polarization mechanisms and effector proteins are conserved. Here we dissect at the cytological, functional and structural level a conserved polarization module from the free living α-proteobacterium Caulobacter crescentus and an orthologous system from an obligate intracellular (rickettsial) pathogen. The NMR solution structure of the zinc-finger (ZnR) domain from the bifunctional and bipolar ZitP pilus assembly/motility regulator revealed conserved interaction determinants for PopZ, a bipolar matrix protein that anchors the ParB centromere-binding protein and other regulatory factors at the poles. We show that ZitP regulates cytokinesis and the localization of ParB and PopZ, targeting PopZ independently of the previously known binding sites for its client proteins. Through heterologous localization assays with rickettsial ZitP and PopZ orthologs, we document the shared ancestries, activities and structural determinants of a (bi-)polarization system encoded in free-living and obligate intracellular α-proteobacteria. DOI:http://dx.doi.org/10.7554/eLife.20640.001
Collapse
Affiliation(s)
- Matthieu Bergé
- Department Microbiology and Molecular Medicine, Institute of Genetics and Genomics in Geneva, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Sébastien Campagne
- Institute of Molecular Biology and Biophysics, Eidgenössische Technische Hochschule Zürich, Zürich, Switzerland
| | - Johann Mignolet
- Department Microbiology and Molecular Medicine, Institute of Genetics and Genomics in Geneva, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Seamus Holden
- Laboratory of Experimental Biophysics, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Laurence Théraulaz
- Department Microbiology and Molecular Medicine, Institute of Genetics and Genomics in Geneva, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Suliana Manley
- Laboratory of Experimental Biophysics, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Frédéric H-T Allain
- Institute of Molecular Biology and Biophysics, Eidgenössische Technische Hochschule Zürich, Zürich, Switzerland
| | - Patrick H Viollier
- Department Microbiology and Molecular Medicine, Institute of Genetics and Genomics in Geneva, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
11
|
Park S, Park YH, Lee CR, Kim YR, Seok YJ. Glucose induces delocalization of a flagellar biosynthesis protein from the flagellated pole. Mol Microbiol 2016; 101:795-808. [PMID: 27218601 DOI: 10.1111/mmi.13424] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/11/2016] [Indexed: 01/08/2023]
Abstract
To survive in a continuously changing environment, bacteria sense concentration gradients of attractants or repellents, and purposefully migrate until a more favourable habitat is encountered. While glucose is known as the most effective attractant, the flagellar biosynthesis and hence chemotactic motility has been known to be repressed by glucose in some bacteria. To date, the only known regulatory mechanism of the repression of flagellar synthesis by glucose is via downregulation of the cAMP level, as shown in a few members of the family Enterobacteriaceae. Here we show that, in Vibrio vulnificus, the glucose-mediated inhibition of flagellar motility operates by a completely different mechanism. In the presence of glucose, EIIA(Glc) is dephosphorylated and inhibits the polar localization of FapA (flagellar assembly protein A) by sequestering it from the flagellated pole. A loss or delocalization of FapA results in a complete failure of the flagellar biosynthesis and motility. However, when glucose is depleted, EIIA(Glc) is phosphorylated and releases FapA such that free FapA can be localized back to the pole and trigger flagellation. Together, these data provide new insight into a bacterial strategy to reach and stay in the glucose-rich area.
Collapse
Affiliation(s)
- Soyoung Park
- Department of Biophysics and Chemical Biology, Seoul National University, Seoul, 08826, Republic of Korea
| | - Young-Ha Park
- Department of Biological Sciences and Institute of Microbiology, Seoul National University, Seoul, 08826, Republic of Korea
| | - Chang-Ro Lee
- Department of Biological Sciences, Myongji University, Yongin, Gyeonggido, 17058, Republic of Korea
| | - Yeon-Ran Kim
- Department of Biological Sciences and Institute of Microbiology, Seoul National University, Seoul, 08826, Republic of Korea
| | - Yeong-Jae Seok
- Department of Biophysics and Chemical Biology, Seoul National University, Seoul, 08826, Republic of Korea.,Department of Biological Sciences and Institute of Microbiology, Seoul National University, Seoul, 08826, Republic of Korea
| |
Collapse
|
12
|
Gao T, Shi M, Ju L, Gao H. Investigation into FlhFG reveals distinct features of FlhF in regulating flagellum polarity in Shewanella oneidensis. Mol Microbiol 2015; 98:571-85. [PMID: 26194016 DOI: 10.1111/mmi.13141] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/02/2015] [Indexed: 12/14/2022]
Abstract
Rod-shaped bacterial cells are polarized, with many organelles confined to a polar cellular site. In polar flagellates, FlhF and FlhG, a multiple-domain (B-N-G) GTPase and a MinD-like ATPase respectively, function as a cognate pair to regulate flagellar localization and number as revealed in Vibrio and Pseudomonas species. In this study, we show that FlhFG of Shewanella oneidensis (SoFlhFG), a monotrichous γ-proteobacterium renowned for respiratory diversity, also play an important role in the flagellar polar placement and number control. Despite this, SoFlhFG exhibit distinct features that are not observed in the characterized counterparts. Most strikingly, the G domain of SoFlhF determines the polar placement, contrasting the N domain of the Vibrio cholerae FlhF. The SoFlhF N domain in fact counteracts the function of the G domain with respect to the terminal targeting in the absence of the B domain. We further show that GTPase activity of SoFlhF is essential for motility but not positioning. Overall, our results suggest that mechanisms underlying the polar placement of organelles appear to be diverse, even for evolutionally relatively conserved flagellum.
Collapse
Affiliation(s)
- Tong Gao
- Institute of Microbiology and College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Miaomiao Shi
- Institute of Microbiology and College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Lili Ju
- Institute of Microbiology and College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Haichun Gao
- Institute of Microbiology and College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| |
Collapse
|
13
|
Eckhert E, Rangamani P, Davis AE, Oster G, Berleman JE. Dual biochemical oscillators may control cellular reversals in Myxococcus xanthus. Biophys J 2014; 107:2700-11. [PMID: 25468349 DOI: 10.1016/j.bpj.2014.09.046] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Revised: 08/22/2014] [Accepted: 09/25/2014] [Indexed: 10/24/2022] Open
Abstract
Myxococcus xanthus is a Gram-negative, soil-dwelling bacterium that glides on surfaces, reversing direction approximately once every 6 min. Motility in M. xanthus is governed by the Che-like Frz pathway and the Ras-like Mgl pathway, which together cause the cell to oscillate back and forth. Previously, Igoshin et al. (2004) suggested that the cellular oscillations are caused by cyclic changes in concentration of active Frz proteins that govern motility. In this study, we present a computational model that integrates both the Frz and Mgl pathways, and whose downstream components can be read as motor activity governing cellular reversals. This model faithfully reproduces wildtype and mutant behaviors by simulating individual protein knockouts. In addition, the model can be used to examine the impact of contact stimuli on cellular reversals. The basic model construction relies on the presence of two nested feedback circuits, which prompted us to reexamine the behavior of M. xanthus cells. We performed experiments to test the model, and this cell analysis challenges previous assumptions of 30 to 60 min reversal periods in frzCD, frzF, frzE, and frzZ mutants. We demonstrate that this average reversal period is an artifact of the method employed to record reversal data, and that in the absence of signal from the Frz pathway, Mgl components can occasionally reverse the cell near wildtype periodicity, but frz- cells are otherwise in a long nonoscillating state.
Collapse
Affiliation(s)
- Erik Eckhert
- University of California, Berkeley/University of California, San Francisco Joint Medical Program, Berkeley, California; Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California
| | - Padmini Rangamani
- Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, California
| | - Annie E Davis
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California
| | - George Oster
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California
| | - James E Berleman
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California; Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California; Department of Biology, St. Mary's College, Moraga, California.
| |
Collapse
|
14
|
Yao Z, Carballido-López R. Fluorescence Imaging for Bacterial Cell Biology: From Localization to Dynamics, From Ensembles to Single Molecules. Annu Rev Microbiol 2014; 68:459-76. [DOI: 10.1146/annurev-micro-091213-113034] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Zhizhong Yao
- INRA, UMR1319 Micalis, F-78350 Jouy-en-Josas, France;
| | | |
Collapse
|
15
|
Jang MS, Goo E, An JH, Kim J, Hwang I. Quorum sensing controls flagellar morphogenesis in Burkholderia glumae. PLoS One 2014; 9:e84831. [PMID: 24416296 PMCID: PMC3885665 DOI: 10.1371/journal.pone.0084831] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Accepted: 11/19/2013] [Indexed: 12/30/2022] Open
Abstract
Burkholderia glumae is a motile plant pathogenic bacterium that has multiple polar flagella and one LuxR/LuxI-type quorum sensing (QS) system, TofR/TofI. A QS-dependent transcriptional regulator, QsmR, activates flagellar master regulator flhDC genes. FlhDC subsequently activates flagellar gene expression in B. glumae at 37°C. Here, we confirm that the interplay between QS and temperature is critical for normal polar flagellar morphogenesis in B. glumae. In the wild-type bacterium, flagellar gene expression and flagellar number were greater at 28°C compared to 37°C. The QS-dependent flhC gene was significantly expressed at 28°C in two QS-defective (tofI::Ω and qsmR::Ω) mutants. Thus, flagella were present in both tofI::Ω and qsmR::Ω mutants at 28°C, but were absent at 37°C. Most tofI::Ω and qsmR::Ω mutant cells possessed polar or nonpolar flagella at 28°C. Nonpolarly flagellated cells processing flagella around cell surface of both tofI::Ω and qsmR::Ω mutants exhibited tumbling and spinning movements. The flhF gene encoding GTPase involved in regulating the correct placement of flagella in other bacteria was expressed in QS mutants in a FlhDC-dependent manner at 28°C. However, FlhF was mislocalized in QS mutants, and was associated with nonpolar flagellar formation in QS mutants at 28°C. These results indicate that QS-independent expression of flagellar genes at 28°C allows flagellar biogenesis, but is not sufficient for normal polar flagellar morphogenesis in B. glumae. Our findings demonstrate that QS functions together with temperature to control flagellar morphogenesis in B. glumae.
Collapse
Affiliation(s)
- Moon Sun Jang
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
| | - Eunhye Goo
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
| | - Jae Hyung An
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
| | - Jinwoo Kim
- Division of Applied Life Science and Institute of Agriculture and Life Sciences, Gyeongsang National University, Jinju, Republic of Korea
| | - Ingyu Hwang
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
- * E-mail:
| |
Collapse
|
16
|
Abstract
It is now well appreciated that bacterial cells are highly organized, which is far from the initial concept that they are merely bags of randomly distributed macromolecules and chemicals. Central to their spatial organization is the precise positioning of certain proteins in subcellular domains of the cell. In particular, the cell poles - the ends of rod-shaped cells - constitute important platforms for cellular regulation that underlie processes as essential as cell cycle progression, cellular differentiation, virulence, chemotaxis and growth of appendages. Thus, understanding how the polar localization of specific proteins is achieved and regulated is a crucial question in bacterial cell biology. Often, polarly localized proteins are recruited to the poles through their interaction with other proteins or protein complexes that were already located there, in a so-called diffusion-and-capture mechanism. Bacteria are also starting to reveal their secrets on how the initial pole 'recognition' can occur and how this event can be regulated to generate dynamic, reproducible patterns in time (for example, during the cell cycle) and space (for example, at a specific cell pole). Here, we review the major mechanisms that have been described in the literature, with an emphasis on the self-organizing principles. We also present regulation strategies adopted by bacterial cells to obtain complex spatiotemporal patterns of protein localization.
Collapse
Affiliation(s)
- Géraldine Laloux
- de Duve Institute, Université Catholique de Louvain, B-1200 Brussels, Belgium
| | | |
Collapse
|
17
|
Abstract
Placement of motility structures at the poles of rod-shaped bacteria is a common engineering problem with a variety of potential solutions. While investigating the mechanisms for positioning of the single polar flagellum of Pseudomonas aeruginosa, Cowles and colleagues discovered a new membrane-bound three-component system related to TonB-ExbB-ExbD that they named 'Poc' for polar organelle co-ordinator, which controls polar localization of both the flagellum and type IV pili. The Poc complex itself is not found at the poles, and is required for increased expression of pilus genes upon surface association, suggesting a new paradigm of localization control.
Collapse
Affiliation(s)
- Lori L Burrows
- Department of Biochemistry and Biomedical Sciences, McMaster University, Rm 4H18, 1280 Main St. W., Hamilton, Ontario, Canada, L8S4K1
| |
Collapse
|
18
|
The general phosphotransferase system proteins localize to sites of strong negative curvature in bacterial cells. mBio 2013; 4:e00443-13. [PMID: 24129255 PMCID: PMC3812706 DOI: 10.1128/mbio.00443-13] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The bacterial cell poles are emerging as subdomains where many cellular activities take place, but the mechanisms for polar localization are just beginning to unravel. The general phosphotransferase system (PTS) proteins, enzyme I (EI) and HPr, which control preferential use of carbon sources in bacteria, were recently shown to localize near the Escherichia coli cell poles. Here, we show that EI localization does not depend on known polar constituents, such as anionic lipids or the chemotaxis receptors, and on the cell division machinery, nor can it be explained by nucleoid occlusion or localized translation. Detection of the general PTS proteins at the budding sites of endocytotic-like membrane invaginations in spherical cells and their colocalization with the negative curvature sensor protein DivIVA suggest that geometric cues underlie localization of the PTS system. Notably, the kinetics of glucose uptake by spherical and rod-shaped E. coli cells are comparable, implying that negatively curved “pole-like” sites support not only the localization but also the proper functioning of the PTS system in cells with different shapes. Consistent with the curvature-mediated localization model, we observed the EI protein from Bacillus subtilis at strongly curved sites in both B. subtilis and E. coli. Taken together, we propose that changes in cell architecture correlate with dynamic survival strategies that localize central metabolic systems like the PTS to subcellular domains where they remain active, thus maintaining cell viability and metabolic alertness. Despite their tiny size and the scarcity of membrane-bounded organelles, bacteria are capable of sorting macromolecules to distinct subcellular domains, thus optimizing functionality of vital processes. Understanding the cues that organize bacterial cells should provide novel insights into the complex organization of higher organisms. Previously, we have shown that the general proteins of the phosphotransferase system (PTS) signaling system, which governs utilization of carbon sources in bacteria, localize to the poles of Escherichia coli cells. Here, we show that geometric cues, i.e., strong negative membrane curvature, mediate positioning of the PTS proteins. Furthermore, localization to negatively curved regions seems to support the PTS functionality.
Collapse
|
19
|
Kysela DT, Brown PJB, Huang KC, Brun YV. Biological consequences and advantages of asymmetric bacterial growth. Annu Rev Microbiol 2013; 67:417-35. [PMID: 23808335 DOI: 10.1146/annurev-micro-092412-155622] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Asymmetries in cell growth and division occur in eukaryotes and prokaryotes alike. Even seemingly simple and morphologically symmetric cell division processes belie inherent underlying asymmetries in the composition of the resulting daughter cells. We consider the types of asymmetry that arise in various bacterial cell growth and division processes, which include both conditionally activated mechanisms and constitutive, hardwired aspects of bacterial life histories. Although asymmetry disposes some cells to the deleterious effects of aging, it may also benefit populations by efficiently purging accumulated damage and rejuvenating newborn cells. Asymmetries may also generate phenotypic variation required for successful exploitation of variable environments, even when extrinsic changes outpace the capacity of cells to sense and respond to challenges. We propose specific experimental approaches to further develop our understanding of the prevalence and the ultimate importance of asymmetric bacterial growth.
Collapse
Affiliation(s)
- David T Kysela
- Department of Biology, Indiana University, Bloomington, Indiana 47405;
| | | | | | | |
Collapse
|
20
|
Javens J, Wan Z, Hardy GG, Brun YV. Bypassing the need for subcellular localization of a polysaccharide export-anchor complex by overexpressing its protein subunits. Mol Microbiol 2013; 89:350-71. [PMID: 23714375 DOI: 10.1111/mmi.12281] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/25/2013] [Indexed: 11/30/2022]
Abstract
Subcellular protein localization is thought to promote protein-protein interaction by increasing the effective concentration and enabling spatial co-ordination and proper segregation of proteins. We found that protein overexpression allowed the assembly of a productive polysaccharide biosynthesis-export-anchoring complex in the absence of polar localization in Caulobacter crescentus. Polar localization of the holdfast export protein, HfsD, depends on the presence of the other export proteins, HfsA and HfsB, and on the polar scaffold protein PodJ. The holdfast deficiency of hfsB and podJ mutants is suppressed by the overexpression of export proteins. Restored holdfasts are randomly positioned and colocalize with a holdfast anchor protein in these strains, indicating that functional complexes can form at non-polar sites. Therefore, overexpression of export proteins surpasses a concentration threshold necessary for holdfast synthesis. Restoration of holdfast synthesis at non-polar sites reduces surface adhesion, consistent with the need to spatially co-ordinate the holdfast synthesis machinery with the flagellum and pili. These strains lack the cell-specific segregation of the holdfast, resulting in the presence of holdfasts in motile daughter cells. Our results highlight the fact that multiple facets of subcellular localization can be coupled to improve the phenotypic outcome of a protein assembly.
Collapse
Affiliation(s)
- June Javens
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | | | | | | |
Collapse
|
21
|
Coordination of division and development influences complex multicellular behavior in Agrobacterium tumefaciens. PLoS One 2013; 8:e56682. [PMID: 23437210 PMCID: PMC3577659 DOI: 10.1371/journal.pone.0056682] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Accepted: 01/13/2013] [Indexed: 01/20/2023] Open
Abstract
The α-Proteobacterium Agrobacterium tumefaciens has proteins homologous to known regulators that govern cell division and development in Caulobacter crescentus, many of which are also conserved among diverse α-Proteobacteria. In light of recent work demonstrating similarity between the division cycle of C. crescentus and that of A. tumefaciens, the functional conservation for this presumptive control pathway was examined. In C. crescentus the CtrA response regulator serves as the master regulator of cell cycle progression and cell division. CtrA activity is controlled by an integrated pair of multi-component phosphorelays: PleC/DivJ-DivK and CckA-ChpT-CtrA. Although several of the conserved orthologues appear to be essential in A. tumefaciens, deletions in pleC or divK were isolated and resulted in cell division defects, diminished swimming motility, and a decrease in biofilm formation. A. tumefaciens also has two additional pleC/divJhomologue sensor kinases called pdhS1 and pdhS2, absent in C. crescentus. Deletion of pdhS1 phenocopied the ΔpleC and ΔdivK mutants. Cells lacking pdhS2 morphologically resembled wild-type bacteria, but were decreased in swimming motility and elevated for biofilm formation, suggesting that pdhS2 may serve to regulate the motile to non-motile switch in A. tumefaciens. Genetic analysis suggests that the PleC/DivJ-DivK and CckA-ChpT-CtrA phosphorelays in A. tumefaciens are vertically-integrated, as in C. crescentus. A gain-of-function mutation in CckA (Y674D) was identified as a spontaneous suppressor of the ΔpleC motility phenotype. Thus, although the core architecture of the A. tumefaciens pathway resembles that of C. crescentus there are specific differences including additional regulators, divergent pathway architecture, and distinct target functions.
Collapse
|
22
|
|
23
|
Nevo-Dinur K, Govindarajan S, Amster-Choder O. Subcellular localization of RNA and proteins in prokaryotes. Trends Genet 2012; 28:314-22. [DOI: 10.1016/j.tig.2012.03.008] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2011] [Revised: 03/15/2012] [Accepted: 03/19/2012] [Indexed: 10/28/2022]
|
24
|
Lutkenhaus J. The ParA/MinD family puts things in their place. Trends Microbiol 2012; 20:411-8. [PMID: 22672910 DOI: 10.1016/j.tim.2012.05.002] [Citation(s) in RCA: 135] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Revised: 05/01/2012] [Accepted: 05/04/2012] [Indexed: 01/09/2023]
Abstract
Bacteria must segregate their DNA and position a septum to grow and divide. In many bacteria, MinD is involved in spatial regulation of the cytokinetic Z ring, and ParAs are involved in chromosome and plasmid segregation. The use of the MinD/ParA family to provide positional information for spatial organization continues to expand with the recognition that orphan ParAs are required for segregating cytoplasmic protein clusters and the polar localization of chemotaxis proteins, conjugative transfer machinery, type IV pili, and cellulose synthesis. Also, some bacteria lacking MinD use orphan ParAs to regulate cell division. Positioning of MinD/ParA proteins is either due to self-organization on a surface or reliance on a landmark protein that functions as a molecular beacon.
Collapse
Affiliation(s)
- Joe Lutkenhaus
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, KS 66160, USA.
| |
Collapse
|
25
|
Structural basis for the molecular evolution of SRP-GTPase activation by protein. Nat Struct Mol Biol 2011; 18:1376-80. [PMID: 22056770 DOI: 10.1038/nsmb.2141] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2011] [Accepted: 08/18/2011] [Indexed: 02/08/2023]
Abstract
Small G proteins have key roles in signal transduction pathways. They are switched from the signaling 'on' to the non-signaling 'off' state when GTPase-activating proteins (GAPs) provide a catalytic residue. The ancient signal recognition particle (SRP)-type GTPases form GTP-dependent homo- and heterodimers and deviate from the canonical switch paradigm in that no GAPs have been identified. Here we show that the YlxH protein activates the SRP-GTPase FlhF. The crystal structure of the Bacillus subtilis FlhF-effector complex revealed that the effector does not contribute a catalytic residue but positions the catalytic machinery already present in SRP-GTPases. We provide a general concept that might also apply to the RNA-driven activation of the universally conserved, co-translational protein-targeting machinery comprising the SRP-GTPases Ffh and FtsY. Our study exemplifies the evolutionary transition from RNA- to protein-driven activation in SRP-GTPases and suggests that the current view on SRP-mediated protein targeting is incomplete.
Collapse
|
26
|
Ringgaard S, Schirner K, Davis BM, Waldor MK. A family of ParA-like ATPases promotes cell pole maturation by facilitating polar localization of chemotaxis proteins. Genes Dev 2011; 25:1544-55. [PMID: 21764856 DOI: 10.1101/gad.2061811] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Stochastic processes are thought to mediate localization of membrane-associated chemotaxis signaling clusters in peritrichous bacteria. Here, we identified a new family of ParA-like ATPases (designated ParC [for partitioning chemotaxis]) encoded within chemotaxis operons of many polar-flagellated γ-proteobacteria that actively promote polar localization of chemotaxis proteins. In Vibrio cholerae, a single ParC focus is found at the flagellated old pole in newborn cells, and later bipolar ParC foci develop as the cell matures. The cell cycle-dependent redistribution of ParC occurs by its release from the old pole and subsequent relocalization at the new pole, consistent with a "diffusion and capture" model for ParC dynamics. Chemotaxis proteins encoded in the same cluster as ParC have a similar unipolar-to-bipolar transition; however, they reach the new pole after the arrival of ParC. Cells lacking ParC exhibit aberrantly localized foci of chemotaxis proteins, reduced chemotaxis, and altered motility, which likely accounts for their enhanced colonization of the proximal small intestine in an animal model of cholera. Collectively, our findings indicate that ParC promotes the efficiency of chemotactic signaling processes. In particular, ParC-facilitated development of a functional chemotaxis apparatus at the new pole readies this site for its development into a functional old pole after cell division.
Collapse
Affiliation(s)
- Simon Ringgaard
- Channing Laboratory, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA
| | | | | | | |
Collapse
|