1
|
Nadeem J, Sultana R, Parveen A, Kim SY. Recent Advances in Anti-Aging Therapeutic Strategies Targeting DNA Damage Response and Senescence-Associated Secretory Phenotype-Linked Signaling Cascade. Cell Biochem Funct 2025; 43:e70046. [PMID: 40008426 DOI: 10.1002/cbf.70046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 12/18/2024] [Accepted: 01/07/2025] [Indexed: 02/27/2025]
Abstract
Aging is considered the contributory accumulation of abruptions occurring through cell signaling cascades, which ultimately cause changes in physical functions, cell fate, and damage across all organ systems. DNA damage response (DDR) also occurs through telomere shortening, tumor formation, mitochondrial dysfunction, and so forth. Cellular aging occurs through cell cycle arrest, which is the result of extended DDR cascade signaling networks via MDC1, 53BP1, H2AX, ATM, ARF, P53, P13-Akt, BRAF, Sirtuins, NAD + , and so forth. These persistent cell cycle arrests initiated by DDR and other associated stress-induced signals promote a permanent state of cell cycle arrest called senescence-associated secretory phenotype (SASP). However, cellular aging gets accelerated with faulty DNA repair systems, and the produced senescent cells further generate various promoting contributors to age-related dysfunctional diseases including SASP. Any changes to these factors contribute to age-related disease development. Therefore, this review explores anti-aging factors targeting DDR and SASP regulation and their detailed signaling networks. In addition, it allows researchers to identify anti-aging targets and anti-aging therapeutic strategies based on identified and nonidentified targets.
Collapse
Affiliation(s)
- Jawad Nadeem
- College of Pharmacy, Gachon University, Yeonsu-gu, Republic of Korea
| | - Razia Sultana
- Department of Pharmacy, Jagannath University, Dhaka, Bangladesh
| | - Amna Parveen
- College of Pharmacy, Gachon University, Yeonsu-gu, Republic of Korea
| | - Sun Yeou Kim
- College of Pharmacy, Gachon University, Yeonsu-gu, Republic of Korea
| |
Collapse
|
2
|
Liu J, Chen Y, Pu H, Chen X, Yang W, Ouyang Z, Pang Q, Fan R. A new mechanism involved in cardiovascular senescence induced by environmentally relevant dose of 16 priority-controlled PAHs. ENVIRONMENT INTERNATIONAL 2025; 197:109326. [PMID: 39970779 DOI: 10.1016/j.envint.2025.109326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 01/06/2025] [Accepted: 02/07/2025] [Indexed: 02/21/2025]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are closely related to the occurrence of cardiovascular diseases, nevertheless the toxicological mechanism remains ambiguous. To verify whether PAHs exposure leads to cardiovascular senescence, 8-week-old male sprague-dawley rats and primary human umbilical vein endothelial cells were exposed to different concentrations of 16 priority-controlled PAHs for 90 d and 48 h respectively. In in vitro study, PAHs exposure promoted aryl hydrocarbon receptor (AhR) activation, and then directly or indirectly inhibited SIRT6 expression leading to telomere dysfunction, which further caused DNA damage and subsequently promoted endothelial cells senescence. But the treatment of CH-223191 (an AhR inhibitor) rescued the aging phenotypes induced by PAHs, suggesting that AhR plays an important role in PAHs-induced endothelial cells senescence. In in vivo study, PAHs exposure raised AhR expression, affected SIRT6-related aging signaling pathway, and induced myocardial and vascular remodeling in rats. Molecular dynamics simulations demonstrated that, in addition to benzo[a]pyrene-7,8-diol-9,10-epoxide (the mediate metabolite of benzo[a]pyrene), typical parent PAHs (phenanthrene, benzo[a]pyrene) can directly bind to known DNA strand binding sites of SIRT6 through hydrophobic force, which was further validated by electrophoretic mobility shift assay. All above indicates for the first time that in addition to classical AhR dependent pathway, parent PAHs may affect DNA damage response and telomere maintenance function of SIRT6, which is a new mechanism of PAHs induced cardiovascular senescence.
Collapse
Affiliation(s)
- Jian Liu
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Engineering Technology Research Center for Drug and Food Biological Resources Processing and Comprehensive Utilization, School of Life Sciences, South China Normal University, Guangzhou 510631, China; Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangzhou 510640, China
| | - Yuxin Chen
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Engineering Technology Research Center for Drug and Food Biological Resources Processing and Comprehensive Utilization, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Hao Pu
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Engineering Technology Research Center for Drug and Food Biological Resources Processing and Comprehensive Utilization, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Xiaolin Chen
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Engineering Technology Research Center for Drug and Food Biological Resources Processing and Comprehensive Utilization, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Wucheng Yang
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Engineering Technology Research Center for Drug and Food Biological Resources Processing and Comprehensive Utilization, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Zedong Ouyang
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Engineering Technology Research Center for Drug and Food Biological Resources Processing and Comprehensive Utilization, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Qihua Pang
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Engineering Technology Research Center for Drug and Food Biological Resources Processing and Comprehensive Utilization, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Ruifang Fan
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Engineering Technology Research Center for Drug and Food Biological Resources Processing and Comprehensive Utilization, School of Life Sciences, South China Normal University, Guangzhou 510631, China.
| |
Collapse
|
3
|
Shou S, Maolan A, Zhang D, Jiang X, Liu F, Li Y, Zhang X, Geer E, Pu Z, Hua B, Guo Q, Zhang X, Pang B. Telomeres, telomerase, and cancer: mechanisms, biomarkers, and therapeutics. Exp Hematol Oncol 2025; 14:8. [PMID: 39871386 PMCID: PMC11771031 DOI: 10.1186/s40164-025-00597-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Accepted: 01/15/2025] [Indexed: 01/29/2025] Open
Abstract
Telomeres and telomerase play crucial roles in the initiation and progression of cancer. As biomarkers, they aid in distinguishing benign from malignant tissues. Despite the promising therapeutic potential of targeting telomeres and telomerase for therapy, translating this concept from the laboratory to the clinic remains challenging. Many candidate drugs remain in the experimental stage, with only a few advancing to clinical trials. This review explores the relationship between telomeres, telomerase, and cancer, synthesizing their roles as biomarkers and reviewing the outcomes of completed trials. We propose that changes in telomere length and telomerase activity can be used to stratify cancer stages. Furthermore, we suggest that differential expression of telomere and telomerase components at the subcellular level holds promise as a biomarker. From a therapeutic standpoint, combining telomerase-targeted therapies with drugs that mitigate the adverse effects of telomerase inhibition may offer a viable strategy.
Collapse
Affiliation(s)
- Songting Shou
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ayidana Maolan
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Di Zhang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaochen Jiang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Fudong Liu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yi Li
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiyuan Zhang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - En Geer
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhenqing Pu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Baojin Hua
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Qiujun Guo
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Xing Zhang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Bo Pang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
4
|
Tian J, Huo R, Wang Y, Wang J, Fang F, Fang C. Astragalus Polysaccharide Alleviates Cognitive Decline in D-Galactose-Induced Aging. Biol Pharm Bull 2025; 48:523-536. [PMID: 40335326 DOI: 10.1248/bpb.b24-00524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2025]
Abstract
Astragalus polysaccharide (APS) is a biologically active water-soluble polysaccharide extracted from stems or roots, which has been proven to have antiaging effects. The aim of this study was to investigate the effects of APS on cognitive function in d-galactose (d-gal)-induced aging rats and explore the potential underlying molecular mechanisms. The rats were induced to age by intraperitoneal injection with 400 mg/kg/d d-gal for 8 weeks. Aging of rats was assessed through the Morris water maze test, step-down test, open field test, and grip strength test. Pathological changes in the hippocampal CA3 and CA1 regions were determined by Hematoxylin and eosin and Nissl staining. The superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), malondialdehyde (MDA), and total antioxidant capacity (T-AOC) in the serum were measured. Telomere length, dual oxidase 1 (Duox1), dual oxidase 2 (Duox2), peroxiredoxin 1 (Prdx1), p21, p16, p53, telomerase reverse transcriptase (TERT), phosphatidylinositol 3-kinase (PI3K), protein kinase B (AKT), nicotinamide phosphoribosyl transferase (NAMPT), and sirtuin 1 (SIRT1) were detected via real-time PCR, Western blotting, and immunohistochemical staining. The results indicated that APS ameliorated the general status in d-gal-induced aging rats, mitigated neuronal degeneration in the CA3 and CA1 regions, reduced the oxidative stress levels, modulated senescence-related β-GAL and protein expression, and maintained telomere length. Furthermore, APS significantly reduced p53 expression and increased p-PI3K, p-AKT, NAMPT, SIRT1, and TERT expression. Therefore, d-gal-induced aging and cognitive impairment in rats can be prevented by APS, likely through regulation of the TERT/p53 signaling axis via the PI3K/Akt and NAMPT/SIRT1 signaling pathways.
Collapse
Affiliation(s)
- Jin Tian
- Hebei University of Chinese Medicine, Shijiazhuang, Hebei 050200, China
| | - Ran Huo
- Hebei University of Chinese Medicine, Shijiazhuang, Hebei 050200, China
| | - Yixuan Wang
- Hebei University of Chinese Medicine, Shijiazhuang, Hebei 050200, China
| | - Jiepeng Wang
- Hebei University of Chinese Medicine, Shijiazhuang, Hebei 050200, China
- Hebei Key Laboratory of Integrated Chinese and Western Medicine for Lung Disease Research, Shijiazhuang, Hebei 050091, China
| | - Fang Fang
- Hebei University of Chinese Medicine, Shijiazhuang, Hebei 050200, China
- Hebei Key Laboratory of Integrated Chinese and Western Medicine for Lung Disease Research, Shijiazhuang, Hebei 050091, China
| | - Chaoyi Fang
- Hebei University of Chinese Medicine, Shijiazhuang, Hebei 050200, China
- Hebei Key Laboratory of Integrated Chinese and Western Medicine for Lung Disease Research, Shijiazhuang, Hebei 050091, China
| |
Collapse
|
5
|
Almalki WH, Almujri SS. Aging, ROS, and cellular senescence: a trilogy in the progression of liver fibrosis. Biogerontology 2024; 26:10. [PMID: 39546058 DOI: 10.1007/s10522-024-10153-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Accepted: 10/30/2024] [Indexed: 11/17/2024]
Abstract
Ageing is an inevitable and multifaceted biological process that impacts a wide range of cellular and molecular mechanisms, leading to the development of various diseases, such as liver fibrosis. Liver fibrosis progresses to cirrhosis, which is an advanced form due to high amounts of extracellular matrix and restoration of normal liver structure with failure to repair damaged tissue and cells, marking the end of liver function and total liver failure, ultimately death. The most important factors are reactive oxygen species (ROS) and cellular senescence. Oxidative stress is defined as an impairment by ROS, which are by-products of the mitochondrial electron transport chain and other key molecular pathways that induce cell damage and can activate cellular senescence pathways. Cellular senescence is characterized by pro-inflammatory cytokines, growth factors, and proteases secreted by senescent cells, collectively known as the senescence-associated secretory phenotype (SASP). The presence of senescent cells, which disrupt tissue architecture and function and increase senescent cell production in liver tissues, contributes to fibrogenesis. Hepatic stellate cells (HSCs) are activated in response to chronic liver injury, oxidative stress, and senescence signals that drive excessive production and deposition of extracellular matrix. This review article aims to provide a comprehensive overview of the pathogenic role of ROS and cellular senescence in the aging liver and their contribution to fibrosis.
Collapse
Affiliation(s)
- Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Salem Salman Almujri
- Department of Pharmacology, College of Pharmacy, King Khalid University, 61421, Abha, Aseer, Saudi Arabia.
| |
Collapse
|
6
|
Iorio R, Petricca S, Di Emidio G, Falone S, Tatone C. Mitochondrial Extracellular Vesicles (mitoEVs): Emerging mediators of cell-to-cell communication in health, aging and age-related diseases. Ageing Res Rev 2024; 101:102522. [PMID: 39369800 DOI: 10.1016/j.arr.2024.102522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/17/2024] [Accepted: 09/23/2024] [Indexed: 10/08/2024]
Abstract
Mitochondria are metabolic and signalling hubs that integrate a plethora of interconnected processes to maintain cell homeostasis. They are also dormant mediators of inflammation and cell death, and with aging damages affecting mitochondria gradually accumulate, resulting in the manifestation of age-associated disorders. In addition to coordinate multiple intracellular functions, mitochondria mediate intercellular and inter-organ cross talk in different physiological and stress conditions. To fulfil this task, mitochondrial signalling has evolved distinct and complex conventional and unconventional routes of horizontal/vertical mitochondrial transfer. In this regard, great interest has been focused on the ability of extracellular vesicles (EVs), such as exosomes and microvesicles, to carry selected mitochondrial cargoes to target cells, in response to internal and external cues. Over the past years, the field of mitochondrial EVs (mitoEVs) has grown exponentially, revealing unexpected heterogeneity of these structures associated with an ever-expanding mitochondrial function, though the full extent of the underlying mechanisms is far from being elucidated. Therefore, emerging subsets of EVs encompass exophers, migrasomes, mitophers, mitovesicles, and mitolysosomes that can act locally or over long-distances to restore mitochondrial homeostasis and cell functionality, or to amplify disease. This review provides a comprehensive overview of our current understanding of the biology and trafficking of MitoEVs in different physiological and pathological conditions. Additionally, a specific focus on the role of mitoEVs in aging and the onset and progression of different age-related diseases is discussed.
Collapse
Affiliation(s)
- Roberto Iorio
- Dept. of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Via Vetoio, L'Aquila 67100, Italy.
| | - Sabrina Petricca
- Dept. of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Via Vetoio, L'Aquila 67100, Italy
| | - Giovanna Di Emidio
- Dept. of Life, Health and Environmental Sciences, University of L'Aquila, Via Vetoio, L'Aquila 67100, Italy
| | - Stefano Falone
- Dept. of Life, Health and Environmental Sciences, University of L'Aquila, Via Vetoio, L'Aquila 67100, Italy
| | - Carla Tatone
- Dept. of Life, Health and Environmental Sciences, University of L'Aquila, Via Vetoio, L'Aquila 67100, Italy
| |
Collapse
|
7
|
Xu MY, Xia ZY, Sun JX, Liu CQ, An Y, Xu JZ, Zhang SH, Zhong XY, Zeng N, Ma SY, He HD, Wang SG, Xia QD. A new perspective on prostate cancer treatment: the interplay between cellular senescence and treatment resistance. Front Immunol 2024; 15:1395047. [PMID: 38694500 PMCID: PMC11061424 DOI: 10.3389/fimmu.2024.1395047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 04/01/2024] [Indexed: 05/04/2024] Open
Abstract
The emergence of resistance to prostate cancer (PCa) treatment, particularly to androgen deprivation therapy (ADT), has posed a significant challenge in the field of PCa management. Among the therapeutic options for PCa, radiotherapy, chemotherapy, and hormone therapy are commonly used modalities. However, these therapeutic approaches, while inducing apoptosis in tumor cells, may also trigger stress-induced premature senescence (SIPS). Cellular senescence, an entropy-driven transition from an ordered to a disordered state, ultimately leading to cell growth arrest, exhibits a dual role in PCa treatment. On one hand, senescent tumor cells may withdraw from the cell cycle, thereby reducing tumor growth rate and exerting a positive effect on treatment. On the other hand, senescent tumor cells may secrete a plethora of cytokines, growth factors and proteases that can affect neighboring tumor cells, thereby exerting a negative impact on treatment. This review explores how radiotherapy, chemotherapy, and hormone therapy trigger SIPS and the nuanced impact of senescent tumor cells on PCa treatment. Additionally, we aim to identify novel therapeutic strategies to overcome resistance in PCa treatment, thereby enhancing patient outcomes.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Qi-Dong Xia
- *Correspondence: Shao-Gang Wang, ; Qi-Dong Xia,
| |
Collapse
|
8
|
Tian T, Ko CN, Luo W, Li D, Yang C. The anti-aging mechanism of ginsenosides with medicine and food homology. Food Funct 2023; 14:9123-9136. [PMID: 37766674 DOI: 10.1039/d3fo02580b] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2023]
Abstract
With the acceleration of global aging and the rise in living standards, the achievement of healthy aging is becoming an imperative issue globally. Ginseng, a medicinal plant that has a long history of dietary intake and remarkable medicinal value, has become a research hotspot in the field of food and medicine. Ginsenosides, especially protopanaxadiol-type saponins and protopanaxatriol-type saponins, are among the most important active ingredients in ginseng. Ginsenosides have been found to exhibit powerful and diverse pharmacological activities, such as antiaging, antitumor, antifatigue and immunity enhancement activities. Their effects in antiaging mainly include (1) promotion of metabolism and stem cell proliferation, (2) protection of skin and nerves, (3) modulation of intestinal flora, (4) maintenance of mitochondrial function, and (5) enhancement of telomerase activity. The underlying mechanisms are primarily associated with the intervention of the signaling pathways in apoptosis, inflammation and oxidative stress. In this review, the mechanism of action of ginsenosides in antiaging as well as the potential values of developing ginsenoside-based functional foods and antiaging drugs are discussed.
Collapse
Affiliation(s)
- Tiantian Tian
- Center for Biological Science and Technology, Beijing Normal University, Zhuhai, Guangdong Province, 519087, China
| | - Chung-Nga Ko
- C-MER Dennis Lam and Partners Eye Center, Hong Kong International Eye Care Group, Hong Kong, China
| | - Wenya Luo
- Haikou Orthopedics and Diabetes Hospital, Haikou, Hainan, 570206, China
| | - Dan Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China.
| | - Chao Yang
- National Engineering Research Center for Marine Aquaculture, Institute of Innovation & Application, Zhejiang Ocean University, Zhoushan, Zhejiang Province, 316022, China.
| |
Collapse
|
9
|
Bloom SI, Islam MT, Lesniewski LA, Donato AJ. Mechanisms and consequences of endothelial cell senescence. Nat Rev Cardiol 2023; 20:38-51. [PMID: 35853997 PMCID: PMC10026597 DOI: 10.1038/s41569-022-00739-0] [Citation(s) in RCA: 189] [Impact Index Per Article: 94.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/13/2022] [Indexed: 12/15/2022]
Abstract
Endothelial cells are located at the crucial interface between circulating blood and semi-solid tissues and have many important roles in maintaining systemic physiological function. The vascular endothelium is particularly susceptible to pathogenic stimuli that activate tumour suppressor pathways leading to cellular senescence. We now understand that senescent endothelial cells are highly active, secretory and pro-inflammatory, and have an aberrant morphological phenotype. Moreover, endothelial senescence has been identified as an important contributor to various cardiovascular and metabolic diseases. In this Review, we discuss the consequences of endothelial cell exposure to damaging stimuli (haemodynamic forces and circulating and endothelial-derived factors) and the cellular and molecular mechanisms that induce endothelial cell senescence. We also discuss how endothelial cell senescence causes arterial dysfunction and contributes to clinical cardiovascular diseases and metabolic disorders. Finally, we summarize the latest evidence on the effect of eliminating senescent endothelial cells (senolysis) and identify important remaining questions to be addressed in future studies.
Collapse
Affiliation(s)
- Samuel I Bloom
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT, USA
| | - Md Torikul Islam
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT, USA
| | - Lisa A Lesniewski
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT, USA
- Department of Internal Medicine, Division of Geriatrics, University of Utah, Salt Lake City, UT, USA
- Veterans Affairs Medical Center-Salt Lake City, Geriatric Research Education and Clinical Center, Salt Lake City, UT, USA
| | - Anthony J Donato
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT, USA.
- Department of Internal Medicine, Division of Geriatrics, University of Utah, Salt Lake City, UT, USA.
- Veterans Affairs Medical Center-Salt Lake City, Geriatric Research Education and Clinical Center, Salt Lake City, UT, USA.
- Department of Biochemistry, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
10
|
Bloom SI, Tucker JR, Lim J, Thomas TG, Stoddard GJ, Lesniewski LA, Donato AJ. Aging results in DNA damage and telomere dysfunction that is greater in endothelial versus vascular smooth muscle cells and is exacerbated in atheroprone regions. GeroScience 2022; 44:2741-2755. [PMID: 36350415 PMCID: PMC9768045 DOI: 10.1007/s11357-022-00681-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 10/26/2022] [Indexed: 11/11/2022] Open
Abstract
Aging increases the risk of atherosclerotic cardiovascular disease which is associated with arterial senescence; however, the mechanisms responsible for the development of cellular senescence in endothelial cells (ECs) and vascular smooth muscle cells (VSMCs) remain elusive. Here, we study the effect of aging on arterial DNA damage and telomere dysfunction. Aging resulted in greater DNA damage in ECs than VSMCs. Further, telomere dysfunction-associated DNA damage foci (TAF: DNA damage signaling at telomeres) were elevated with aging in ECs but not VMSCs. Telomere length was modestly reduced in ECs with aging and not sufficient to induce telomere dysfunction. DNA damage and telomere dysfunction were greatest in atheroprone regions (aortic minor arch) versus non-atheroprone regions (thoracic aorta). Collectively, these data demonstrate that aging results in DNA damage and telomere dysfunction that is greater in ECs than VSMCs and elevated in atheroprone aortic regions.
Collapse
Affiliation(s)
- Samuel I Bloom
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT, USA
| | - Jordan R Tucker
- Department of Internal Medicine, Division of Geriatrics, University of Utah, VA Medical Center-SLC, GRECC Building 2, Rm 2D15A, 500 Foothill Dr., Salt Lake City, UT, USA
| | - Jisok Lim
- Department of Internal Medicine, Division of Geriatrics, University of Utah, VA Medical Center-SLC, GRECC Building 2, Rm 2D15A, 500 Foothill Dr., Salt Lake City, UT, USA
| | - Tyler G Thomas
- Department of Internal Medicine, Division of Geriatrics, University of Utah, VA Medical Center-SLC, GRECC Building 2, Rm 2D15A, 500 Foothill Dr., Salt Lake City, UT, USA
| | - Gregory J Stoddard
- Department of Internal Medicine, Division of Geriatrics, University of Utah, VA Medical Center-SLC, GRECC Building 2, Rm 2D15A, 500 Foothill Dr., Salt Lake City, UT, USA
| | - Lisa A Lesniewski
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT, USA
- Department of Internal Medicine, Division of Geriatrics, University of Utah, VA Medical Center-SLC, GRECC Building 2, Rm 2D15A, 500 Foothill Dr., Salt Lake City, UT, USA
- Geriatric Research and Clinical Center, Veteran's Affairs Medical Center-Salt Lake City, Salt Lake City, UT, USA
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT, USA
| | - Anthony J Donato
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT, USA.
- Department of Internal Medicine, Division of Geriatrics, University of Utah, VA Medical Center-SLC, GRECC Building 2, Rm 2D15A, 500 Foothill Dr., Salt Lake City, UT, USA.
- Geriatric Research and Clinical Center, Veteran's Affairs Medical Center-Salt Lake City, Salt Lake City, UT, USA.
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT, USA.
- Department of Biochemistry, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
11
|
RDIVpSGP motif of ASPP2 binds to 14-3-3 and enhances ASPP2/k18/14-3-3 ternary complex formulation to promote BRAF/MEK/ERK signal inhibited cell proliferation in hepatocellular carcinoma. Cancer Gene Ther 2022; 29:1616-1627. [PMID: 35504951 DOI: 10.1038/s41417-022-00474-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 03/27/2022] [Accepted: 04/08/2022] [Indexed: 02/04/2023]
Abstract
The Apoptosis Stimulating Protein of p53 2 (ASPP2) is a heterozygous insufficient tumor suppressor; however, its molecular mechanism(s) in tumor suppression is not completely understood. ASPP2 plays an essential role in cell growth, as shown by liver hepatocellular carcinoma (LIHC) RNA-seq assay using the Cancer Genome Atlas (TCGA) and High-Throughput-PCR assay using ASPP2 knockdown cells. These observations were further confirmed by in vivo and in vitro experiments. Mechanistically, N-terminus ASPP2 interacted with Keratin 18 (k18) in vivo and in vitro. Interestingly, the RDIVpSGP motif of ASPP2 associates with 14-3-3 and promotes ASPP2/k18/14-3-3 ternary-complex formation which promotes MEK/ERK signal activation by impairing 14-3-3 and BRAF association. Additionally, ASPP2-rAd injection promotes paclitaxel-suppressed tumor growth by suppressing cell proliferation in the BALB/c nude mice model. ASPP2 and k18 were preferentially downregulated in Hepatocellular Carcinoma (HCC), which predicted poor prognosis in HCC patients. Overall, these findings suggested that ASPP2 promoted BRAF/MEK/ERK signal activation by promoting the formation of an ASPP2/k18/14-3-3 ternary complex via the RDIVpSGP motif at the N terminus. Moreover, this study provides novel insights into the molecular mechanism of tumor suppression in HCC patients.
Collapse
|
12
|
Ogłuszka M, Lipiński P, Starzyński RR. Effect of Omega-3 Fatty Acids on Telomeres-Are They the Elixir of Youth? Nutrients 2022; 14:nu14183723. [PMID: 36145097 PMCID: PMC9504755 DOI: 10.3390/nu14183723] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/05/2022] [Accepted: 09/06/2022] [Indexed: 11/17/2022] Open
Abstract
Telomeres are complexes consisting of tandem repeat DNA combined with associated proteins that play a key role in protecting the ends of chromosomes and maintaining genome stability. They are considered a biological clock, as they shorten in parallel with aging. Furthermore, short telomeres are associated with several age-related diseases. However, the variability in telomere shortening independent of chronological age suggests that it is a modifiable factor. In fact, it is regulated inter alia by genetic damage, cell division, aging, oxidative stress, and inflammation. A key question remains: how can we prevent accelerated telomere attrition and subsequent premature replicative senescence? A number of studies have explored the possible impact of omega-3 fatty acids on telomere shortening. This review summarizes published cross-sectional studies, randomized controlled trials, and rodent studies investigating the role of omega-3 fatty acids in telomere biology. It also covers a broad overview of the mechanism, currently favored in the field, that explains the impact of omega-3 fatty acids on telomeres—the food compound’s ability to modulate oxidative stress and inflammation. Although the results of the studies performed to date are not consistent, the vast majority indicate a beneficial effect of omega-3 fatty acids on telomere length.
Collapse
Affiliation(s)
- Magdalena Ogłuszka
- Department of Genomics, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, 05-552 Jastrzębiec, Poland
| | - Paweł Lipiński
- Department of Molecular Biology, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, 05-552 Jastrzębiec, Poland
| | - Rafał R. Starzyński
- Department of Molecular Biology, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, 05-552 Jastrzębiec, Poland
- Correspondence:
| |
Collapse
|
13
|
Xiao Y, Xiang JW, Gao Q, Bai YY, Huang ZX, Hu XH, Wang L, Li DWC. MAB21L1 promotes survival of lens epithelial cells through control of αB-crystallin and ATR/CHK1/p53 pathway. Aging (Albany NY) 2022; 14:6128-6148. [PMID: 35951367 PMCID: PMC9417230 DOI: 10.18632/aging.204203] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 07/25/2022] [Indexed: 11/25/2022]
Abstract
The male abnormal gene family 21 (mab21), was initially identified in C. elegans. Since its identification, studies from different groups have shown that it regulates development of ocular tissues, brain, heart and liver. However, its functional mechanism remains largely unknown. Here, we demonstrate that Mab21L1 promotes survival of lens epithelial cells. Mechanistically, Mab21L1 upregulates expression of αB-crystallin. Moreover, our results show that αB-crystallin prevents stress-induced phosphorylation of p53 at S-20 and S-37 through abrogating the activation of the upstream kinases, ATR and CHK1. As a result of suppressing p53 activity by αB-crystallin, Mab21L1 downregulates expression of Bak but upregulates Mcl-1 during stress insult. Taken together, our results demonstrate that Mab21L1 promotes survival of lens epithelial cells through upregulation of αB-crystallin to suppress ATR/CHK1/p53 pathway.
Collapse
Affiliation(s)
- Yuan Xiao
- College of Life Sciences, Hunan Normal University, Changsha 410080, Hunan, China.,The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Tianhe, Guangzhou 510230, Guangdong, China
| | - Jia-Wen Xiang
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Tianhe, Guangzhou 510230, Guangdong, China
| | - Qian Gao
- College of Life Sciences, Hunan Normal University, Changsha 410080, Hunan, China.,The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Tianhe, Guangzhou 510230, Guangdong, China
| | - Yue-Yue Bai
- College of Life Sciences, Hunan Normal University, Changsha 410080, Hunan, China.,The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Tianhe, Guangzhou 510230, Guangdong, China
| | - Zhao-Xia Huang
- Department of Basic Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang 121212, Guizhou, China
| | - Xiao-Hui Hu
- College of Life Sciences, Hunan Normal University, Changsha 410080, Hunan, China
| | - Ling Wang
- The Academician Work Station, Changsha Medical University, Changsha 410219, Hunan, China
| | - David Wan-Cheng Li
- College of Life Sciences, Hunan Normal University, Changsha 410080, Hunan, China.,The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Tianhe, Guangzhou 510230, Guangdong, China
| |
Collapse
|
14
|
Dong Y, Wu X, Han L, Bian J, He C, El-Omar E, Gong L, Wang M. The Potential Roles of Dietary Anthocyanins in Inhibiting Vascular Endothelial Cell Senescence and Preventing Cardiovascular Diseases. Nutrients 2022; 14:nu14142836. [PMID: 35889793 PMCID: PMC9316990 DOI: 10.3390/nu14142836] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/08/2022] [Accepted: 07/08/2022] [Indexed: 12/31/2022] Open
Abstract
Cardiovascular disease (CVD) is a group of diseases affecting the heart and blood vessels and is the leading cause of morbidity and mortality worldwide. Increasingly more evidence has shown that the senescence of vascular endothelial cells is the key to endothelial dysfunction and cardiovascular diseases. Anthocyanin is a type of water-soluble polyphenol pigment and secondary metabolite of plant-based food widely existing in fruits and vegetables. The gut microbiome is involved in the metabolism of anthocyanins and mediates the biological activities of anthocyanins and their metabolites, while anthocyanins also regulate the growth of specific bacteria in the microbiota and promote the proliferation of healthy anaerobic flora. Accumulating studies have shown that anthocyanins have antioxidant, anti-inflammatory, and anti-aging effects. Many animal and in vitro experiments have also proven that anthocyanins have protective effects on cardiovascular-disease-related dysfunction. However, the molecular mechanism of anthocyanin in eliminating aging endothelial cells and preventing cardiovascular diseases is very complex and is not fully understood. In this systematic review, we summarize the metabolism and activities of anthocyanins, as well as their effects on scavenging senescent cells and cardioprotection.
Collapse
Affiliation(s)
- Yonghui Dong
- College of Food Science and Engineering, Northwest A&F University, Xianyang 712100, China; (Y.D.); (X.W.); (L.H.); (C.H.)
| | - Xue Wu
- College of Food Science and Engineering, Northwest A&F University, Xianyang 712100, China; (Y.D.); (X.W.); (L.H.); (C.H.)
| | - Lin Han
- College of Food Science and Engineering, Northwest A&F University, Xianyang 712100, China; (Y.D.); (X.W.); (L.H.); (C.H.)
| | - Ji Bian
- Kolling Institute, Sydney Medical School, Royal North Shore Hospital, University of Sydney, St. Leonards, NSW 2065, Australia;
| | - Caian He
- College of Food Science and Engineering, Northwest A&F University, Xianyang 712100, China; (Y.D.); (X.W.); (L.H.); (C.H.)
| | - Emad El-Omar
- Microbiome Research Centre, St George and Sutherland Clinical School, University of New South Wales, Sydney, NSW 2052, Australia;
| | - Lan Gong
- Microbiome Research Centre, St George and Sutherland Clinical School, University of New South Wales, Sydney, NSW 2052, Australia;
- Correspondence: (L.G.); (M.W.)
| | - Min Wang
- College of Food Science and Engineering, Northwest A&F University, Xianyang 712100, China; (Y.D.); (X.W.); (L.H.); (C.H.)
- Correspondence: (L.G.); (M.W.)
| |
Collapse
|
15
|
Phillippe M. Telomeres, oxidative stress, and timing for spontaneous term and preterm labor. Am J Obstet Gynecol 2022; 227:148-162. [PMID: 35460626 DOI: 10.1016/j.ajog.2022.04.024] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 04/03/2022] [Accepted: 04/12/2022] [Indexed: 11/26/2022]
Abstract
Telomeres are nucleoprotein complexes located at the distal ends of chromosomes. In adults, progressive telomere shortening occurs throughout the lifetime and is thought to contribute to progressive aging, physiological senescence, multiorgan dysfunction, and ultimately, death. As discussed in this review, multiple lines of evidence provide support for the biological plausibility that a telomere-based clock mechanism also determines the length of gestation, leading to the onset of labor (parturition). After telomere expansion at the beginning of pregnancy, the telomere lengths in the gestational tissues (ie, the placenta and fetal membranes) progressively shorten throughout the remainder of pregnancy. The rate of telomere shortening can be accelerated by conditions that affect the mother and result in oxidative stress. Preterm births in the United States are associated with multiple risk factors that are linked with increased oxidative stress. Antioxidant vitamins (ie, vitamins E and C) mitigate the effects of oxidative stress and delay or prevent telomere shortening. Clinical trials with vitamins E and C and with multivitamins started during the periconception period have been associated with reduced rates of preterm births. In the United States, African-American women have a 2-3-fold higher rate of preterm birth. African-American women have multiple risk factors for premature birth, all of which are distinct and potentially additive with regard to epigenetic telomere shortening. The "weathering effect" is the hypothesis to explain the increased rates of chronic illness, disabilities, and early death observed in African-Americans. With regard to pregnancy, accelerated weathering with the associated telomere shortening in the gestational tissues would not only explain the preterm birth disparity but could also explain why highly educated, affluent African-American women continue to have an increased rate of preterm birth. These studies suggest that the racial disparities in preterm birth are potentially mediated by telomere shortening produced by lifetime or even generational exposure to the effects of systemic racism and socioeconomic marginalization. In conclusion, this review presents multiple lines of evidence supporting a novel hypothesis regarding the biological clock mechanism that determines the length of pregnancy, and it opens the possibility of new approaches to prevent or reduce the rate of spontaneous preterm birth.
Collapse
|
16
|
The p53 network: cellular and systemic DNA damage responses in cancer and aging. Trends Genet 2022; 38:598-612. [PMID: 35346511 DOI: 10.1016/j.tig.2022.02.010] [Citation(s) in RCA: 134] [Impact Index Per Article: 44.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 02/19/2022] [Accepted: 02/21/2022] [Indexed: 12/12/2022]
Abstract
The tumor protein TP53 gene, encoding the cellular tumor antigen p53, is the single most frequently mutated gene in human cancers. p53 plays a central role in responding to DNA damage and determines the outcome of the DNA damage checkpoint response by regulating cell cycle arrest and apoptosis. As a consequence of this function, dysfunctional p53 results in cells that, despite a damaged genome, continue to proliferate thus fueling malignant transformation. New insights have recently been gained into the complexity of the p53 regulation of the DNA damage response (DDR) and how it impacts a wide variety of cellular processes. In addition to cell-autonomous signaling mechanisms, non-cell-autonomous regulatory inputs influence p53 activity, which in turn can have systemic consequences on the organism. New inroads have also been made toward therapeutic targeting of p53 that for a long time has been anticipated.
Collapse
|
17
|
Watanabe S, Hibiya S, Katsukura N, Kitagawa S, Sato A, Okamoto R, Watanabe M, Tsuchiya K. Importance of Telomere Shortening in the Pathogenesis of Ulcerative Colitis: A New Treatment From the Aspect of Telomeres in Intestinal Epithelial Cells. J Crohns Colitis 2022; 16:109-121. [PMID: 34180971 DOI: 10.1093/ecco-jcc/jjab115] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
BACKGROUND AND AIMS Ulcerative colitis [UC] is a chronic inflammatory disease of the colon with frequent relapses. Telomere shortening in intestinal epithelial cells has been reported in severe or longstanding cases. However, its influence on UC pathogenesis remains unelucidated. To this end, we evaluated telomere shortening using a long-term organoid inflammation model that we had originally established. METHODS A UC model using human colon organoids was established to assess telomere changes chronologically. MST-312 was used for the telomerase inhibition assay. The potential of telomerase activators as a novel UC treatment was evaluated with an in vitro model, including microarray analysis, and histological changes were assessed using xenotransplantation into mouse colonic mucosa. RESULTS Our UC model reproduced telomere shortening in vitro, which was induced by the continuous suppression of telomerase activity via P53. MST-312-based analysis revealed that telomere shortening was involved in the pathogenesis of UC. Madecassoside [MD] improved the telomere length of the UC model and UC patient-derived organoids, which further promoted cell proliferation in vitro and improved the graft take-rate of xenotransplantation. Moreover, histological analysis revealed that MD induced normal crypt structure with abundant goblet cells. CONCLUSIONS This study is the first to reveal the mechanism and importance of telomere shortening in the pathogenesis of UC. MD could be a novel candidate for UC treatment beyond endoscopic mucosal healing.
Collapse
Affiliation(s)
- Sho Watanabe
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Shuji Hibiya
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Nobuhiro Katsukura
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Sayuki Kitagawa
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Ayako Sato
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Ryuichi Okamoto
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Mamoru Watanabe
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan.,Advanced Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Kiichiro Tsuchiya
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan.,Department of Gastroenterology, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| |
Collapse
|
18
|
Zhou D, Lv X, Wang Y, Liu H, Luo S, Li W, Huang G. Folic acid alleviates age-related cognitive decline and inhibits apoptosis of neurocytes in senescence-accelerated mouse prone 8: deoxythymidine triphosphate biosynthesis as a potential mechanism. J Nutr Biochem 2021; 97:108796. [PMID: 34102282 DOI: 10.1016/j.jnutbio.2021.108796] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 03/28/2021] [Accepted: 05/31/2021] [Indexed: 11/18/2022]
Abstract
Disturbed deoxythymidine triphosphate biosynthesis due to the inhibition of thymidylate synthase (TS) can lead to uracil accumulation in DNA, eventually, lead to neurocytes apoptosis and cognitive decline. Folic acid supplementation delayed cognitive decline and neurodegeneration in senescence-accelerated mouse prone 8 (SAMP8). Whether folic acid, one of nutrition factor, the effect on the expression of TS is unknown. The study aimed to determine if folic acid supplementation could alleviate age-related cognitive decline and apoptosis of neurocytes by increasing TS expression in SAMP8 mice. According to folic acid concentration in diet, four-month-old male SAMP8 mice were randomly divided into three different diet groups by baseline body weight in equal numbers. Moreover, to evaluate the role of TS, a TS inhibitor was injected intraperitoneal. Cognitive test, apoptosis rates of neurocytes, expression of TS, relative uracil level in telomere, and telomere length in brain tissue were detected. The results showed that folic acid supplementation decreased deoxyuridine monophosphate accumulation, uracil misincorporation in telomere, alleviated telomere length shorting, increased expression of TS, then decreased apoptosis rates of neurocytes, and alleviated cognitive performance in SAMP8 mice. Moreover, at the same concentration of folic acid, TS inhibitor raltitrexed increased deoxyuridine monophosphate accumulation, uracil misincorporation in telomere, and exacerbated telomere length shorting, decreased expression of TS, then increased apoptosis rates of neurocytes, and decreased cognitive performance in SAMP8 mice. In conclusion, folic acid supplementation alleviated age-related cognitive decline and inhibited apoptosis of neurocytes by increasing TS expression in SAMP8 mice.
Collapse
Affiliation(s)
- Dezheng Zhou
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Xin Lv
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Yalan Wang
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Huan Liu
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin, China; Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin, China
| | - Suhui Luo
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin, China; Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin, China
| | - Wen Li
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin, China; Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin, China.
| | - Guowei Huang
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, Tianjin, China; Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin, China.
| |
Collapse
|
19
|
Rachakonda S, Hoheisel JD, Kumar R. Occurrence, functionality and abundance of the TERT promoter mutations. Int J Cancer 2021; 149:1852-1862. [PMID: 34313327 DOI: 10.1002/ijc.33750] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 06/14/2021] [Accepted: 07/16/2021] [Indexed: 12/18/2022]
Abstract
Telomere shortening at chromosomal ends due to the constraints of the DNA replication process acts as a tumor suppressor by restricting the replicative potential in primary cells. Cancers evade that limitation primarily through the reactivation of telomerase via different mechanisms. Mutations within the promoter of the telomerase reverse transcriptase (TERT) gene represent a definite mechanism for the ribonucleic enzyme regeneration predominantly in cancers that arise from tissues with low rates of self-renewal. The promoter mutations cause a moderate increase in TERT transcription and consequent telomerase upregulation to the levels sufficient to delay replicative senescence but not prevent bulk telomere shortening and genomic instability. Since the discovery, a staggering number of studies have resolved the discrete aspects, effects and clinical relevance of the TERT promoter mutations. The promoter mutations link transcription of TERT with oncogenic pathways, associate with markers of poor outcome and define patients with reduced survivals in several cancers. In this review, we discuss the occurrence and impact of the promoter mutations and highlight the mechanism of TERT activation. We further deliberate on the foundational question of the abundance of the TERT promoter mutations and a general dearth of functional mutations within noncoding sequences, as evident from pan-cancer analysis of the whole-genomes. We posit that the favorable genomic constellation within the TERT promoter may be less than a common occurrence in other noncoding functional elements. Besides, the evolutionary constraints limit the functional fraction within the human genome, hence the lack of abundant mutations outside the coding sequences.
Collapse
Affiliation(s)
| | - Jörg D Hoheisel
- Division of Functional Genome Analysis, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Rajiv Kumar
- Division of Functional Genome Analysis, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
20
|
Castanheira A, Vieira MJ, Pinto M, Dias C, Prada L, Macedo S, Fernandes MS, Vieira F, Soares P, Mota A, Lopes JM, Boaventura P. TERTp mutations and p53 expression in head and neck cutaneous basal cell carcinomas with different aggressive features. Sci Rep 2021; 11:10395. [PMID: 34001963 PMCID: PMC8129122 DOI: 10.1038/s41598-021-89906-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 05/04/2021] [Indexed: 02/07/2023] Open
Abstract
Cutaneous basal cell carcinoma (cBCC) is an economic burden to health services, due to its great morbidity and increasing incidence in old people. Infiltrative cBCCs and cBCCs with micronodular pattern are considered as more aggressive. The role of p53 expression and TERTp mutation on cBCC behavior remains to be clarified. We aimed to assess TERTp mutations and p53 expression in relation to the cBCC histological subtype in a cohort of patients referred to an ENT Department of a tertiary Hospital of Northern Portugal. We performed a retrospective clinicopathological and histological review of the head and neck cBCCs followed-up at the otorhinolaryngology department of Trás-os-Montes e Alto Douro hospital (January 2007–June 2018). We assessed TERTp mutations in 142 cBCCs and p53 protein expression, through immunohistochemistry, in 157 cBCCs. We detected TERTp mutations in 43.7% of cBCCs and p53 overexpression in 60.5% of cBCCs. We spotted association of p53 overexpression and TERTp mutation with necrosis. In the infitrative-growth pattern cBCCs, there was no significant association with the clinical and histological features evaluated, except for necrosis. In the indolent-growth cBCCs, we identified a significant association of TERTp mutation status with female sex, necrosis, multiple cBCCs, and p53 positive expression. Our results suggest that TERTp mutation may be useful to identify more aggressive features in the indolent-growth pattern cBCCs (nodular and superficial subtypes). Further studies with larger cohorts are warranted to clarify the relevance of TERTp mutation in cBCCs.
Collapse
Affiliation(s)
- António Castanheira
- Department of Otorhinolaryngology, Centro Hospitalar de Trás-Os-Montes e Alto Douro, Vila Real, Portugal.,FMUP-Faculty of Medicine, University of Porto, Porto, Portugal
| | - Maria João Vieira
- IPATIMUP-Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal.,i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal
| | - Mafalda Pinto
- IPATIMUP-Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal.,i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal
| | - Carolina Dias
- IPATIMUP-Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal.,i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal
| | - Luísa Prada
- IPATIMUP-Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal.,i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal.,Laboratory of Clinical Pharmacology and Therapeutics, Faculty of Medicine, University of Lisbon, Lisboa, Portugal
| | - Sofia Macedo
- IPATIMUP-Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal.,i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal
| | | | | | - Paula Soares
- FMUP-Faculty of Medicine, University of Porto, Porto, Portugal.,IPATIMUP-Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal.,i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal
| | - Alberto Mota
- FMUP-Faculty of Medicine, University of Porto, Porto, Portugal.,Department of Dermatology, Centro Hospitalar São João, Porto, Portugal
| | - José Manuel Lopes
- FMUP-Faculty of Medicine, University of Porto, Porto, Portugal.,IPATIMUP-Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal.,i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal.,Department of Pathology, Centro Hospitalar São João, Porto, Portugal
| | - Paula Boaventura
- FMUP-Faculty of Medicine, University of Porto, Porto, Portugal. .,IPATIMUP-Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal. .,i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal.
| |
Collapse
|
21
|
The Interactions of DNA Repair, Telomere Homeostasis, and p53 Mutational Status in Solid Cancers: Risk, Prognosis, and Prediction. Cancers (Basel) 2021; 13:cancers13030479. [PMID: 33513745 PMCID: PMC7865496 DOI: 10.3390/cancers13030479] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 01/18/2021] [Accepted: 01/23/2021] [Indexed: 12/12/2022] Open
Abstract
The disruption of genomic integrity due to the accumulation of various kinds of DNA damage, deficient DNA repair capacity, and telomere shortening constitute the hallmarks of malignant diseases. DNA damage response (DDR) is a signaling network to process DNA damage with importance for both cancer development and chemotherapy outcome. DDR represents the complex events that detect DNA lesions and activate signaling networks (cell cycle checkpoint induction, DNA repair, and induction of cell death). TP53, the guardian of the genome, governs the cell response, resulting in cell cycle arrest, DNA damage repair, apoptosis, and senescence. The mutational status of TP53 has an impact on DDR, and somatic mutations in this gene represent one of the critical events in human carcinogenesis. Telomere dysfunction in cells that lack p53-mediated surveillance of genomic integrity along with the involvement of DNA repair in telomeric DNA regions leads to genomic instability. While the role of individual players (DDR, telomere homeostasis, and TP53) in human cancers has attracted attention for some time, there is insufficient understanding of the interactions between these pathways. Since solid cancer is a complex and multifactorial disease with considerable inter- and intra-tumor heterogeneity, we mainly dedicated this review to the interactions of DNA repair, telomere homeostasis, and TP53 mutational status, in relation to (a) cancer risk, (b) cancer progression, and (c) cancer therapy.
Collapse
|
22
|
ATM mediated-p53 signaling pathway forms a novel axis for senescence control. Mitochondrion 2020; 55:54-63. [DOI: 10.1016/j.mito.2020.09.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 09/01/2020] [Accepted: 09/10/2020] [Indexed: 12/17/2022]
|
23
|
Schneider CV, Hamesch K, Gross A, Mandorfer M, Moeller LS, Pereira V, Pons M, Kuca P, Reichert MC, Benini F, Burbaum B, Voss J, Gutberlet M, Woditsch V, Lindhauer C, Fromme M, Kümpers J, Bewersdorf L, Schaefer B, Eslam M, Bals R, Janciauskiene S, Carvão J, Neureiter D, Zhou B, Wöran K, Bantel H, Geier A, Dirrichs T, Stickel F, Teumer A, Verbeek J, Nevens F, Govaere O, Krawczyk M, Roskams T, Haybaeck J, Lurje G, Chorostowska-Wynimko J, Genesca J, Reiberger T, Lammert F, Krag A, George J, Anstee QM, Trauner M, Datz C, Gaisa NT, Denk H, Trautwein C, Aigner E, Strnad P. Liver Phenotypes of European Adults Heterozygous or Homozygous for Pi∗Z Variant of AAT (Pi∗MZ vs Pi∗ZZ genotype) and Noncarriers. Gastroenterology 2020; 159:534-548.e11. [PMID: 32376409 DOI: 10.1053/j.gastro.2020.04.058] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 03/26/2020] [Accepted: 04/20/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND & AIMS Homozygosity for the Pi∗Z variant of the gene that encodes the alpha-1 antitrypsin peptide (AAT), called the Pi∗ZZ genotype, causes a liver and lung disease called alpha-1 antitrypsin deficiency. Heterozygosity (the Pi∗MZ genotype) is a risk factor for cirrhosis in individuals with liver disease. Up to 4% of Europeans have the Pi∗MZ genotype; we compared features of adults with and without Pi∗MZ genotype among persons without preexisting liver disease. METHODS We analyzed data from the European Alpha-1 Liver Cohort, from 419 adults with the Pi∗MZ genotype, 309 adults with the Pi∗ZZ genotype, and 284 individuals without the variant (noncarriers). All underwent a comprehensive evaluation; liver stiffness measurements (LSMs) were made by transient elastography. Liver biopsies were analyzed to define histologic and biochemical features associated with the Pi∗Z variant. Levels of serum transaminases were retrieved from 444,642 participants, available in the United Kingdom biobank. RESULTS In the UK biobank database, levels of serum transaminases were increased in subjects with the Pi∗MZ genotype compared with noncarriers. In the Alpha-1 Liver Cohort, adults with Pi∗MZ had lower levels of gamma-glutamyl transferase in serum and lower LSMs than adults with the Pi∗ZZ variant, but these were higher than in noncarriers. Ten percent of subjects with the Pi∗MZ genotype vs 4% of noncarriers had LSMs of 7.1 kPa or more (adjusted odds ratio, 4.8; 95% confidence interval, 2.0-11.8). Obesity and diabetes were the most important factors associated with LSMs ≥7.1 kPa in subjects with the Pi∗MZ genotype. AAT inclusions were detected in liver biopsies of 63% of subjects with the Pi∗MZ genotype, vs 97% of subjects with the Pi∗ZZ genotype, and increased with liver fibrosis stages. Subjects with the Pi∗MZ genotype did not have increased hepatic levels of AAT, whereas levels of insoluble AAT varied among individuals. CONCLUSIONS Adults with the Pi∗MZ genotype have lower levels of serum transaminases, fewer AAT inclusions in liver, and lower liver stiffness than adults with the Pi∗ZZ genotype, but higher than adults without the Pi∗Z variant. These findings should help determine risk of subjects with the Pi∗MZ genotype and aid in counseling.
Collapse
Affiliation(s)
- Carolin V Schneider
- Medical Clinic III, Gastroenterology, Metabolic diseases and Intensive Care, University Hospital RWTH Aachen, Aachen, Germany
| | - Karim Hamesch
- Medical Clinic III, Gastroenterology, Metabolic diseases and Intensive Care, University Hospital RWTH Aachen, Aachen, Germany; Coordinating Center for alpha-1 antitrypsin deficiency-related liver disease of the European Reference Network (ERN) "Rare Liver" and the European Association for the Study of the Liver (EASL) registry group "Alpha-1 Liver," University Hospital Aachen, Aachen, Germany
| | - Annika Gross
- Medical Clinic III, Gastroenterology, Metabolic diseases and Intensive Care, University Hospital RWTH Aachen, Aachen, Germany
| | - Mattias Mandorfer
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University Vienna, Vienna, Austria; Rare Liver Disease (RALID) Center of the European Reference Network (ERN) RARE-LIVER, Medical University Vienna, Vienna, Austria
| | - Linda S Moeller
- Department of Gastroenterology and Hepatology, Odense University Hospital, Odense, Denmark
| | - Vitor Pereira
- Department of Gastroenterology, Centro Hospitalar do Funchal, Madeira, Portugal
| | - Monica Pons
- Liver Unit, Hospital Universitari Vall d'Hebron, Vall d'Hebron Research Institute (VHIR), Universitat Autonoma de Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid
| | - Pawel Kuca
- Department of Genetics and Clinical Immunology, National Institute of Tuberculosis and Lung Diseases, Warsaw, Poland
| | - Matthias C Reichert
- Department of Medicine II, Saarland University Medical Center, Saarland University, Homburg, Germany
| | - Federica Benini
- Gastroenterology Unit, Department of Medicine, Spedali Civili and University, Brescia, Italy
| | - Barbara Burbaum
- Medical Clinic III, Gastroenterology, Metabolic diseases and Intensive Care, University Hospital RWTH Aachen, Aachen, Germany
| | - Jessica Voss
- Medical Clinic III, Gastroenterology, Metabolic diseases and Intensive Care, University Hospital RWTH Aachen, Aachen, Germany
| | - Marla Gutberlet
- Medical Clinic III, Gastroenterology, Metabolic diseases and Intensive Care, University Hospital RWTH Aachen, Aachen, Germany
| | - Vivien Woditsch
- Medical Clinic III, Gastroenterology, Metabolic diseases and Intensive Care, University Hospital RWTH Aachen, Aachen, Germany
| | - Cecilia Lindhauer
- Medical Clinic III, Gastroenterology, Metabolic diseases and Intensive Care, University Hospital RWTH Aachen, Aachen, Germany
| | - Malin Fromme
- Medical Clinic III, Gastroenterology, Metabolic diseases and Intensive Care, University Hospital RWTH Aachen, Aachen, Germany
| | - Julia Kümpers
- Medical Clinic III, Gastroenterology, Metabolic diseases and Intensive Care, University Hospital RWTH Aachen, Aachen, Germany
| | - Lisa Bewersdorf
- Medical Clinic III, Gastroenterology, Metabolic diseases and Intensive Care, University Hospital RWTH Aachen, Aachen, Germany
| | - Benedikt Schaefer
- Department of Internal Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | - Mohammed Eslam
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, NSW, Australia
| | - Robert Bals
- Department of Internal Medicine V, Saarland University Medical Center, Homburg, Germany
| | | | - Joana Carvão
- Department of Gastroenterology, Centro Hospitalar do Funchal, Madeira, Portugal
| | - Daniel Neureiter
- Institute of Pathology, Paracelsus Medical University/Salzburger Landeskliniken (SALK), Salzburg, Austria
| | - Biaohuan Zhou
- Medical Clinic III, Gastroenterology, Metabolic diseases and Intensive Care, University Hospital RWTH Aachen, Aachen, Germany
| | - Katharina Wöran
- Department of Pathology, Medical University Vienna, Vienna, Austria
| | - Heike Bantel
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Andreas Geier
- Department of Hepatology, University of Wuerzburg, Wuerzburg, Germany
| | - Timm Dirrichs
- Department of Diagnostic and Interventional Radiology, RWTH Aachen University Hospital, Aachen, Germany
| | - Felix Stickel
- Department of Gastroenterology and Hepatology, University Hospital of Zurich, Zürich, Switzerland
| | - Alexander Teumer
- Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany; DZHK (German Center for Cardiovascular Research), partner site Greifswald, Greifswald, Germany
| | - Jef Verbeek
- Department of Gastroenterology & Hepatology, University Hospitals KU Leuven, Leuven, Belgium
| | - Frederik Nevens
- Department of Gastroenterology & Hepatology, University Hospitals KU Leuven, Leuven, Belgium
| | - Olivier Govaere
- Translational & Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK; Newcastle NIHR Biomedical Research Centre, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Marcin Krawczyk
- Department of Medicine II, Saarland University Medical Center, Saarland University, Homburg, Germany; Department of Medicine II Saarland University Medical Center Saarland University Homburg Germany Laboratory of Metabolic Liver Diseases, Centre for Preclinical Research, Department of General, Transplant and Liver Surgery, Medical University of Warsaw, Warsaw, Poland
| | - Tania Roskams
- Department of Pathology, University Hospitals KU Leuven, Leuven, Belgium
| | - Johannes Haybaeck
- Department of Pathology, Neuropathology, and Molecular Pathology, Medical University of Innsbruck, Innsbruck, Austria; Diagnostic & Research Center for Molecular Biomedicine, Institute of Pathology, Medical University of Graz, Austria
| | - Georg Lurje
- Department of Surgery and Transplantation, University Hospital RWTH Aachen, Aachen, Germany; Department of Surgery, Campus Charité Mitte I Campus Virchow Klinikum Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Joanna Chorostowska-Wynimko
- Department of Genetics and Clinical Immunology, National Institute of Tuberculosis and Lung Diseases, Warsaw, Poland
| | - Joan Genesca
- Liver Unit, Hospital Universitari Vall d'Hebron, Vall d'Hebron Research Institute (VHIR), Universitat Autonoma de Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid
| | - Thomas Reiberger
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University Vienna, Vienna, Austria; Rare Liver Disease (RALID) Center of the European Reference Network (ERN) RARE-LIVER, Medical University Vienna, Vienna, Austria
| | - Frank Lammert
- Department of Medicine II, Saarland University Medical Center, Saarland University, Homburg, Germany
| | - Aleksander Krag
- Department of Gastroenterology and Hepatology, Odense University Hospital, Odense, Denmark
| | - Jacob George
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, NSW, Australia
| | - Quentin M Anstee
- Translational & Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK; Newcastle NIHR Biomedical Research Centre, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Michael Trauner
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University Vienna, Vienna, Austria; Rare Liver Disease (RALID) Center of the European Reference Network (ERN) RARE-LIVER, Medical University Vienna, Vienna, Austria
| | - Christian Datz
- Department of Internal Medicine, Hospital Oberndorf, Teaching Hospital of the Paracelsus Private University of Salzburg, Oberndorf, Austria
| | - Nadine T Gaisa
- Institute of Pathology, University Hospital RWTH Aachen, Aachen, Germany
| | - Helmut Denk
- Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Christian Trautwein
- Medical Clinic III, Gastroenterology, Metabolic diseases and Intensive Care, University Hospital RWTH Aachen, Aachen, Germany; Coordinating Center for alpha-1 antitrypsin deficiency-related liver disease of the European Reference Network (ERN) "Rare Liver" and the European Association for the Study of the Liver (EASL) registry group "Alpha-1 Liver," University Hospital Aachen, Aachen, Germany
| | - Elmar Aigner
- First Department of Medicine, Paracelsus Medical University, Salzburg, Austria
| | - Pavel Strnad
- Medical Clinic III, Gastroenterology, Metabolic diseases and Intensive Care, University Hospital RWTH Aachen, Aachen, Germany; Coordinating Center for alpha-1 antitrypsin deficiency-related liver disease of the European Reference Network (ERN) "Rare Liver" and the European Association for the Study of the Liver (EASL) registry group "Alpha-1 Liver," University Hospital Aachen, Aachen, Germany.
| |
Collapse
|
24
|
Telomere instability initiates and then boosts carcinogenesis by the butterfly effect. Curr Opin Genet Dev 2020; 60:92-98. [PMID: 32199233 DOI: 10.1016/j.gde.2020.01.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 01/22/2020] [Accepted: 01/28/2020] [Indexed: 12/20/2022]
Abstract
Telomeres are composed of DNA repeat sequences at the ends of chromosomes that recruit a multitude of proteins to form a complex loop structure at each extremity. The integrity of this structure is critical and correct conformation of the loop is essential for the protection of chromosome ends from DDR signaling. The properties of telomere composition and synthesis result in telomere shortening at each cell division, programming cellular lifespan by driving aged cells towards death. Indeed, many external factors, such as cellular stress, trigger cell-cycle dysfunction and, in some cases, enable the survival of cells with dysfunctionally short telomeres. Destabilized loops at chromosome ends can then lead to dramatic consequences, via a butterfly effect such as multiple chromosomal fusions and rearrangements causing large chromosomal deletions, XXL-LOH (loss of heterozygoty due to very large chromosome deletions, up to whole chromosome arm), the expression of recessive mutations, and potential cell transformation.
Collapse
|
25
|
Dragomir MP, Kopetz S, Ajani JA, Calin GA. Non-coding RNAs in GI cancers: from cancer hallmarks to clinical utility. Gut 2020; 69:748-763. [PMID: 32034004 DOI: 10.1136/gutjnl-2019-318279] [Citation(s) in RCA: 144] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 12/10/2019] [Accepted: 12/14/2019] [Indexed: 12/11/2022]
Abstract
One of the most unexpected discoveries in molecular oncology, in the last decades, was the identification of a new layer of protein coding gene regulation by transcripts that do not codify for proteins, the non-coding RNAs. These represent a heterogeneous category of transcripts that interact with many types of genetic elements, including regulatory DNAs, coding and other non-coding transcripts and directly to proteins. The final outcome, in the malignant context, is the regulation of any of the cancer hallmarks. Non-coding RNAs represent the most abundant type of hormones that contribute significantly to cell-to cell communication, revealing a complex interplay between tumour cells, tumour microenvironment cells and immune cells. Consequently, profiling their abundance in bodily fluids became a mainstream of biomarker identification. Therapeutic targeting of non-coding RNAs represents a new option for clinicians that is currently under development. This review will present the biology and translational value of three of the most studied categories on non-coding RNAs, the microRNAs, the long non-coding RNAs and the circular RNAs. We will also focus on some aspirational concepts that can help in the development of clinical applications related to non-coding RNAs, including using pyknons to discover new non-coding RNAs, targeting human-specific transcripts which are expressed specifically in the tumour cell and using non-coding RNAs to increase the efficiency of immunotherapy.
Collapse
Affiliation(s)
- Mihnea Paul Dragomir
- Experimental Therapeutics, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Scott Kopetz
- Department of Gastrointestinal Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jaffer A Ajani
- Department of Gastrointestinal Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - George Adrian Calin
- Experimental Therapeutics, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
26
|
Breast cancer diagnosis using thermography and convolutional neural networks. Med Hypotheses 2020; 137:109542. [DOI: 10.1016/j.mehy.2019.109542] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 12/26/2019] [Indexed: 11/19/2022]
|
27
|
Panuzzo C, Signorino E, Calabrese C, Ali MS, Petiti J, Bracco E, Cilloni D. Landscape of Tumor Suppressor Mutations in Acute Myeloid Leukemia. J Clin Med 2020; 9:jcm9030802. [PMID: 32188030 PMCID: PMC7141302 DOI: 10.3390/jcm9030802] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 03/10/2020] [Accepted: 03/12/2020] [Indexed: 12/11/2022] Open
Abstract
Acute myeloid leukemia is mainly characterized by a complex and dynamic genomic instability. Next-generation sequencing has significantly improved the ability of diagnostic research to molecularly characterize and stratify patients. This detailed outcome allowed the discovery of new therapeutic targets and predictive biomarkers, which led to develop novel compounds (e.g., IDH 1 and 2 inhibitors), nowadays commonly used for the treatment of adult relapsed or refractory AML. In this review we summarize the most relevant mutations affecting tumor suppressor genes that contribute to the onset and progression of AML pathology. Epigenetic modifications (TET2, IDH1 and IDH2, DNMT3A, ASXL1, WT1, EZH2), DNA repair dysregulation (TP53, NPM1), cell cycle inhibition and deficiency in differentiation (NPM1, CEBPA, TP53 and GATA2) as a consequence of somatic mutations come out as key elements in acute myeloid leukemia and may contribute to relapse and resistance to therapies. Moreover, spliceosomal machinery mutations identified in the last years, even if in a small cohort of acute myeloid leukemia patients, suggested a new opportunity to exploit therapeutically. Targeting these cellular markers will be the main challenge in the near future in an attempt to eradicate leukemia stem cells.
Collapse
Affiliation(s)
- Cristina Panuzzo
- Department of Clinical and Biological Sciences, University of Turin, 10124 Turin, Italy; (C.P.); (E.S.); (C.C.); (M.S.A.); (J.P.)
| | - Elisabetta Signorino
- Department of Clinical and Biological Sciences, University of Turin, 10124 Turin, Italy; (C.P.); (E.S.); (C.C.); (M.S.A.); (J.P.)
| | - Chiara Calabrese
- Department of Clinical and Biological Sciences, University of Turin, 10124 Turin, Italy; (C.P.); (E.S.); (C.C.); (M.S.A.); (J.P.)
| | - Muhammad Shahzad Ali
- Department of Clinical and Biological Sciences, University of Turin, 10124 Turin, Italy; (C.P.); (E.S.); (C.C.); (M.S.A.); (J.P.)
| | - Jessica Petiti
- Department of Clinical and Biological Sciences, University of Turin, 10124 Turin, Italy; (C.P.); (E.S.); (C.C.); (M.S.A.); (J.P.)
| | - Enrico Bracco
- Department of Oncology, University of Turin, 10124 Turin, Italy;
| | - Daniela Cilloni
- Department of Clinical and Biological Sciences, University of Turin, 10124 Turin, Italy; (C.P.); (E.S.); (C.C.); (M.S.A.); (J.P.)
- Correspondence: ; Tel.: +39-011-9026610; Fax: +39-011-9038636
| |
Collapse
|
28
|
Abstract
Cooperation between cells in multicellular organisms is preserved by an active regulation of growth through the control of cell division. Molecular signals used by cells for tissue growth are usually present during developmental stages, angiogenesis, wound healing and other processes. In this context, the use of molecular signals triggering cell division is a puzzle, because any molecule inducing and aiding growth can be exploited by a cancer cell, disrupting cellular cooperation. A significant difference is that normal cells in a multicellular organism have evolved in competition between high-level organisms to be altruistic, being able to send signals even if it is to their detriment. Conversely, cancer cells evolve their abuse over the cancer’s lifespan by out-competing their neighbours. A successful mutation leading to cancer must evolve to be adaptive, enabling a cancer cell to send a signal that results in higher chances to be selected. Using a mathematical model of such molecular signalling mechanism, this paper argues that a signal mechanism would be effective against abuse by cancer if it affects the cell that generates the signal as well as neighbouring cells that would receive a benefit without any cost, resulting in a selective disadvantage for a cancer signalling cell. We find that such molecular signalling mechanisms normally operate in cells as exemplified by growth factors. In scenarios of global and local competition between cells, we calculate how this process affects the fixation probability of a mutant cell generating such a signal, and find that this process can play a key role in limiting the emergence of cancer.
Collapse
|
29
|
Screening and Identification of Molecular Targets Involved in Preventing Gastric Precancerous Lesions in Chronic Atrophic Gastritis by Qilianshupi Decoction. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2019:5804710. [PMID: 31929816 PMCID: PMC6942842 DOI: 10.1155/2019/5804710] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 07/22/2019] [Accepted: 10/11/2019] [Indexed: 01/22/2023]
Abstract
Chronic atrophic gastritis (CAG) is a common and possibly precancerous digestive tract disease. Development of drugs with effect of preventing precancerous lesions draws the eyes of global researchers. Qilianshupi decoction (QLSP) is a Traditional Chinese Medicine (TCM) that is commonly used to treat CAG, but few studies have explored the mechanism of QLSP on treating CAG. This study investigated the molecular targets of the component herbs of QLSP in preventing precancerous lesions based on network pharmacology. Network pharmacology analysis revealed that the 6 herbs regulated multiple CAG-related genes, among which the most important were cancer-related pathway (apoptosis, p53, and VEGF) and epithelial cell signaling in Helicobacter pylori infection. Further animal experiments showed that the expression of survivin and p53 in precancerous lesions of CAG rats was significantly increased which was suppressed by QLSP. Moreover, telomerase activity was inhibited in precancerous lesions of CAG rats, and telomere length of gastric mucosa was increased, which was reversed by QLSP. Our results suggest that the components of QLSP prevents gastric precancerous lesions through decreasing the expression of survivin and p53 and regulating telomerase activity and telomere length in CAG.
Collapse
|
30
|
Wang W, Liu B, Duan X, Feng X, Wang T, Wang P, Ding M, Liu S, Li L, Liu J, Tang L, Niu X, Zhang Y, Li G, Yao W, Yang Y. Telomere length in workers was effected by omethoate exposure and interaction between smoking and p21 polymorphisms. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2019; 54:948-953. [PMID: 31405322 DOI: 10.1080/03601234.2019.1652074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Omethoate is an organophosphorus pesticide that poses a major health hazard, especially DNA damage. The purpose of this study was to investigate the factors affecting telomere length in workers exposed to omethoate by analyzing the interaction between cell cycle gene polymorphism and environmental factors. The exposure group consisted of 118 workers exposed to omethoate for 8-10 years, the control group comprised 115 healthy people without occupational toxicant exposure history. The telomere length of genomic DNA from peripheral blood leucocyte was determined with real-time PCR. Polymerase chain reaction and restriction fragment length polymorphism was used to detect the polymorphisms in p53, p21 and MDM2 gene. The telomere length in the (CA + AA) genotypes for p21 rs1801270 polymorphism was longer than that in the CC genotype in control group (P = 0.015). The generalized linear model analysis indicated the interaction of the p21 rs1801270 polymorphic (CA + AA) genotypes and smoking has a significant effect on telomere length (β = -0.258, P = 0.085). The prolongation of telomere length in omethoate-exposed workers was associated with genotypes (CA + AA) of p21 rs1801270, and interactions of (CA + AA) genotypes and smoking factor.
Collapse
Affiliation(s)
- Wei Wang
- Department of Occupational and Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, China
- The Key Laboratory of Nanomedicine and Health Inspection of Zhengzhou, Zhengzhou, China
| | - Bin Liu
- Department of Occupational and Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Xiaoran Duan
- Department of Occupational and Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Xiaolei Feng
- Department of Occupational and Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Tuanwei Wang
- Department of Occupational and Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Pengpeng Wang
- Department of Occupational and Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Mingcui Ding
- Department of Occupational and Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Suxiang Liu
- Department of Zhengzhou, Institute of Occupational Health, Zhengzhou, China
| | - Lei Li
- Department of Zhengzhou, Institute of Occupational Health, Zhengzhou, China
| | - Junling Liu
- Department of Zhengzhou, Institute of Occupational Health, Zhengzhou, China
| | - Lixia Tang
- Department of Zhengzhou, Institute of Occupational Health, Zhengzhou, China
| | - Xinhua Niu
- Department of Zhengzhou, Institute of Occupational Health, Zhengzhou, China
| | - Yuhong Zhang
- Department of Zhengzhou, Institute of Occupational Health, Zhengzhou, China
| | - Guoyu Li
- Department of Zhengzhou, Institute of Occupational Health, Zhengzhou, China
| | - Wu Yao
- Department of Occupational and Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Yongli Yang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
31
|
Cheng T, Zhang Z, Cheng Y, Zhang J, Tang J, Tan Z, Liang Z, Chen T, Liu Z, Li J, Zhao J, Zhou R. ETV4 promotes proliferation and invasion of lung adenocarcinoma by transcriptionally upregulating MSI2. Biochem Biophys Res Commun 2019; 516:278-284. [DOI: 10.1016/j.bbrc.2019.06.115] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 06/20/2019] [Indexed: 01/13/2023]
|
32
|
Elevated telomere dysfunction in cells containing the African-centric Pro47Ser cancer-risk variant of TP53. Oncotarget 2019; 10:3581-3591. [PMID: 31217894 PMCID: PMC6557208 DOI: 10.18632/oncotarget.26980] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 05/13/2019] [Indexed: 11/25/2022] Open
Abstract
Subtelomeric transcription and chromatin can have a significant impact on telomere repeat maintenance and chromosome stability. We have previously found that tumor suppressor protein p53 (TP53) can bind to retrotransposon-like elements in a majority of human subtelomeres to regulate TERRA transcription and telomeric histone acetylation in response to DNA damage. TP53 also prevents the accumulation of γH2AX DNA-damage signaling at telomeres. We now show that the inherited TP53 polymorphism Pro47Ser (hereafter S47), which is enriched in populations of African descent, is associated with elevated marks of telomere dysfunction. We found that human and mouse cells carrying the S47 variant show increased γH2AX DNA-damage signals at telomeres, as well as reduced TERRA transcription and subtelomeric histone acetylation in response to DNA damage stress. Cell-lines containing inducible genes for P47 or S47 versions of p53, as well mouse embryo fibroblasts (MEFs) reconstituted with human p53, showed elevated telomere-induced DNA damage foci and metaphase telomere signal loss in cells with S47. Human lymphoblastoid cell lines (LCLs) derived from individuals homozygous for S47, show increased accumulation of subtelomeric γH2AX and unstable telomere repeats in response to DNA damage relative to age matched LCLs homozygous for P47. Furthermore, LCLs with S47 had reduced replicative lifespan. These studies indicate that the naturally occurring S47 variant of p53 can affect telomeric chromatin, telomere repeat stability, and replicative capacity. We discuss the potential evolutionary significance of the S47 variant to African populations with respect to telomere regulation and the implications for inherited health disparities.
Collapse
|
33
|
Bowen ME, Attardi LD. The role of p53 in developmental syndromes. J Mol Cell Biol 2019; 11:200-211. [PMID: 30624728 PMCID: PMC6478128 DOI: 10.1093/jmcb/mjy087] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 11/22/2018] [Accepted: 01/06/2019] [Indexed: 12/17/2022] Open
Abstract
While it is well appreciated that loss of the p53 tumor suppressor protein promotes cancer, growing evidence indicates that increased p53 activity underlies the developmental defects in a wide range of genetic syndromes. The inherited or de novo mutations that cause these syndromes affect diverse cellular processes, such as ribosome biogenesis, DNA repair, and centriole duplication, and analysis of human patient samples and mouse models demonstrates that disrupting these cellular processes can activate the p53 pathway. Importantly, many of the developmental defects in mouse models of these syndromes can be rescued by loss of p53, indicating that inappropriate p53 activation directly contributes to their pathogenesis. A role for p53 in driving developmental defects is further supported by the observation that mouse strains with broad p53 hyperactivation, due to mutations affecting p53 pathway components, display a host of tissue-specific developmental defects, including hematopoietic, neuronal, craniofacial, cardiovascular, and pigmentation defects. Furthermore, germline activating mutations in TP53 were recently identified in two human patients exhibiting bone marrow failure and other developmental defects. Studies in mice suggest that p53 drives developmental defects by inducing apoptosis, restraining proliferation, or modulating other developmental programs in a cell type-dependent manner. Here, we review the growing body of evidence from mouse models that implicates p53 as a driver of tissue-specific developmental defects in diverse genetic syndromes.
Collapse
Affiliation(s)
- Margot E Bowen
- Division of Radiation and Cancer Biology in the Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, USA
| | - Laura D Attardi
- Division of Radiation and Cancer Biology in the Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
34
|
Kumar P, Wadhwa R, Gupta R, Chandra P, Maurya PK. Spectroscopic determination of intracellular quercetin uptake using erythrocyte model and its implications in human aging. 3 Biotech 2018; 8:498. [PMID: 30498671 DOI: 10.1007/s13205-018-1524-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Accepted: 11/19/2018] [Indexed: 02/02/2023] Open
Abstract
The present study was carried out to detect intracellular quercetin uptake by RBCs during human aging. The study was carried out on 95 normal healthy subjects of both the sexes. Intracellular quercetin uptake was estimated by performing ethyl acetate extraction. A significant (p < 0.001) decline in intracellular quercetin uptake by human RBCs was observed in elderly as compared to young population, while plasma membrane redox system (PMRS) activity was significantly decreasing as a function of human age. To the best of our knowledge, we are the first to present quercetin uptake by erythrocytes during aging in humans with this study. It is hypothesized that intracellular uptake of quercetin may serve as an intracellular electron donor for plasma membrane redox system in red blood cells during cellular aging which plays an important role in extracellular dehydroascorbate reduction and ascorbate recycling.
Collapse
Affiliation(s)
- Prabhanshu Kumar
- 1Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, 201303 India
| | - Ridhima Wadhwa
- 1Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, 201303 India
| | - Riya Gupta
- 1Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, 201303 India
| | - Pranjal Chandra
- 2Department of Bioscience and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781 039 India
| | - Pawan Kumar Maurya
- 1Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, 201303 India
- 3Department of Biochemistry, Central University of Haryana, Jant-Pali, Mahendergarh District, Haryana 123031 India
| |
Collapse
|
35
|
Liu Y, Yan J, Wang F. Effects of TACE combined with precise RT on p53 gene expression and prognosis of HCC patients. Oncol Lett 2018; 16:5733-5738. [PMID: 30344728 PMCID: PMC6176346 DOI: 10.3892/ol.2018.9374] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 07/30/2018] [Indexed: 12/27/2022] Open
Abstract
To investigate the effects of transcatheter arterial chemoembolization (TACE) combined with precise radiation therapy (RT) on p53 gene expression and prognosis of patients with hepatocellular carcinoma (HCC). A total of 80 patients with unresectable HCC treated in the First People's Hospital of Qinhuangdao from March 2009 to March 2015 were randomly divided into TACE group (n=40) and TACE + RT group (n=40). Enzyme-linked immunosorbent assay (ELISA) was used to detect the levels of p53 in both groups before and after treatment. The biochemical indexes of liver function [α-fetoprotein (AFP), alanine aminotransferase (ALT) and γ-glutamyl transferase (GGT)] were detected. Moreover, adverse reactions were compared between the two groups of patients, the short-term therapeutic effect was evaluated, and effects of two treatment methods on progression-free survival (PFS) and overall survival (OS) of patients were detected. There were no statistically significant differences in clinical data between the two groups of patients (P>0.05). The p53 protein levels were significantly downregulated in both treatment methods, and it was decreased more significantly in TACE + RT group than that in TACE group (P<0.05). Compared with those before treatment, AFP and GGT levels in both groups of patients after treatment were decreased, but the levels of ALT were increased (P<0.05), and TACE + RT group had a better curative effect than TACE group (P<0.05). Besides, the incidence rate of adverse reactions in TACE + RT group (37.5%) was obviously lower than that in TACE group (65%) (P<0.05). The number of patients with stable disease (SD) and progressive disease (PD) and disease control rate (DCR) in TACE + RT group were superior to those in TACE group (P<0.05). The 2-year survival rate and median PFS of patients in TACE + RT group were also significantly better than those in TACE group (P<0.05). In conclusion, TACE combined with RT has a better clinical effect than TACE alone in the treatment of HCC.
Collapse
Affiliation(s)
- Yupeng Liu
- Department of Emergency, The First People's Hospital of Qinhuangdao, The Affiliated Hospital of Hebei Medical University, Qinhuangdao, Hebei 066000, P.R. China
| | - Jingchen Yan
- Department of Intervention, Liaocheng Cancer Hospital, Liaocheng, Shandong 252000, P.R. China
| | - Feng Wang
- Department of Nuclear Medicine, The First Hospital of Shijiazhuang, Shijiazhuang, Hebei 050011, P.R. China
| |
Collapse
|
36
|
Vlăsceanu GM, Amărandi RM, Ioniță M, Tite T, Iovu H, Pilan L, Burns JS. Versatile graphene biosensors for enhancing human cell therapy. Biosens Bioelectron 2018; 117:283-302. [DOI: 10.1016/j.bios.2018.04.053] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 04/18/2018] [Accepted: 04/25/2018] [Indexed: 01/04/2023]
|
37
|
Zhu Y, Liu X, Ding X, Wang F, Geng X. Telomere and its role in the aging pathways: telomere shortening, cell senescence and mitochondria dysfunction. Biogerontology 2018; 20:1-16. [PMID: 30229407 DOI: 10.1007/s10522-018-9769-1] [Citation(s) in RCA: 135] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 09/12/2018] [Indexed: 01/10/2023]
Abstract
Aging is a biological process characterized by a progressive functional decline in tissues and organs, which eventually leads to mortality. Telomeres, the repetitive DNA repeat sequences at the end of linear eukaryotic chromosomes protecting chromosome ends from degradation and illegitimate recombination, play a crucial role in cell fate and aging. Due to the mechanism of replication, telomeres shorten as cells proliferate, which consequently contributes to cellular senescence and mitochondrial dysfunction. Cells are the basic unit of organismal structure and function, and mitochondria are the powerhouse and metabolic center of cells. Therefore, cellular senescence and mitochondrial dysfunction would result in tissue or organ degeneration and dysfunction followed by somatic aging through multiple pathways. In this review, we summarized the main mechanisms of cellular senescence, mitochondrial malfunction and aging triggered by telomere attrition. Understanding the molecular mechanisms involved in the aging process may elicit new strategies for improving health and extending lifespan.
Collapse
Affiliation(s)
- Yukun Zhu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China.,Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Medical University, Tianjin, 300070, China
| | - Xuewen Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China.,Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Medical University, Tianjin, 300070, China
| | - Xuelu Ding
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China.,Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Medical University, Tianjin, 300070, China
| | - Fei Wang
- Department of Neurology, General Hospital, Tianjin Medical University, Tianjin, 300052, China
| | - Xin Geng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China. .,Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Medical University, Tianjin, 300070, China.
| |
Collapse
|
38
|
Van Ly D, Low RRJ, Frölich S, Bartolec TK, Kafer GR, Pickett HA, Gaus K, Cesare AJ. Telomere Loop Dynamics in Chromosome End Protection. Mol Cell 2018; 71:510-525.e6. [PMID: 30033372 DOI: 10.1016/j.molcel.2018.06.025] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 05/28/2018] [Accepted: 06/15/2018] [Indexed: 01/07/2023]
Abstract
Telomeres regulate DNA damage response (DDR) and DNA repair activity at chromosome ends. How telomere macromolecular structure contributes to ATM regulation and its potential dissociation from control over non-homologous end joining (NHEJ)-dependent telomere fusion is of central importance to telomere-dependent cell aging and tumor suppression. Using super-resolution microscopy, we identify that ATM activation at mammalian telomeres with reduced TRF2 or at human telomeres during mitotic arrest occurs specifically with a structural change from telomere loops (t-loops) to linearized telomeres. Additionally, we find the TRFH domain of TRF2 regulates t-loop formation while suppressing ATM activity. Notably, we demonstrate that ATM activation and telomere linearity occur separately from telomere fusion via NHEJ and that linear DDR-positive telomeres can remain resistant to fusion, even during an extended G1 arrest, when NHEJ is most active. Collectively, these results suggest t-loops act as conformational switches that specifically regulate ATM activation independent of telomere mechanisms to inhibit NHEJ.
Collapse
Affiliation(s)
- David Van Ly
- Genome Integrity Unit, Children's Medical Research Institute, University of Sydney, Westmead, NSW 2145, Australia; School of Medicine, The University of Notre Dame Australia, Sydney, NSW 2010, Australia
| | - Ronnie Ren Jie Low
- Genome Integrity Unit, Children's Medical Research Institute, University of Sydney, Westmead, NSW 2145, Australia
| | - Sonja Frölich
- Genome Integrity Unit, Children's Medical Research Institute, University of Sydney, Westmead, NSW 2145, Australia
| | - Tara K Bartolec
- Genome Integrity Unit, Children's Medical Research Institute, University of Sydney, Westmead, NSW 2145, Australia
| | - Georgia R Kafer
- Genome Integrity Unit, Children's Medical Research Institute, University of Sydney, Westmead, NSW 2145, Australia
| | - Hilda A Pickett
- Telomere Length Regulation Unit, Children's Medical Research Institute, University of Sydney, Westmead, NSW 2145, Australia
| | - Katharina Gaus
- EMBL Australia Node in Single Molecule Science, School of Medical Sciences, University of New South Wales, Sydney, NSW 2052, Australia; ARC Centre of Excellence in Advanced Molecular Imaging, University of New South Wales, Sydney, NSW 2052, Australia
| | - Anthony J Cesare
- Genome Integrity Unit, Children's Medical Research Institute, University of Sydney, Westmead, NSW 2145, Australia.
| |
Collapse
|
39
|
Bernal A, Zafon E, Domínguez D, Bertran E, Tusell L. Generation of Immortalised But Unstable Cells after hTERT Introduction in Telomere-Compromised and p53-Deficient vHMECs. Int J Mol Sci 2018; 19:ijms19072078. [PMID: 30018248 PMCID: PMC6073565 DOI: 10.3390/ijms19072078] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 07/11/2018] [Accepted: 07/13/2018] [Indexed: 01/08/2023] Open
Abstract
Telomeres, the natural ends of chromosomes, hide the linear telomeric DNA from constitutive exposure to the DNA damage response with a lariat structure or t-loop. Progressive telomere shortening associated with DNA replication in the absence of a compensatory mechanism culminates in t-loop collapse and unmasked telomeres. Dysfunctional telomeres can suppress cancer development by engaging replicative senescence or apoptosis, but they can also promote tumour initiation when cell cycle checkpoints are disabled. In this setting, telomere dysfunction promotes increasing chromosome instability (CIN) through breakage-fusion-bridge cycles. Excessive instability may hamper cell proliferation but might allow for the appearance of some rare advantageous mutations that could be selected and ultimately favour neoplastic progression. With the aim of generating pre-malignant immortalised cells, we ectopically expressed telomerase in telomere-compromised variant human mammary epithelial cells (vHMECs), proficient and deficient for p53, and analysed structural and numerical chromosomal aberrations as well as abnormal nuclear morphologies. Importantly, this study provides evidence that while immortalisation of vHMECs at early stages results in an almost stable karyotype, a transient telomere-dependent CIN period—aggravated by p53 deficiency—and followed by hTERT overexpression serves as a mechanism for the generation of immortal unstable cells which, due to their evolving karyotype, could attain additional promoting properties permissive to malignancy.
Collapse
Affiliation(s)
- Aina Bernal
- Unitat de Biologia Cel·lular, Facultat de Biociències, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain.
| | - Elisenda Zafon
- Unitat de Biologia Cel·lular, Facultat de Biociències, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain.
| | - Daniel Domínguez
- Unitat de Biologia Cel·lular, Facultat de Biociències, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain.
| | - Enric Bertran
- Unitat de Biologia Cel·lular, Facultat de Biociències, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain.
| | - Laura Tusell
- Unitat de Biologia Cel·lular, Facultat de Biociències, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain.
| |
Collapse
|
40
|
Activating the PGC-1 α/TERT Pathway by Catalpol Ameliorates Atherosclerosis via Modulating ROS Production, DNA Damage, and Telomere Function: Implications on Mitochondria and Telomere Link. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:2876350. [PMID: 30046372 PMCID: PMC6036816 DOI: 10.1155/2018/2876350] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Accepted: 03/15/2018] [Indexed: 12/17/2022]
Abstract
Catalpol, an iridoid glucoside, has been found present in large quantities in the root of Rehmannia glutinosa L. and showed a strong antioxidant capacity in the previous study. In the present work, the protective effect of catalpol against AS via inhibiting oxidative stress, DNA damage, and telomere shortening was found in LDLr-/- mice. This study also shows that activation of the peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α)/telomerase reverse transcriptase (TERT) pathway, which is the new link between mitochondria and telomere, was involved in the protective effects of catalpol. Further, by using PGC-1α or TERT siRNA in oxLDL-treated macrophages, it is proved that catalpol reduced oxidative stress, telomere function, and related DNA damage at least partly through activating the PGC-1α/TERT pathway. Moreover, dual luciferase activity assay-validated catalpol directly enhanced PGC-1α promoter activity. In conclusion, our study revealed that the PGC-1α/TERT pathway might be a possible therapeutic target in AS and catalpol has highly favorable characteristics for the treatment of AS via modulating this pathway.
Collapse
|
41
|
Hanson PK. Saccharomyces cerevisiae: A Unicellular Model Genetic Organism of Enduring Importance. ACTA ACUST UNITED AC 2018. [DOI: 10.1002/cpet.21] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Pamela K. Hanson
- Department of Biology, Birmingham-Southern College; Birmingham Alabama
| |
Collapse
|
42
|
Scahill CM, Digby Z, Sealy IM, White RJ, Wali N, Collins JE, Stemple DL, Busch-Nentwich EM. The age of heterozygous telomerase mutant parents influences the adult phenotype of their offspring irrespective of genotype in zebrafish. Wellcome Open Res 2018; 2:77. [PMID: 29568807 PMCID: PMC5840683 DOI: 10.12688/wellcomeopenres.12530.2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/30/2017] [Indexed: 12/03/2022] Open
Abstract
Background: Mutations in proteins involved in telomere maintenance lead to a range of human diseases, including dyskeratosis congenita, idiopathic pulmonary fibrosis and cancer. Telomerase functions to add telomeric repeats back onto the ends of chromosomes, however non-canonical roles of components of telomerase have recently been suggested. Methods: Here we use a zebrafish telomerase mutant which harbours a nonsense mutation in
tert to investigate the adult phenotypes of fish derived from heterozygous parents of different ages. Furthermore we use whole genome sequencing data to estimate average telomere lengths. Results: We show that homozygous offspring from older heterozygotes exhibit signs of body wasting at a younger age than those of younger parents, and that offspring of older heterozygous parents weigh less irrespective of genotype. We also demonstrate that
tert homozygous mutant fish have a male sex bias, and that clutches from older parents also have a male sex bias in the heterozygous and wild-type populations. Telomere length analysis reveals that the telomeres of younger heterozygous parents are shorter than those of older heterozygous parents. Conclusions: These data indicate that the phenotypes observed in offspring from older parents cannot be explained by telomere length. Instead we propose that Tert functions outside of telomere length maintenance in an age-dependent manner to influence the adult phenotypes of the next generation.
Collapse
Affiliation(s)
| | - Zsofia Digby
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, UK.,Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Ian M Sealy
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Richard J White
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Neha Wali
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - John E Collins
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Derek L Stemple
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Elisabeth M Busch-Nentwich
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, UK.,Department of Medicine, University of Cambridge, Cambridge, UK
| |
Collapse
|
43
|
Maestroni L, Géli V, Coulon S. STEEx, a boundary between the world of quiescence and the vegetative cycle. Curr Genet 2018; 64:901-905. [PMID: 29392410 DOI: 10.1007/s00294-018-0808-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 01/24/2018] [Accepted: 01/27/2018] [Indexed: 12/20/2022]
|
44
|
Chen L, Liu L, Wu C, Yang R, Chang J, Wei X. The extracts of bredigite bioceramics enhanced the pluripotency of human dental pulp cells. J Biomed Mater Res A 2017; 105:3465-3474. [DOI: 10.1002/jbm.a.36191] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 07/07/2017] [Accepted: 08/07/2017] [Indexed: 12/16/2022]
Affiliation(s)
- Lihong Chen
- Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology; Affiliated Stomatological Hospital, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, 56 Lingyuan Xi Road; Guangzhou 510055 China
| | - Lu Liu
- Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology; Affiliated Stomatological Hospital, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, 56 Lingyuan Xi Road; Guangzhou 510055 China
| | - Chengtie Wu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure; Shanghai Institute of Ceramics, Chinese Academy of Sciences; Shanghai 200050 China
| | - Ruiqi Yang
- Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology; Affiliated Stomatological Hospital, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, 56 Lingyuan Xi Road; Guangzhou 510055 China
| | - Jiang Chang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure; Shanghai Institute of Ceramics, Chinese Academy of Sciences; Shanghai 200050 China
| | - Xi Wei
- Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology; Affiliated Stomatological Hospital, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, 56 Lingyuan Xi Road; Guangzhou 510055 China
| |
Collapse
|
45
|
Scahill CM, Digby Z, Sealy IM, White RJ, Collins JE, Busch-Nentwich EM. The age of heterozygous telomerase mutant parents influences the adult phenotype of their offspring irrespective of genotype in zebrafish. Wellcome Open Res 2017. [DOI: 10.12688/wellcomeopenres.12530.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Background: Mutations in proteins involved in telomere maintenance lead to a range of human diseases, including dyskeratosis congenita, idiopathic pulmonary fibrosis and cancer. Telomerase functions to add telomeric repeats back onto the ends of chromosomes, however non-canonical roles of components of telomerase have recently been suggested.Methods: Here we use a zebrafish telomerase mutant which harbours a nonsense mutation intertto investigate the adult phenotypes of fish derived from heterozygous parents of different ages. Furthermore we use whole genome sequencing data to estimate average telomere lengths.Results: We show that homozygous offspring from older heterozygotes exhibit signs of body wasting at a younger age than those of younger parents, and that offspring of older heterozygous parents weigh less irrespective of genotype. We also demonstrate thatterthomozygous mutant fish have a male sex bias, and that clutches from older parents also have a male sex bias in the heterozygous and wild-type populations. Telomere length analysis reveals that the telomeres of younger heterozygous parents are shorter than those of older heterozygous parents.Conclusions: These data indicate that the phenotypes observed in offspring from older parents cannot be explained by telomere length. Instead we propose that Tert functions outside of telomere length maintenance in an age-dependent manner to influence the adult phenotypes of the next generation.
Collapse
|