1
|
Antonakoudis A, Kyriakoudi SA, Chatzi D, Dermitzakis I, Gargani S, Meditskou S, Manthou ME, Theotokis P. Genetic Basis of Motor Neuron Diseases: Insights, Clinical Management, and Future Directions. Int J Mol Sci 2025; 26:4904. [PMID: 40430041 PMCID: PMC12112488 DOI: 10.3390/ijms26104904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2025] [Revised: 05/03/2025] [Accepted: 05/07/2025] [Indexed: 05/29/2025] Open
Abstract
Motor neuron diseases (MNDs) are a heterogeneous group of neurodegenerative disorders characterized by the progressive loss of motor neurons, resulting in debilitating physical decline. Advances in genetics have revolutionized the understanding of MNDs, elucidating critical genes such as SOD1, TARDBP, FUS, and C9orf72, which are implicated in their pathogenesis. Despite these breakthroughs, significant gaps persist in understanding the interplay between genetic and environmental factors, the role of rare variants, and epigenetic contributions. This review synthesizes current knowledge on the genetic landscape of MNDs, highlights challenges in linking genotype to phenotype, and discusses the promise of precision medicine approaches. Emphasis is placed on emerging strategies, such as gene therapy and targeted molecular interventions, offering hope for personalized treatments. Addressing these challenges is imperative to harness the full potential of genomics for improving outcomes in MNDs.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Paschalis Theotokis
- Department of Histology-Embryology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (A.A.); (S.A.K.); (D.C.); (I.D.); (S.G.); (S.M.); (M.E.M.)
| |
Collapse
|
2
|
Ramesh N, Evans A, Wojta K, Yang Z, Boks MM, Kahn RS, de Boer SCM, van der Lee SJ, Pijnenburg YAL, Reus LM, Ophoff RA. Accurate DNA Methylation Predictor for C9orf72 Repeat Expansion Alleles in the Pathogenic Range. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.20.643775. [PMID: 40196659 PMCID: PMC11974722 DOI: 10.1101/2025.03.20.643775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
The hexanucleotide (G 4 C 2 ) repeat expansion in the promoter region of C9orf72 is the most frequent genetic cause of frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS). In this study, we conducted a genome-wide DNA methylation (DNAm) analysis using EPIC version 2 (EPICv2) arrays on an FTD cohort comprising 27 carriers and 250 non-carriers of the pathogenic C9orf72 repeat expansion from the Amsterdam Dementia Cohort. We identified differentially methylated CpGs probes associated with the pathogenic C9orf72 expansion and used these findings to create a DNAm Least Absolute Shrinkage and Selection Operator (LASSO) predictor to identify repeat expansion carriers. Eight CpG sites at the C9orf72 locus were significantly differentially hypermethylated in repeat expansion carriers compared to non-carriers. The LASSO model predicted repeat expansion status with an average accuracy of 98.6%. The LASSO predictor was further validated in an independent cohort of 2,548 subjects with available EPICv2 data, identifying four C9orf72 repeat expansion carriers, subsequently confirmed by repeat-primed PCR. This result not only illustrates the accuracy of the DNAm predictor of C9orf72 repeat expansion carriers but also suggests that repeat expansion carriers may be more prevalent than expected. The identification of a highly accurate DNAm biomarker for a repeat expansion locus associated with neurodegenerative disorders may provide great value for studying this locus. The approach holds significant promise for investigating this and other repeat expansion loci, particularly given the growing interest in epigenetic epidemiological studies involving large cohorts with available DNAm data. Graphical abstract optional
Collapse
|
3
|
Aydın Ş, Özdemir S, Adıgüzel A. The Potential of cfDNA as Biomarker: Opportunities and Challenges for Neurodegenerative Diseases. J Mol Neurosci 2025; 75:34. [PMID: 40080233 PMCID: PMC11906534 DOI: 10.1007/s12031-025-02317-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Accepted: 02/06/2025] [Indexed: 03/15/2025]
Abstract
Neurodegenerative disorders, including Alzheimer's disease (AD), Parkinson's disease (PD), multiple sclerosis (MS), and amyotrophic lateral sclerosis (ALS), are characterized by the progressive and gradual degeneration of neurons. The prevalence and rates of these disorders rise significantly with age. As life spans continue to increase in many countries, the number of cases is expected to grow in the foreseeable future. Early and precise diagnosis, along with appropriate surveillance, continues to pose a challenge. The high heterogeneity of neurodegenerative diseases calls for more accurate and definitive biomarkers to improve clinical therapy. Cell-free DNA (cfDNA), including fragmented DNA released into bodily fluids via apoptosis, necrosis, or active secretion, has emerged as a promising non-invasive diagnostic tool for various disorders including neurodegenerative diseases. cfDNA can serve as an indicator of ongoing cellular damage and mortality, including neuronal loss, and may provide valuable insights into disease processes, progression, and therapeutic responses. This review will first cover the key aspects of cfDNA and then examine recent advances in its potential use as a biomarker for neurodegenerative disorders.
Collapse
Affiliation(s)
- Şeyma Aydın
- Department of Genetics, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey
| | - Selçuk Özdemir
- Department of Genetics, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey.
| | - Ahmet Adıgüzel
- Department of Molecular Biology and Genetics, Faculty of Science, Atatürk University, Erzurum, Turkey.
| |
Collapse
|
4
|
Du M, Akerman SC, Fare CM, Ruan L, Vidensky S, Mamedova L, Lee J, Rothstein JD. Divergent and Convergent TMEM106B Pathology in Murine Models of Neurodegeneration and Human Disease. RESEARCH SQUARE 2024:rs.3.rs-5306005. [PMID: 39606446 PMCID: PMC11601866 DOI: 10.21203/rs.3.rs-5306005/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
TMEM106B is a lysosomal/late endosome protein that is a potent genetic modifier of multiple neurodegenerative diseases as well as general aging. Recently, TMEM106B was shown to form insoluble aggregates in postmortem human brain tissue, drawing attention to TMEM106B pathology and the potential role of TMEM106B aggregation in disease. In the context of neurodegenerative diseases, TMEM106B has been studied in vivo using animal models of neurodegeneration, but these studies rely on overexpression or knockdown approaches. To date, endogenous TMEM106B pathology and its relationship to known canonical pathology in animal models has not been reported. Here, we analyze histological patterns of TMEM106B in murine models of C9ORF72-related amyotrophic lateral sclerosis and frontotemporal dementia (C9-ALS/FTD), SOD1-related ALS, and tauopathy and compare these to postmortem human tissue from patients with C9-ALS/FTD, Alzheimer's disease (AD), and AD with limbic-predominant age-related TDP-43 encephalopathy (AD/LATE). We show that there are significant differences between TMEM106B pathology in mouse models and human patient tissue. Importantly, we also identified convergent evidence from both murine models and human patients that links TMEM106B pathology to TDP-43 nuclear clearance specifically in C9-ALS. Similarly, we find a relationship at the cellular level between TMEM106B pathology and phosphorylated Tau burden in Alzheimer's disease. By characterizing endogenous TMEM106B pathology in both mice and human postmortem tissue, our work reveals considerations that must be taken into account when analyzing data from in vivo mouse studies and elucidates new insights supporting the involvement of TMEM106B in the pathogenesis and progression of multiple neurodegenerative diseases.
Collapse
Affiliation(s)
- Muzi Du
- Johns Hopkins University School of Medicine
| | | | | | | | | | | | - Joshua Lee
- Johns Hopkins University School of Medicine
| | | |
Collapse
|
5
|
Fujimoto A, Kinjo M, Kitamura A. Short Repeat Ribonucleic Acid Reduces Cytotoxicity by Preventing the Aggregation of TDP-43 and Its 25 KDa Carboxy-Terminal Fragment. JACS AU 2024; 4:3896-3909. [PMID: 39483234 PMCID: PMC11522920 DOI: 10.1021/jacsau.4c00566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/14/2024] [Accepted: 09/16/2024] [Indexed: 11/03/2024]
Abstract
TAR DNA/RNA-binding protein 43 kDa (TDP-43) proteinopathy is a hallmark of neurodegenerative disorders, such as amyotrophic lateral sclerosis, in which cytoplasmic aggregates containing TDP-43 and its C-terminal fragments, such as TDP-25, are observed in degenerative neuronal cells. However, few reports have focused on small molecules that can reduce their aggregation and cytotoxicity. Here, we show that short RNA repeats of GGGGCC and AAAAUU are aggregation suppressors of TDP-43 and TDP-25. TDP-25 interacts with these RNAs, as well as TDP-43, despite the lack of major RNA-recognition motifs using fluorescence cross-correlation spectroscopy. Expression of these RNAs significantly decreases the number of cells harboring cytoplasmic aggregates of TDP-43 and TDP-25 and ameliorates cell death by TDP-25 and mislocalized TDP-43 without altering the cellular transcriptome of molecular chaperones. Consequently, short RNA repeats of GGGGCC and AAAAUU can maintain proteostasis by preventing the aggregation of TDP-43 and TDP-25.
Collapse
Affiliation(s)
- Ai Fujimoto
- Laboratory
of Cellular and Molecular Sciences, Faculty of Advanced Life Science, Hokkaido University, N21W11, Kita-ku, Sapporo 001-0021, Japan
- Graduate
School of Life Science, Hokkaido University, N10W8, Kita-ku, Sapporo 060-0810, Japan
| | - Masataka Kinjo
- Laboratory
of Molecular Cell Dynamics, Faculty of Advanced Life Science, Hokkaido University, N21W11, Kita-ku, Sapporo 001-0021, Japan
| | - Akira Kitamura
- Laboratory
of Cellular and Molecular Sciences, Faculty of Advanced Life Science, Hokkaido University, N21W11, Kita-ku, Sapporo 001-0021, Japan
- PRIME,
Japan Agency for Medical Research and Development, Chiyoda-ku, Tokyo 100-0004, Japan
| |
Collapse
|
6
|
Du M, Akerman SC, Fare CM, Ruan L, Vidensky S, Mamedova L, Lee J, Rothstein JD. Divergent and Convergent TMEM106B Pathology in Murine Models of Neurodegeneration and Human Disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.16.618765. [PMID: 39464100 PMCID: PMC11507888 DOI: 10.1101/2024.10.16.618765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
TMEM106B is a lysosomal/late endosome protein that is a potent genetic modifier of multiple neurodegenerative diseases as well as general aging. Recently, TMEM106B was shown to form insoluble aggregates in postmortem human brain tissue, drawing attention to TMEM106B pathology and the potential role of TMEM106B aggregation in disease. In the context of neurodegenerative diseases, TMEM106B has been studied in vivo using animal models of neurodegeneration, but these studies rely on overexpression or knockdown approaches. To date, endogenous TMEM106B pathology and its relationship to known canonical pathology in animal models has not been reported. Here, we analyze histological patterns of TMEM106B in murine models of C9ORF72-related amyotrophic lateral sclerosis and frontotemporal dementia (C9-ALS/FTD), SOD1-related ALS, and tauopathy and compare these to postmortem human tissue from patients with C9-ALS/FTD, Alzheimer's disease (AD), and AD with limbic-predominant age-related TDP-43 encephalopathy (AD/LATE). We show that there are significant differences between TMEM106B pathology in mouse models and human patient tissue. Importantly, we also identified convergent evidence from both murine models and human patients that links TMEM106B pathology to TDP-43 nuclear clearance specifically in C9-ALS. Similarly, we find a relationship at the cellular level between TMEM106B pathology and phosphorylated Tau burden in Alzheimer's disease. By characterizing endogenous TMEM106B pathology in both mice and human postmortem tissue, our work reveals considerations that must be taken into account when analyzing data from in vivo mouse studies and elucidates new insights supporting the involvement of TMEM106B in the pathogenesis and progression of multiple neurodegenerative diseases.
Collapse
Affiliation(s)
- Muzi Du
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Suleyman C. Akerman
- Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Charlotte M. Fare
- Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Linhao Ruan
- Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Svetlana Vidensky
- Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Lyudmila Mamedova
- Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Joshua Lee
- Department of Psychological and Brain Sciences, Johns Hopkins University Krieger School of Arts and Sciences, Baltimore, MD, 21218, USA
| | - Jeffrey D. Rothstein
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| |
Collapse
|
7
|
Kisby GE, Wilson DM, Spencer PS. Introducing the Role of Genotoxicity in Neurodegenerative Diseases and Neuropsychiatric Disorders. Int J Mol Sci 2024; 25:7221. [PMID: 39000326 PMCID: PMC11241460 DOI: 10.3390/ijms25137221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/21/2024] [Accepted: 06/27/2024] [Indexed: 07/16/2024] Open
Abstract
Decades of research have identified genetic and environmental factors involved in age-related neurodegenerative diseases and, to a lesser extent, neuropsychiatric disorders. Genomic instability, i.e., the loss of genome integrity, is a common feature among both neurodegenerative (mayo-trophic lateral sclerosis, Parkinson's disease, Alzheimer's disease) and psychiatric (schizophrenia, autism, bipolar depression) disorders. Genomic instability is associated with the accumulation of persistent DNA damage and the activation of DNA damage response (DDR) pathways, as well as pathologic neuronal cell loss or senescence. Typically, DDR signaling ensures that genomic and proteomic homeostasis are maintained in both dividing cells, including neural progenitors, and post-mitotic neurons. However, dysregulation of these protective responses, in part due to aging or environmental insults, contributes to the progressive development of neurodegenerative and/or psychiatric disorders. In this Special Issue, we introduce and highlight the overlap between neurodegenerative diseases and neuropsychiatric disorders, as well as the emerging clinical, genomic, and molecular evidence for the contributions of DNA damage and aberrant DNA repair. Our goal is to illuminate the importance of this subject to uncover possible treatment and prevention strategies for relevant devastating brain diseases.
Collapse
Affiliation(s)
- Glen E. Kisby
- Department of Biomedical Sciences, College of Osteopathic Medicine of Pacific Northwest, Western University of Health Sciences, Lebanon, OR 97355, USA
| | - David M. Wilson
- Biomedical Research Institute, BIOMED, Hasselt University, 3500 Hasselt, Belgium;
| | - Peter S. Spencer
- Department of Neurology, School of Medicine, Oregon Institute of Occupational Health Sciences, Oregon Health & Sciences University (OHSU), Portland, OR 97239, USA
| |
Collapse
|
8
|
Kojak N, Kuno J, Fittipaldi KE, Khan A, Wenger D, Glasser M, Donnianni RA, Tang Y, Zhang J, Huling K, Ally R, Mujica AO, Turner T, Magardino G, Huang PY, Kerk SY, Droguett G, Prissette M, Rojas J, Gomez T, Gagliardi A, Hunt C, Rabinowitz JS, Gong G, Poueymirou W, Chiao E, Zambrowicz B, Siao CJ, Kajimura D. Somatic and intergenerational G4C2 hexanucleotide repeat instability in a human C9orf72 knock-in mouse model. Nucleic Acids Res 2024; 52:5732-5755. [PMID: 38597682 PMCID: PMC11162798 DOI: 10.1093/nar/gkae250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 03/19/2024] [Accepted: 03/28/2024] [Indexed: 04/11/2024] Open
Abstract
Expansion of a G4C2 repeat in the C9orf72 gene is associated with familial Amyotrophic Lateral Sclerosis (ALS) and Frontotemporal Dementia (FTD). To investigate the underlying mechanisms of repeat instability, which occurs both somatically and intergenerationally, we created a novel mouse model of familial ALS/FTD that harbors 96 copies of G4C2 repeats at a humanized C9orf72 locus. In mouse embryonic stem cells, we observed two modes of repeat expansion. First, we noted minor increases in repeat length per expansion event, which was dependent on a mismatch repair pathway protein Msh2. Second, we found major increases in repeat length per event when a DNA double- or single-strand break (DSB/SSB) was artificially introduced proximal to the repeats, and which was dependent on the homology-directed repair (HDR) pathway. In mice, the first mode primarily drove somatic repeat expansion. Major changes in repeat length, including expansion, were observed when SSB was introduced in one-cell embryos, or intergenerationally without DSB/SSB introduction if G4C2 repeats exceeded 400 copies, although spontaneous HDR-mediated expansion has yet to be identified. These findings provide a novel strategy to model repeat expansion in a non-human genome and offer insights into the mechanism behind C9orf72 G4C2 repeat instability.
Collapse
Affiliation(s)
- Nada Kojak
- Regeneron Pharmaceuticals, Tarrytown, NY 10591, USA
| | - Junko Kuno
- Regeneron Pharmaceuticals, Tarrytown, NY 10591, USA
| | | | | | - David Wenger
- Regeneron Pharmaceuticals, Tarrytown, NY 10591, USA
| | | | | | - Yajun Tang
- Regeneron Pharmaceuticals, Tarrytown, NY 10591, USA
| | - Jade Zhang
- Regeneron Pharmaceuticals, Tarrytown, NY 10591, USA
| | - Katie Huling
- Regeneron Pharmaceuticals, Tarrytown, NY 10591, USA
| | - Roxanne Ally
- Regeneron Pharmaceuticals, Tarrytown, NY 10591, USA
| | | | | | | | - Pei Yi Huang
- Regeneron Pharmaceuticals, Tarrytown, NY 10591, USA
| | - Sze Yen Kerk
- Regeneron Pharmaceuticals, Tarrytown, NY 10591, USA
| | | | | | - Jose Rojas
- Regeneron Pharmaceuticals, Tarrytown, NY 10591, USA
| | | | | | | | | | - Guochun Gong
- Regeneron Pharmaceuticals, Tarrytown, NY 10591, USA
| | | | - Eric Chiao
- Regeneron Pharmaceuticals, Tarrytown, NY 10591, USA
| | | | | | | |
Collapse
|
9
|
Caggiano C, Morselli M, Qian X, Celona B, Thompson M, Wani S, Tosevska A, Taraszka K, Heuer G, Ngo S, Steyn F, Nestor P, Wallace L, McCombe P, Heggie S, Thorpe K, McElligott C, English G, Henders A, Henderson R, Lomen-Hoerth C, Wray N, McRae A, Pellegrini M, Garton F, Zaitlen N. Tissue informative cell-free DNA methylation sites in amyotrophic lateral sclerosis. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.04.08.24305503. [PMID: 38645132 PMCID: PMC11030489 DOI: 10.1101/2024.04.08.24305503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Cell-free DNA (cfDNA) is increasingly recognized as a promising biomarker candidate for disease monitoring. However, its utility in neurodegenerative diseases, like amyotrophic lateral sclerosis (ALS), remains underexplored. Existing biomarker discovery approaches are tailored to a specific disease context or are too expensive to be clinically practical. Here, we address these challenges through a new approach combining advances in molecular and computational technologies. First, we develop statistical tools to select tissue-informative DNA methylation sites relevant to a disease process of interest. We then employ a capture protocol to select these sites and perform targeted methylation sequencing. Multi-modal information about the DNA methylation patterns are then utilized in machine learning algorithms trained to predict disease status and disease progression. We applied our method to two independent cohorts of ALS patients and controls (n=192). Overall, we found that the targeted sites accurately predicted ALS status and replicated between cohorts. Additionally, we identified epigenetic features associated with ALS phenotypes, including disease severity. These findings highlight the potential of cfDNA as a non-invasive biomarker for ALS.
Collapse
Affiliation(s)
- C Caggiano
- Department of Neurology, UCLA, Los Angeles, California
- Institute of Genomic Health, Icahn School of Medicine at Mt Sinai, New York, New York
| | - M Morselli
- Department of Molecular, Cell, and Developmental Biology, UCLA; Los Angeles, California
- Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
| | - X Qian
- Institute for Molecular Biology, University of Queensland, Brisbane, Australia
| | - B Celona
- Cardiovascular Research Institute, UCSF, San Francisco, California
| | - M Thompson
- Department of Neurology, UCLA, Los Angeles, California
- Systems and Synthetic Biology, Centre for Genomic Regulation, Barcelona, Spain
| | - S Wani
- Cardiovascular Research Institute, UCSF, San Francisco, California
| | - A Tosevska
- Department of Molecular, Cell, and Developmental Biology, UCLA; Los Angeles, California
- Department of Internal Medicine III, Division of Rheumatology, Medical University of Vienna, Vienna, Austria
| | - K Taraszka
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - G Heuer
- Computational and Systems Biology Interdepartmental Program, UCLA, Los Angeles, California
| | - S Ngo
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Australia
- Department of Neurology, Royal Brisbane and Women's Hospital, Brisbane, QLD, Australia
| | - F Steyn
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, Australia
| | - P Nestor
- Queensland Brain Institute, Unviversity of Queensland, Brisbane, Australia
- Mater Public Hospital, Brisbane, Australia
| | - L Wallace
- Institute for Molecular Biology, University of Queensland, Brisbane, Australia
| | - P McCombe
- Department of Neurology, Royal Brisbane and Women's Hospital, Brisbane, QLD, Australia
| | - S Heggie
- Department of Neurology, Royal Brisbane and Women's Hospital, Brisbane, QLD, Australia
| | - K Thorpe
- Department of Neurology, Royal Brisbane and Women's Hospital, Brisbane, QLD, Australia
| | | | - G English
- Institute for Molecular Biology, University of Queensland, Brisbane, Australia
| | - A Henders
- Institute for Molecular Biology, University of Queensland, Brisbane, Australia
| | - R Henderson
- Department of Neurology, Royal Brisbane and Women's Hospital, Brisbane, QLD, Australia
| | - C Lomen-Hoerth
- Department of Neurology, UCSF, San Francisco, California
| | - N Wray
- Institute for Molecular Biology, University of Queensland, Brisbane, Australia
| | - A McRae
- Institute for Molecular Biology, University of Queensland, Brisbane, Australia
| | - M Pellegrini
- Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
| | - F Garton
- Institute for Molecular Biology, University of Queensland, Brisbane, Australia
| | - N Zaitlen
- Department of Neurology, UCLA, Los Angeles, California
- Department of Human Genetics, University of California Los Angeles, Los Angeles, California
| |
Collapse
|
10
|
Broce IJ, Sirkis DW, Nillo RM, Bonham LW, Lee SE, Miller BL, Castruita PA, Sturm VE, Sugrue LS, Desikan RS, Yokoyama JS. C9orf72 gene networks in the human brain correlate with cortical thickness in C9-FTD and implicate vulnerable cell types. Front Neurosci 2024; 18:1258996. [PMID: 38469573 PMCID: PMC10925697 DOI: 10.3389/fnins.2024.1258996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 01/15/2024] [Indexed: 03/13/2024] Open
Abstract
Introduction A hexanucleotide repeat expansion (HRE) intronic to chromosome 9 open reading frame 72 (C9orf72) is recognized as the most common genetic cause of amyotrophic lateral sclerosis (ALS), frontotemporal dementia (FTD), and ALS-FTD. Identifying genes that show similar regional co-expression patterns to C9orf72 may help identify novel gene targets and biological mechanisms that mediate selective vulnerability to ALS and FTD pathogenesis. Methods We leveraged mRNA expression data in healthy brain from the Allen Human Brain Atlas to evaluate C9orf72 co-expression patterns. To do this, we correlated average C9orf72 expression values in 51 regions across different anatomical divisions (cortex, subcortex, and cerebellum) with average gene expression values for 15,633 protein-coding genes, including 54 genes known to be associated with ALS, FTD, or ALS-FTD. We then performed imaging transcriptomic analyses to evaluate whether the identified C9orf72 co-expressed genes correlated with patterns of cortical thickness in symptomatic C9orf72 pathogenic HRE carriers (n = 19) compared to controls (n = 23). Lastly, we explored whether genes with significant C9orf72 imaging transcriptomic correlations (i.e., "C9orf72 imaging transcriptomic network") were enriched in specific cell populations in the brain and enriched for specific biological and molecular pathways. Results A total of 2,120 genes showed an anatomical distribution of gene expression in the brain similar to C9orf72 and significantly correlated with patterns of cortical thickness in C9orf72 HRE carriers. This C9orf72 imaging transcriptomic network was differentially expressed in cell populations previously implicated in ALS and FTD, including layer 5b cells, cholinergic neurons in the spinal cord and brainstem and medium spiny neurons of the striatum, and was enriched for biological and molecular pathways associated with protein ubiquitination, autophagy, cellular response to DNA damage, endoplasmic reticulum to Golgi vesicle-mediated transport, among others. Conclusion Considered together, we identified a network of C9orf72 associated genes that may influence selective regional and cell-type-specific vulnerabilities in ALS/FTD.
Collapse
Affiliation(s)
- Iris J. Broce
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, United States
- Department of Neurosciences, University of California San Diego, San Diego, CA, United States
| | - Daniel W. Sirkis
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, United States
| | - Ryan M. Nillo
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, United States
| | - Luke W. Bonham
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, United States
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, United States
| | - Suzee E. Lee
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, United States
| | - Bruce L. Miller
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, United States
| | - Patricia A. Castruita
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, United States
| | - Virginia E. Sturm
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, United States
- Global Brain Health Institute, University of California San Francisco, San Francisco, CA, United States
| | - Leo S. Sugrue
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, United States
| | - Rahul S. Desikan
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, United States
| | - Jennifer S. Yokoyama
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, United States
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, United States
- Global Brain Health Institute, University of California San Francisco, San Francisco, CA, United States
| |
Collapse
|
11
|
Gupta MN, Uversky VN. Biological importance of arginine: A comprehensive review of the roles in structure, disorder, and functionality of peptides and proteins. Int J Biol Macromol 2024; 257:128646. [PMID: 38061507 DOI: 10.1016/j.ijbiomac.2023.128646] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/02/2023] [Accepted: 12/04/2023] [Indexed: 01/26/2024]
Abstract
Arginine shows Jekyll and Hyde behavior in several respects. It participates in protein folding via ionic and H-bonds and cation-pi interactions; the charge and hydrophobicity of its side chain make it a disorder-promoting amino acid. Its methylation in histones; RNA binding proteins; chaperones regulates several cellular processes. The arginine-centric modifications are important in oncogenesis and as biomarkers in several cardiovascular diseases. The cross-links involving arginine in collagen and cornea are involved in pathogenesis of tissues but have also been useful in tissue engineering and wound-dressing materials. Arginine is a part of active site of several enzymes such as GTPases, peroxidases, and sulfotransferases. Its metabolic importance is obvious as it is involved in production of urea, NO, ornithine and citrulline. It can form unusual functional structures such as molecular tweezers in vitro and sprockets which engage DNA chains as part of histones in vivo. It has been used in design of cell-penetrating peptides as drugs. Arginine has been used as an excipient in both solid and injectable drug formulations; its role in suppressing opalescence due to liquid-liquid phase separation is particularly very promising. It has been known as a suppressor of protein aggregation during protein refolding. It has proved its usefulness in protein bioseparation processes like ion-exchange, hydrophobic and affinity chromatographies. Arginine is an amino acid, whose importance in biological sciences and biotechnology continues to grow in diverse ways.
Collapse
Affiliation(s)
- Munishwar Nath Gupta
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, Hauz Khas, New Delhi 110016, India
| | - Vladimir N Uversky
- Department of Molecular Medicine, USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA.
| |
Collapse
|
12
|
Andrysiak K, Stępniewski J, Spaczyńska-Boczar M, Łapicka-Bodzioch K, Słowik A, Dulak J. Generation of Human-Induced Pluripotent Stem Cells from Peripheral Blood Mononuclear Cells of C9ORF72-Associated Amyotrophic Lateral Sclerosis Patients. Methods Mol Biol 2024; 2835:135-146. [PMID: 39105912 DOI: 10.1007/978-1-0716-3995-5_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
Disease modeling of neuromuscular disorders, such as amyotrophic lateral sclerosis (ALS), is hindered by limited accessibility of affected cells. This problem can be overcome by generation of human induced pluripotent stem cells (hiPSC), which can be then differentiated into required cells. Here, we describe the detailed protocol of hiPSC establishment from peripheral blood mononuclear cells (PBMC) of two ALS patients with detected expansion of G4C2 (GGGGCC) repeats in the first intron of C9ORF72 gene, known to be linked with the most common form of familial ALS.Successful PBMC reprogramming with non-integrating Sendai vectors was confirmed by expression of pluripotency markers: OCT4, NANOG, SSEA4, and TRA-1-60 in obtained hiPSC and their ability to differentiate into cells of three germ layers.The generated ALS-patient-specific hiPSC create a possibility for deciphering molecular basis of this devastating neuromuscular disease.
Collapse
Affiliation(s)
- Kalina Andrysiak
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Kraków, Poland
| | - Jacek Stępniewski
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Kraków, Poland.
| | | | | | - Agnieszka Słowik
- Department of Neurology, Jagiellonian University Medical College, Krakow, Poland
| | - Józef Dulak
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Kraków, Poland.
| |
Collapse
|
13
|
Zecca C, Tortelli R, Carrera P, Dell'Abate MT, Logroscino G, Ferrari M. Genotype-phenotype correlation in the spectrum of frontotemporal dementia-parkinsonian syndromes and advanced diagnostic approaches. Crit Rev Clin Lab Sci 2022; 60:171-188. [PMID: 36510705 DOI: 10.1080/10408363.2022.2150833] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The term frontotemporal dementia (FTD) refers to a group of progressive neurodegenerative disorders characterized mainly by atrophy of the frontal and anterior temporal lobes. Based on clinical presentation, three main clinical syndromes have traditionally been described: behavioral variant frontotemporal dementia (bvFTD), non-fluent/agrammatic primary progressive aphasia (nfPPA), and semantic variant PPA (svPPA). However, over the last 20 years, it has been recognized that cognitive phenotypes often overlap with motor phenotypes, either motor neuron diseases or parkinsonian signs and/or syndromes like progressive supranuclear palsy (PSP) and cortico-basal syndrome (CBS). Furthermore, FTD-related genes are characterized by genetic pleiotropy and can cause, even in the same family, pure motor phenotypes, findings that underlie the clinical continuum of the spectrum, which has pure cognitive and pure motor phenotypes as the extremes. The genotype-phenotype correlation of the spectrum, FTD-motor neuron disease, has been well defined and extensively investigated, while the continuum, FTD-parkinsonism, lacks a comprehensive review. In this narrative review, we describe the current knowledge about the genotype-phenotype correlation of the spectrum, FTD-parkinsonism, focusing on the phenotypes that are less frequent than bvFTD, namely nfPPA, svPPA, PSP, CBS, and cognitive-motor overlapping phenotypes (i.e. PPA + PSP). From a pathological point of view, they are characterized mainly by the presence of phosphorylated-tau inclusions, either 4 R or 3 R. The genetic correlate of the spectrum can be heterogeneous, although some variants seem to lead preferentially to specific clinical syndromes. Furthermore, we critically review the contribution of genome-wide association studies (GWAS) and next-generation sequencing (NGS) in disentangling the complex heritability of the FTD-parkinsonism spectrum and in defining the genotype-phenotype correlation of the entire clinical scenario, owing to the ability of these techniques to test multiple genes, and so to allow detailed investigations of the overlapping phenotypes. Finally, we conclude with the importance of a detailed genetic characterization and we offer to patients and families the chance to be included in future randomized clinical trials focused on autosomal dominant forms of FTLD.
Collapse
Affiliation(s)
- Chiara Zecca
- Department of Clinical Research in Neurology, Center for Neurodegenerative Diseases and the Aging Brain, University of Bari "Aldo Moro", Pia Fondazione Card G. Panico Hospital, Tricase, Italy
| | - Rosanna Tortelli
- Neuroscience and Rare Diseases Discovery and Translational Area, Roche Pharma Research and Early Development, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Paola Carrera
- Unit of Genomics for Human Disease Diagnosis and Clinical Molecular Biology Laboratory, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Maria Teresa Dell'Abate
- Department of Clinical Research in Neurology, Center for Neurodegenerative Diseases and the Aging Brain, University of Bari "Aldo Moro", Pia Fondazione Card G. Panico Hospital, Tricase, Italy
| | - Giancarlo Logroscino
- Department of Clinical Research in Neurology, Center for Neurodegenerative Diseases and the Aging Brain, University of Bari "Aldo Moro", Pia Fondazione Card G. Panico Hospital, Tricase, Italy.,Department of Basic Medicine Sciences, Neuroscience, and Sense Organs, University of Bari "Aldo Moro", Bari, Italy
| | | |
Collapse
|
14
|
Amalyan S, Tamboli S, Lazarevich I, Topolnik D, Bouman LH, Topolnik L. Enhanced motor cortex output and disinhibition in asymptomatic female mice with C9orf72 genetic expansion. Cell Rep 2022; 40:111043. [PMID: 35793625 DOI: 10.1016/j.celrep.2022.111043] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 04/29/2022] [Accepted: 06/12/2022] [Indexed: 11/28/2022] Open
Abstract
Information and action coding by cortical circuits relies on a balanced dialogue between excitation and inhibition. Circuit hyperexcitability is considered a potential pathophysiological mechanism in various brain disorders, but the underlying deficits, especially at early disease stages, remain largely unknown. We report that asymptomatic female mice carrying the chromosome 9 open reading frame 72 (C9orf72) repeat expansion, which represents a high-prevalence genetic abnormality for human amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD) spectrum disorder, exhibit abnormal motor cortex output. The number of primary motor cortex (M1) layer 5 pyramidal neurons is reduced in asymptomatic mice, with the surviving neurons receiving a decreased inhibitory drive that results in a higher M1 output, specifically during high-speed animal locomotion. Importantly, using deep-learning algorithms revealed that speed-dependent M1 output predicts the likelihood of C9orf72 genetic expansion. Our data link early circuit abnormalities with a gene mutation in asymptomatic ALS/FTLD carriers.
Collapse
Affiliation(s)
- Sona Amalyan
- Department of Biochemistry, Microbiology and Bio-informatics, Laval University, Québec, QC, Canada; Neuroscience Axis, CHU de Québec Research Center (CHUL), Québec, QC, Canada
| | - Suhel Tamboli
- Department of Biochemistry, Microbiology and Bio-informatics, Laval University, Québec, QC, Canada; Neuroscience Axis, CHU de Québec Research Center (CHUL), Québec, QC, Canada
| | - Ivan Lazarevich
- École Normale Supérieure, Laboratoire de Neurosciences Cognitives, Group for Neural Theory, Paris, France
| | - Dimitry Topolnik
- Department of Biochemistry, Microbiology and Bio-informatics, Laval University, Québec, QC, Canada; Neuroscience Axis, CHU de Québec Research Center (CHUL), Québec, QC, Canada
| | - Leandra Harriet Bouman
- Department of Biochemistry, Microbiology and Bio-informatics, Laval University, Québec, QC, Canada; Neuroscience Axis, CHU de Québec Research Center (CHUL), Québec, QC, Canada
| | - Lisa Topolnik
- Department of Biochemistry, Microbiology and Bio-informatics, Laval University, Québec, QC, Canada; Neuroscience Axis, CHU de Québec Research Center (CHUL), Québec, QC, Canada.
| |
Collapse
|
15
|
Rodríguez-Cueto C, Gómez-Almería M, García Toscano L, Romero J, Hillard CJ, de Lago E, Fernández-Ruiz J. Inactivation of the CB 2 receptor accelerated the neuropathological deterioration in TDP-43 transgenic mice, a model of amyotrophic lateral sclerosis. Brain Pathol 2021; 31:e12972. [PMID: 33983653 PMCID: PMC8549023 DOI: 10.1111/bpa.12972] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 03/29/2021] [Accepted: 04/21/2021] [Indexed: 11/29/2022] Open
Abstract
The activation of the cannabinoid receptor type‐2 (CB2) afforded neuroprotection in amyotrophic lateral sclerosis (ALS) models. The objective of this study was to further investigate the relevance of the CB2 receptor through investigating the consequences of its inactivation. TDP‐43(A315T) transgenic mice were crossed with CB2 receptor knock‐out mice to generate double mutants. Temporal and qualitative aspects of the pathological phenotype of the double mutants were compared to TDP‐43 transgenic mice expressing the CB2 receptor. The double mutants exhibited significantly accelerated neurological decline, such that deteriorated rotarod performance was visible at 7 weeks, whereas rotarod performance was normal up to 11 weeks in transgenic mice with intact expression of the CB2 receptor. A morphological analysis of spinal cords confirmed an earlier death (visible at 65 days) of motor neurons labelled with Nissl staining and ChAT immunofluorescence in double mutants compared to TDP‐43 transgenic mice expressing the CB2 receptor. Evidence of glial reactivity, measured using GFAP and Iba‐1 immunostaining, was seen in double mutants at 65 days, but not in TDP‐43 transgenic mice expressing the CB2 receptor. However, at 90 days, both genotypes exhibited similar changes for all these markers, although surviving motor neurons of transgenic mice presented some morphological abnormalities in absence of the CB2 receptor that were not as evident in the presence of this receptor. This faster deterioration seen in double mutants led to premature mortality compared with TDP‐43 transgenic mice expressing the CB2 receptor. We also investigated the consequences of a pharmacological inactivation of the CB2 receptor using the selective antagonist AM630 in TDP‐43 transgenic mice, but results showed only subtle trends towards a greater deterioration. In summary, our results confirmed the potential of the CB2 receptor agonists as a neuroprotective therapy in ALS and strongly support the need to progress towards an evaluation of this potential in patients.
Collapse
Affiliation(s)
- Carmen Rodríguez-Cueto
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Instituto Universitario de Investigación en Neuroquímica, Universidad Complutense, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.,Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Marta Gómez-Almería
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Instituto Universitario de Investigación en Neuroquímica, Universidad Complutense, Madrid, Spain
| | - Laura García Toscano
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Instituto Universitario de Investigación en Neuroquímica, Universidad Complutense, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.,Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Julián Romero
- Faculty of Experimental Sciences, Universidad Francisco de Vitoria, Madrid, Spain
| | - Cecilia J Hillard
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Eva de Lago
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Instituto Universitario de Investigación en Neuroquímica, Universidad Complutense, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.,Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Javier Fernández-Ruiz
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Instituto Universitario de Investigación en Neuroquímica, Universidad Complutense, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.,Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| |
Collapse
|
16
|
Rodríguez-Cueto C, García-Toscano L, Santos-García I, Gómez-Almería M, Gonzalo-Consuegra C, Espejo-Porras F, Fernández-Ruiz J, de Lago E. Targeting the CB 2 receptor and other endocannabinoid elements to delay disease progression in amyotrophic lateral sclerosis. Br J Pharmacol 2021; 178:1373-1387. [PMID: 33486755 DOI: 10.1111/bph.15386] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 01/14/2021] [Accepted: 01/16/2021] [Indexed: 02/06/2023] Open
Abstract
Cannabinoids form a singular group of plant-derived compounds, endogenous lipids and synthetic derivatives with multiple therapeutic effects exerted by targeting different elements of the endocannabinoid system. One of their therapeutic applications is the preservation of neuronal integrity exerted by attenuating the multiple neurotoxic events that kill neurons in neurodegenerative disorders. In this review, we will address the potential of cannabinoids as neuroprotective agents in amyotrophic lateral sclerosis (ALS), a devastating neurodegenerative disorder characterized by muscle denervation, atrophy and paralysis, and progressive deterioration in upper and/or lower motor neurons. The emphasis will be paid on the cannabinoid type 2 (CB2 ) receptor, whose activation limits glial reactivity, but the potential of additional endocannabinoid-related targets will be also addressed. The evidence accumulated so far at the preclinical level supports the need to soon move towards the patients and initiate clinical trials to confirm the potential of cannabinoid-based medicines as disease modifiers in ALS. LINKED ARTICLES: This article is part of a themed issue on Neurochemistry in Japan. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v178.6/issuetoc.
Collapse
Affiliation(s)
- Carmen Rodríguez-Cueto
- Instituto Universitario de Investigación en Neuroquímica, Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense, Madrid, Spain.,CIBERNED, Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, Instituto de Salud Carlos III, Madrid, Spain.,Area 1 - Neurociencias y Organos de los Sentidos, IRYCIS, Instituto Ramón y Cajal de Investigación Sanitaria, Madrid, Spain
| | - Laura García-Toscano
- Instituto Universitario de Investigación en Neuroquímica, Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense, Madrid, Spain.,CIBERNED, Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, Instituto de Salud Carlos III, Madrid, Spain.,Area 1 - Neurociencias y Organos de los Sentidos, IRYCIS, Instituto Ramón y Cajal de Investigación Sanitaria, Madrid, Spain
| | - Irene Santos-García
- Instituto Universitario de Investigación en Neuroquímica, Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense, Madrid, Spain.,CIBERNED, Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, Instituto de Salud Carlos III, Madrid, Spain.,Area 1 - Neurociencias y Organos de los Sentidos, IRYCIS, Instituto Ramón y Cajal de Investigación Sanitaria, Madrid, Spain
| | - Marta Gómez-Almería
- Instituto Universitario de Investigación en Neuroquímica, Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense, Madrid, Spain.,CIBERNED, Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, Instituto de Salud Carlos III, Madrid, Spain.,Area 1 - Neurociencias y Organos de los Sentidos, IRYCIS, Instituto Ramón y Cajal de Investigación Sanitaria, Madrid, Spain
| | - Claudia Gonzalo-Consuegra
- Instituto Universitario de Investigación en Neuroquímica, Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense, Madrid, Spain.,CIBERNED, Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, Instituto de Salud Carlos III, Madrid, Spain.,Area 1 - Neurociencias y Organos de los Sentidos, IRYCIS, Instituto Ramón y Cajal de Investigación Sanitaria, Madrid, Spain
| | - Francisco Espejo-Porras
- Instituto Universitario de Investigación en Neuroquímica, Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense, Madrid, Spain.,CIBERNED, Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, Instituto de Salud Carlos III, Madrid, Spain.,Area 1 - Neurociencias y Organos de los Sentidos, IRYCIS, Instituto Ramón y Cajal de Investigación Sanitaria, Madrid, Spain
| | - Javier Fernández-Ruiz
- Instituto Universitario de Investigación en Neuroquímica, Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense, Madrid, Spain.,CIBERNED, Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, Instituto de Salud Carlos III, Madrid, Spain.,Area 1 - Neurociencias y Organos de los Sentidos, IRYCIS, Instituto Ramón y Cajal de Investigación Sanitaria, Madrid, Spain
| | - Eva de Lago
- Instituto Universitario de Investigación en Neuroquímica, Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense, Madrid, Spain.,CIBERNED, Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, Instituto de Salud Carlos III, Madrid, Spain.,Area 1 - Neurociencias y Organos de los Sentidos, IRYCIS, Instituto Ramón y Cajal de Investigación Sanitaria, Madrid, Spain
| |
Collapse
|
17
|
Shamim U, Ambawat S, Singh J, Thomas A, Pradeep-Chandra-Reddy C, Suroliya V, Uppilli B, Parveen S, Sharma P, Chanchal S, Nashi S, Preethish-Kumar V, Vengalil S, Polavarapu K, Keerthipriya M, Mahajan NP, Reddy N, Thomas PT, Sadasivan A, Warrier M, Seth M, Zahra S, Mathur A, Vibha D, Srivastava AK, Nalini A, Faruq M. C9orf72 hexanucleotide repeat expansion in Indian patients with ALS: a common founder and its geographical predilection. Neurobiol Aging 2020; 88:156.e1-156.e9. [PMID: 32035847 DOI: 10.1016/j.neurobiolaging.2019.12.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 12/27/2019] [Indexed: 12/16/2022]
Abstract
Hexanucleotide repeat expansion in C9orf72 is defined as a major causative factor for familial amyotrophic lateral sclerosis (ALS). The mutation frequency varies dramatically among populations of different ethnicity; however, in most cases, C9orf72 mutant has been described on a common founder haplotype. We assessed its frequency in a study cohort involving 593 clinically and electrophysiologically defined ALS cases. We also investigated the presence of reported Finnish haplotype among the mutation carriers. The identified common haplotype region was further screened in 192 (carrying 2-6 G4C2 repeats) and 96 (≥7 repeats) control chromosomes. The G4C2 expansion was observed in 3.2% (19/593) of total cases where 9/19 (47.4%) positive cases belonged to the eastern region of India. Haplotype analysis revealed 11 G4C2-Ex carriers shared the common haplotype (haplo-A) background spanning a region of ∼90 kbp (rs895021-rs11789520) including rs3849942 (a well-known global at-risk loci with T allele for G4C2 expansion). The other 3 G4C2-Ex cases had a different haplotype (haplo-B) with core difference from haplo-A at G4C2-Ex flanking 31 kbp region between rs3849942 and rs11789520 SNPs (allele 'C' of rs3849942 which is a nonrisk allele). Out of other five G4C2-cases, four carried the risk allele T of rs3849942 while one harbored the non-risk allele. This study establishes the prevalence of C9orf72 expansion in Indian ALS cases providing further evidence for geographical predilection. The global core risk haplotype predominated C9orf72 expansion-positive ALS cases, yet the existence of a different haplotype suggests a second lineage (haplo B), which may have been derived from the Finnish core haplotype or may imply a unique haplotype among Asians. The association of risk haplotype with normal intermediate C9orf72 alleles reinforced its role in conferring instability to the C9orf72-G4C2 region. We thus present an effective support to interpret future burden of ALS cases in India.
Collapse
Affiliation(s)
- Uzma Shamim
- Genomics and Molecular Medicine Division, CSIR - Institute of Genomics and Integrative Biology, New Delhi, India
| | - Sakshi Ambawat
- Genomics and Molecular Medicine Division, CSIR - Institute of Genomics and Integrative Biology, New Delhi, India
| | - Jyotsna Singh
- Genomics and Molecular Medicine Division, CSIR - Institute of Genomics and Integrative Biology, New Delhi, India
| | - Aneesa Thomas
- Department of Neurology, Neuroscience Centre, All India Institute of Medical Sciences, New Delhi, India
| | | | - Varun Suroliya
- Department of Neurology, Neuroscience Centre, All India Institute of Medical Sciences, New Delhi, India
| | - Bharathram Uppilli
- Genomics and Molecular Medicine Division, CSIR - Institute of Genomics and Integrative Biology, New Delhi, India
| | - Shaista Parveen
- Genomics and Molecular Medicine Division, CSIR - Institute of Genomics and Integrative Biology, New Delhi, India
| | - Pooja Sharma
- Genomics and Molecular Medicine Division, CSIR - Institute of Genomics and Integrative Biology, New Delhi, India
| | - Shankar Chanchal
- Genomics and Molecular Medicine Division, CSIR - Institute of Genomics and Integrative Biology, New Delhi, India
| | - Saraswati Nashi
- Neurology Department, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | | | - Seena Vengalil
- Neurology Department, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Kiran Polavarapu
- Neurology Department, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Muddasu Keerthipriya
- Neurology Department, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | | | - Neeraja Reddy
- Neurology Department, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Priya Treesa Thomas
- Department of Psychiatric Social Work, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Arun Sadasivan
- Department of Psychiatric Social Work, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Manjusha Warrier
- Department of Psychiatric Social Work, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Malika Seth
- Department of Psychiatric Social Work, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Sana Zahra
- Department of Psychiatric Social Work, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Aradhana Mathur
- Genomics and Molecular Medicine Division, CSIR - Institute of Genomics and Integrative Biology, New Delhi, India
| | - Deepti Vibha
- Department of Neurology, Neuroscience Centre, All India Institute of Medical Sciences, New Delhi, India
| | - Achal K Srivastava
- Department of Neurology, Neuroscience Centre, All India Institute of Medical Sciences, New Delhi, India
| | - Atchayaram Nalini
- Neurology Department, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Mohammed Faruq
- Genomics and Molecular Medicine Division, CSIR - Institute of Genomics and Integrative Biology, New Delhi, India.
| |
Collapse
|
18
|
Gossye H, Van Broeckhoven C, Engelborghs S. The Use of Biomarkers and Genetic Screening to Diagnose Frontotemporal Dementia: Evidence and Clinical Implications. Front Neurosci 2019; 13:757. [PMID: 31447625 PMCID: PMC6691066 DOI: 10.3389/fnins.2019.00757] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Accepted: 07/08/2019] [Indexed: 12/12/2022] Open
Abstract
Within the wide range of neurodegenerative brain diseases, the differential diagnosis of frontotemporal dementia (FTD) frequently poses a challenge. Often, signs and symptoms are not characteristic of the disease and may instead reflect atypical presentations. Consequently, the use of disease biomarkers is of importance to correctly identify the patients. Here, we describe how neuropsychological characteristics, neuroimaging and neurochemical biomarkers and screening for causal gene mutations can be used to differentiate FTD from other neurodegenerative diseases as well as to distinguish between FTD subtypes. Summarizing current evidence, we propose a stepwise approach in the diagnostic evaluation. Clinical consensus criteria that take into account a full neuropsychological examination have relatively good accuracy (sensitivity [se] 75–95%, specificity [sp] 82–95%) to diagnose FTD, although misdiagnosis (mostly AD) is common. Structural brain MRI (se 70–94%, sp 89–99%) and FDG PET (se 47–90%, sp 68–98%) or SPECT (se 36–100%, sp 41–100%) brain scans greatly increase diagnostic accuracy, showing greater involvement of frontal and anterior temporal lobes, with sparing of hippocampi and medial temporal lobes. If these results are inconclusive, we suggest detecting amyloid and tau cerebrospinal fluid (CSF) biomarkers that can indicate the presence of AD with good accuracy (se 74–100%, sp 82–97%). The use of P-tau181 and the Aβ1–42/Aβ1–40 ratio significantly increases the accuracy of correctly identifying FTD vs. AD. Alternatively, an amyloid brain PET scan can be performed to differentiate FTD from AD. When autosomal dominant inheritance is suspected, or in early onset dementia, mutation screening of causal genes is indicated and may also be offered to at-risk family members. We have summarized genotype–phenotype correlations for several genes that are known to cause familial frontotemporal lobar degeneration, which is the neuropathological substrate of FTD. The genes most commonly associated with this disease (C9orf72, MAPT, GRN, TBK1) are discussed, as well as some less frequent ones (CHMP2B, VCP). Several other techniques, such as diffusion tensor imaging, tau PET imaging and measuring serum neurofilament levels, show promise for future implementation as diagnostic biomarkers.
Collapse
Affiliation(s)
- Helena Gossye
- Neurodegenerative Brain Diseases Group, Center for Molecular Neurology, VIB, Antwerp, Belgium.,Institute Born - Bunge, University of Antwerp, Antwerp, Belgium.,Department of Neurology and Center for Neurosciences, UZ Brussel and Vrije Universiteit Brussel, Brussels, Belgium
| | - Christine Van Broeckhoven
- Neurodegenerative Brain Diseases Group, Center for Molecular Neurology, VIB, Antwerp, Belgium.,Institute Born - Bunge, University of Antwerp, Antwerp, Belgium
| | - Sebastiaan Engelborghs
- Institute Born - Bunge, University of Antwerp, Antwerp, Belgium.,Department of Neurology and Center for Neurosciences, UZ Brussel and Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
19
|
Nucleus–cytoplasm cross‐talk in the aging brain. J Neurosci Res 2019; 98:247-261. [DOI: 10.1002/jnr.24446] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 04/10/2019] [Accepted: 05/06/2019] [Indexed: 12/13/2022]
|
20
|
Xu W, Bao P, Jiang X, Wang H, Qin M, Wang R, Wang T, Yang Y, Lorenzini I, Liao L, Sattler R, Xu J. Reactivation of nonsense-mediated mRNA decay protects against C9orf72 dipeptide-repeat neurotoxicity. Brain 2019; 142:1349-1364. [PMID: 30938419 PMCID: PMC6487333 DOI: 10.1093/brain/awz070] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 01/04/2019] [Accepted: 01/27/2019] [Indexed: 12/12/2022] Open
Abstract
Amyotrophic lateral sclerosis is a deleterious neurodegenerative disease without effective treatment options. Recent studies have indicated the involvement of the dysregulation of RNA metabolism in the pathogenesis of amyotrophic lateral sclerosis. Among the various RNA regulatory machineries, nonsense-mediated mRNA decay (NMD) is a stress responsive cellular surveillance system that degrades selected mRNA substrates to prevent the translation of defective or harmful proteins. Whether this pathway is affected in neurodegenerative diseases is unclear. Here we report the inhibition of NMD by arginine-rich dipeptide repeats derived from C9orf72 hexanucleotide repeat expansion, the most common cause of familial amyotrophic lateral sclerosis. Bioinformatic analysis of multiple transcriptome profiles revealed significant overlap of upregulated genes in NMD-defective cells with those in the brain tissues, micro-dissected motor neurons, or induced pluripotent stem cell-derived motor neurons specifically from amyotrophic lateral sclerosis patients carrying C9orf72 hexanucleotide repeat expansion, suggesting the suppression of NMD pathway in these patients. Using Drosophila as a model, we have validated that the C9orf72 hexanucleotide repeat expansion products could lead to the accumulation of the NMD substrates and identified arginine-rich dipeptide repeats, including poly glycine-arginine and poly proline-arginine, as the main culprits of NMD inhibition. Furthermore, in human SH-SY5Y neuroblastoma cells and in mouse brains, expression of glycine-arginine with 36 repeats (GR36) was sufficient to cause NMD inhibition. In cells expressing GR36, stress granule accumulation was accompanied by decreased processing body formation, which contributed to the inhibition of NMD. Remarkably, expression of UPF1, a core gene in the NMD pathway, efficiently blocked neurotoxicity caused by arginine-rich dipeptide repeats in both cellular and Drosophila models. Although not as effective as UPF1, expression of another NMD gene UPF2 also ameliorated the degenerative phenotypes in dipeptide repeat-expressing flies, indicating that genetically reactivating the NMD pathway could suppress dipeptide repeat toxicity. Finally, after validating tranilast as an NMD-activating drug, we demonstrated the therapeutic potential of this asthma drug in cellular and Drosophila models of C9orf72 dipeptide repeat neurotoxicity. Therefore, our study has revealed a cellular mechanism whereby arginine-rich C9orf72 dipeptide repeats could inhibit NMD activities by reducing the abundance of processing bodies. Furthermore, our results suggested that activation of the NMD pathway could be a potential therapeutic strategy for amyotrophic lateral sclerosis with defective RNA metabolism.
Collapse
Affiliation(s)
- Wangchao Xu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Shanghai, China
| | - Puhua Bao
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xin Jiang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Shanghai, China
| | - Haifang Wang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Meiling Qin
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Ruiqi Wang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Tao Wang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yi Yang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Shanghai, China
| | - Ileana Lorenzini
- Barrow Neurological Institute, Dignity Health, St. Joseph’s Hospital and Medical Center, Phoenix AZ, USA
| | - Lujian Liao
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, China
| | - Rita Sattler
- Barrow Neurological Institute, Dignity Health, St. Joseph’s Hospital and Medical Center, Phoenix AZ, USA
| | - Jin Xu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
21
|
Erzurumluoglu E, Cilingir O, Ozbabalik Adapinar BD, Bilgic B, Kocagil S, Ozen H, Durak Aras B, Yenilmez C, Artan S. The association between repeat number in C9orf72 and phenotypic variability in Turkish patients with frontotemporal lobar degeneration. Neurobiol Aging 2019; 76:216.e1-216.e7. [DOI: 10.1016/j.neurobiolaging.2018.12.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 11/16/2018] [Accepted: 12/18/2018] [Indexed: 12/12/2022]
|
22
|
Mehrabian S, Thonberg H, Raycheva M, Lilius L, Stoyanova K, Forsell C, Cavallin L, Nesheva D, Westman E, Toncheva D, Traykov L, Winblad B, Graff C. Phenotypic variability and neuropsychological findings associated with C9orf72 repeat expansions in a Bulgarian dementia cohort. PLoS One 2018; 13:e0208383. [PMID: 30550541 PMCID: PMC6294384 DOI: 10.1371/journal.pone.0208383] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 11/16/2018] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND The GGGGCC repeat expansion in the C9orf72 gene was recently identified as a major cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) in several European populations. The objective of this study was to determine the frequency of C9orf72 repeat expansions in a Bulgarian dementia cohort and to delineate the associated clinical features. METHODS AND FINDINGS PCR-based assessments of the C9orf72 hexanucleotide repeat expansion in all study samples (including 82 FTD, 37 Alzheimer's disease (AD), and 16 other neurodegenerative/dementia disorder cases) were performed. We report the clinical, neuropsychological, and neuroimaging findings obtained for the C9orf72 repeat expansion carriers. Of the 135 cases screened, 3/82 (3.7%) of all FTD cases and 1/37 (2.7%) of all clinical AD cases had a C9orf72 repeat expansion. In this cohort, the C9orf72 pathological expansion was found in clinical diagnoses bridging the FTD, parkinsonism, ALS and AD spectrum. Interestingly, we showed early writing errors without aphasia in two subjects with C9orf72 expansions. CONCLUSIONS This study represents the first genetic screening for C9orf72 repeat expansions in a Bulgarian dementia cohort. The C9orf72 repeat expansion does not appear to be a common cause of FTD and related disorders. This report confirms the notion that C9orf72 repeat expansions underlie a broad spectrum of neurodegenerative phenotypes. Relatively isolated agraphia in two cases with C9orf72 repeat expansions is a strong motivation to provide detailed and sophisticated oral and written language assessments that can be used to more precisely characterize early cognitive deficits in these heterogeneous conditions.
Collapse
Affiliation(s)
- Shima Mehrabian
- Depatment of Neurology, UH “Alexandrovska”, Medical University-Sofia, Sofia, Bulgaria
- * E-mail:
| | - Håkan Thonberg
- Karolinska Institutet, Dept NVS, Division for Neurogeriatrics, Bioclinicum, Akademiska stråket, Solna, Sweden
- Karolinska University Hospital, Theme Aging, Genetics Unit, Solna, Sweden
| | - Margarita Raycheva
- Depatment of Neurology, UH “Alexandrovska”, Medical University-Sofia, Sofia, Bulgaria
| | - Lena Lilius
- Karolinska Institutet, Dept NVS, Division for Neurogeriatrics, Bioclinicum, Akademiska stråket, Solna, Sweden
- Karolinska University Hospital, Theme Aging, Genetics Unit, Solna, Sweden
| | - Katya Stoyanova
- Depatment of Neurology, UH “Alexandrovska”, Medical University-Sofia, Sofia, Bulgaria
| | - Charlotte Forsell
- Karolinska Institutet, Dept NVS, Division for Neurogeriatrics, Bioclinicum, Akademiska stråket, Solna, Sweden
- Karolinska University Hospital, Theme Aging, Genetics Unit, Solna, Sweden
| | - Lena Cavallin
- Karolinska Institutet, Department of Clinical Neuroscience, Karolinska University Hospital, Department of Radiology, Stockholm, Sweden
| | | | - Eric Westman
- Karolinska Institutet, Department of Neurobiology, Care Sciences and Society (NVS), Center for Alzheimer Research, Division of Clinical Geriatrics, Neo, Huddinge, Sweden
| | - Draga Toncheva
- Department of Genetics, Medical University-Sofia, Sofia, Bulgaria
| | - Latchezar Traykov
- Depatment of Neurology, UH “Alexandrovska”, Medical University-Sofia, Sofia, Bulgaria
| | - Bengt Winblad
- Karolinska University Hospital, Theme Aging, Clinical Trial Unit, Stockholm, Sweden
- Karolinska Institutet, Department NVS, Center for Alzheimer Research, Division of Neurogeriatrics, Huddinge, Sweden
| | - Caroline Graff
- Karolinska Institutet, Dept NVS, Division for Neurogeriatrics, Bioclinicum, Akademiska stråket, Solna, Sweden
- Karolinska University Hospital, Theme Aging, Genetics Unit, Solna, Sweden
| |
Collapse
|
23
|
Aymerich MS, Aso E, Abellanas MA, Tolon RM, Ramos JA, Ferrer I, Romero J, Fernández-Ruiz J. Cannabinoid pharmacology/therapeutics in chronic degenerative disorders affecting the central nervous system. Biochem Pharmacol 2018; 157:67-84. [PMID: 30121249 DOI: 10.1016/j.bcp.2018.08.016] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 08/13/2018] [Indexed: 12/12/2022]
Abstract
The endocannabinoid system (ECS) exerts a modulatory effect of important functions such as neurotransmission, glial activation, oxidative stress, or protein homeostasis. Dysregulation of these cellular processes is a common neuropathological hallmark in aging and in neurodegenerative diseases of the central nervous system (CNS). The broad spectrum of actions of cannabinoids allows targeting different aspects of these multifactorial diseases. In this review, we examine the therapeutic potential of the ECS for the treatment of chronic neurodegenerative diseases of the CNS focusing on Alzheimer's disease, Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis. First, we describe the localization of the molecular components of the ECS and how they are altered under neurodegenerative conditions, either contributing to or protecting cells from degeneration. Second, we address recent advances in the modulation of the ECS using experimental models through different strategies including the direct targeting of cannabinoid receptors with agonists or antagonists, increasing the endocannabinoid tone by the inhibition of endocannabinoid hydrolysis, and activation of cannabinoid receptor-independent effects. Preclinical evidence indicates that cannabinoid pharmacology is complex but supports the therapeutic potential of targeting the ECS. Third, we review the clinical evidence and discuss the future perspectives on how to bridge human and animal studies to develop cannabinoid-based therapies for each neurodegenerative disorder. Finally, we summarize the most relevant opportunities of cannabinoid pharmacology related to each disease and the multiple unexplored pathways in cannabinoid pharmacology that could be useful for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Maria S Aymerich
- Universidad de Navarra, Facultad de Ciencias, Departamento de Bioquímica y Genética, Pamplona, Spain; Universidad de Navarra, CIMA, Programa de Neurociencias, Pamplona, Spain; IdiSNA, Instituto de Investigación Sanitaria de Navarra, Spain.
| | - Ester Aso
- Departamento de Patología y Terapéutica Experimental, Universidad de Barcelona, L'Hospitalet de Llobregat, Spain; CIBERNED, Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, Instituto de Salud Carlos III, Spain
| | - Miguel A Abellanas
- Universidad de Navarra, Facultad de Ciencias, Departamento de Bioquímica y Genética, Pamplona, Spain; Universidad de Navarra, CIMA, Programa de Neurociencias, Pamplona, Spain
| | - Rosa M Tolon
- Facultad de Ciencias Experimentales, Universidad Francisco de Vitoria, Pozuelo de Alarcón, Spain
| | - Jose A Ramos
- CIBERNED, Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, Instituto de Salud Carlos III, Spain; Instituto Universitario de Investigación en Neuroquímica, Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense, Madrid, Spain; IRYCIS, Instituto Ramón y Cajal de Investigación Sanitaria, Madrid, Spain
| | - Isidre Ferrer
- Departamento de Patología y Terapéutica Experimental, Universidad de Barcelona, L'Hospitalet de Llobregat, Spain; CIBERNED, Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, Instituto de Salud Carlos III, Spain
| | - Julian Romero
- Facultad de Ciencias Experimentales, Universidad Francisco de Vitoria, Pozuelo de Alarcón, Spain
| | - Javier Fernández-Ruiz
- CIBERNED, Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, Instituto de Salud Carlos III, Spain; Instituto Universitario de Investigación en Neuroquímica, Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense, Madrid, Spain; IRYCIS, Instituto Ramón y Cajal de Investigación Sanitaria, Madrid, Spain
| |
Collapse
|
24
|
Gendron TF, Petrucelli L. Disease Mechanisms of C9ORF72 Repeat Expansions. Cold Spring Harb Perspect Med 2018; 8:cshperspect.a024224. [PMID: 28130314 DOI: 10.1101/cshperspect.a024224] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
G4C2 repeat expansions within the C9ORF72 gene are the most common genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). These bidirectionally transcribed expansions lead to (1) the accumulation of sense G4C2 and antisense G2C4 repeat-containing RNA, (2) the production of proteins of repeating dipeptides through unconventional translation of these transcripts, and (3) decreased C9ORF72 mRNA and protein expression. Consequently, there is ample opportunity for the C9ORF72 mutation to give rise to a spectrum of clinical manifestations, ranging from muscle weakness and atrophy to changes in behavior and cognition. It is thus somewhat surprising that investigations of these three seemingly disparate events often converge on similar putative pathological mechanisms. This review aims to summarize the findings and questions emerging from the field's quest to decipher how C9ORF72 repeat expansions cause the devastating diseases collectively referred to as "c9ALS/FTD."
Collapse
Affiliation(s)
- Tania F Gendron
- Department of Neuroscience, Mayo Clinic Florida, Jacksonville, Florida 32224
| | - Leonard Petrucelli
- Department of Neuroscience, Mayo Clinic Florida, Jacksonville, Florida 32224
| |
Collapse
|
25
|
van den Ameele J, Jedlickova I, Pristoupilova A, Sieben A, Van Mossevelde S, Ceuterick-de Groote C, Hůlková H, Matej R, Meurs A, Van Broeckhoven C, Berkovic SF, Santens P, Kmoch S, Dermaut B. Teenage-onset progressive myoclonic epilepsy due to a familial C9orf72 repeat expansion. Neurology 2018; 90:e658-e663. [PMID: 29352102 DOI: 10.1212/wnl.0000000000004999] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 11/14/2017] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND The progressive myoclonic epilepsies (PME) are a heterogeneous group of disorders in which a specific diagnosis cannot be made in a subset of patients, despite exhaustive investigation. C9orf72 repeat expansions are emerging as an important causal factor in several adult-onset neurodegenerative disorders, in particular frontotemporal lobar degeneration and amyotrophic lateral sclerosis. An association with PME has not been reported previously. OBJECTIVE To identify the causative mutation in a Belgian family where the proband had genetically unexplained PME. RESULTS We report a 33-year old woman who had epilepsy since the age of 15 and then developed progressive cognitive deterioration and multifocal myoclonus at the age of 18. The family history suggested autosomal dominant inheritance of psychiatric disorders, epilepsy, and dementia. Thorough workup for PME including whole exome sequencing did not reveal an underlying cause, but a C9orf72 repeat expansion was found in our patient and affected relatives. Brain biopsy confirmed the presence of characteristic p62-positive neuronal cytoplasmic inclusions. CONCLUSION C9orf72 mutation analysis should be considered in patients with PME and psychiatric disorders or dementia, even when the onset is in late childhood or adolescence.
Collapse
Affiliation(s)
- Jelle van den Ameele
- From the Department of Neurology (J.v.d.A., A.S., A.M., P.S., B.D.) and Center for Medical Genetics (B.D.), Ghent University Hospital, Belgium; Institute for Inherited Metabolic Disorders (I.J., A.P., H.H., S.K.), Prague, First Faculty of Medicine, Charles University in Prague, Czech Republic; Neurodegenerative Brain Diseases Group (A.S., S.V.M., C.V.B.), Center for Molecular Neurology, VIB; Neuropathology and Laboratory of Neurochemistry and Behavior (A.S.), Laboratory of Neurogenetics (S.V.M., C.V.B.), and Laboratory of Neuromuscular Pathology and Translational Neurosciences (C.C.-d.G.), Institute Born-Bunge, University of Antwerp, Belgium; Institute of Pathology, First Faculty of Medicine (H.H., R.M.), Charles University and General University Hospital; Department of Pathology and Molecular Medicine (R.M.), National Reference Laboratory for Diagnostics of Human Prion Diseases, Thomayer Hospital, Prague, Czech Republic; Epilepsy Research Centre, Department of Medicine (S.F.B.), University of Melbourne, Austin Health, Heidelberg, Australia; and Inserm U1167 (B.D.), Laboratoire d'Excellence Distalz, Institut Pasteur de Lille, Longevity Research Center, Université de Lille, France. J.v.d.A. is currently affiliated with the Department of Clinical Neurosciences and WT/CRUK Gurdon Institute, University of Cambridge, UK.
| | - Ivana Jedlickova
- From the Department of Neurology (J.v.d.A., A.S., A.M., P.S., B.D.) and Center for Medical Genetics (B.D.), Ghent University Hospital, Belgium; Institute for Inherited Metabolic Disorders (I.J., A.P., H.H., S.K.), Prague, First Faculty of Medicine, Charles University in Prague, Czech Republic; Neurodegenerative Brain Diseases Group (A.S., S.V.M., C.V.B.), Center for Molecular Neurology, VIB; Neuropathology and Laboratory of Neurochemistry and Behavior (A.S.), Laboratory of Neurogenetics (S.V.M., C.V.B.), and Laboratory of Neuromuscular Pathology and Translational Neurosciences (C.C.-d.G.), Institute Born-Bunge, University of Antwerp, Belgium; Institute of Pathology, First Faculty of Medicine (H.H., R.M.), Charles University and General University Hospital; Department of Pathology and Molecular Medicine (R.M.), National Reference Laboratory for Diagnostics of Human Prion Diseases, Thomayer Hospital, Prague, Czech Republic; Epilepsy Research Centre, Department of Medicine (S.F.B.), University of Melbourne, Austin Health, Heidelberg, Australia; and Inserm U1167 (B.D.), Laboratoire d'Excellence Distalz, Institut Pasteur de Lille, Longevity Research Center, Université de Lille, France. J.v.d.A. is currently affiliated with the Department of Clinical Neurosciences and WT/CRUK Gurdon Institute, University of Cambridge, UK
| | - Anna Pristoupilova
- From the Department of Neurology (J.v.d.A., A.S., A.M., P.S., B.D.) and Center for Medical Genetics (B.D.), Ghent University Hospital, Belgium; Institute for Inherited Metabolic Disorders (I.J., A.P., H.H., S.K.), Prague, First Faculty of Medicine, Charles University in Prague, Czech Republic; Neurodegenerative Brain Diseases Group (A.S., S.V.M., C.V.B.), Center for Molecular Neurology, VIB; Neuropathology and Laboratory of Neurochemistry and Behavior (A.S.), Laboratory of Neurogenetics (S.V.M., C.V.B.), and Laboratory of Neuromuscular Pathology and Translational Neurosciences (C.C.-d.G.), Institute Born-Bunge, University of Antwerp, Belgium; Institute of Pathology, First Faculty of Medicine (H.H., R.M.), Charles University and General University Hospital; Department of Pathology and Molecular Medicine (R.M.), National Reference Laboratory for Diagnostics of Human Prion Diseases, Thomayer Hospital, Prague, Czech Republic; Epilepsy Research Centre, Department of Medicine (S.F.B.), University of Melbourne, Austin Health, Heidelberg, Australia; and Inserm U1167 (B.D.), Laboratoire d'Excellence Distalz, Institut Pasteur de Lille, Longevity Research Center, Université de Lille, France. J.v.d.A. is currently affiliated with the Department of Clinical Neurosciences and WT/CRUK Gurdon Institute, University of Cambridge, UK
| | - Anne Sieben
- From the Department of Neurology (J.v.d.A., A.S., A.M., P.S., B.D.) and Center for Medical Genetics (B.D.), Ghent University Hospital, Belgium; Institute for Inherited Metabolic Disorders (I.J., A.P., H.H., S.K.), Prague, First Faculty of Medicine, Charles University in Prague, Czech Republic; Neurodegenerative Brain Diseases Group (A.S., S.V.M., C.V.B.), Center for Molecular Neurology, VIB; Neuropathology and Laboratory of Neurochemistry and Behavior (A.S.), Laboratory of Neurogenetics (S.V.M., C.V.B.), and Laboratory of Neuromuscular Pathology and Translational Neurosciences (C.C.-d.G.), Institute Born-Bunge, University of Antwerp, Belgium; Institute of Pathology, First Faculty of Medicine (H.H., R.M.), Charles University and General University Hospital; Department of Pathology and Molecular Medicine (R.M.), National Reference Laboratory for Diagnostics of Human Prion Diseases, Thomayer Hospital, Prague, Czech Republic; Epilepsy Research Centre, Department of Medicine (S.F.B.), University of Melbourne, Austin Health, Heidelberg, Australia; and Inserm U1167 (B.D.), Laboratoire d'Excellence Distalz, Institut Pasteur de Lille, Longevity Research Center, Université de Lille, France. J.v.d.A. is currently affiliated with the Department of Clinical Neurosciences and WT/CRUK Gurdon Institute, University of Cambridge, UK
| | - Sara Van Mossevelde
- From the Department of Neurology (J.v.d.A., A.S., A.M., P.S., B.D.) and Center for Medical Genetics (B.D.), Ghent University Hospital, Belgium; Institute for Inherited Metabolic Disorders (I.J., A.P., H.H., S.K.), Prague, First Faculty of Medicine, Charles University in Prague, Czech Republic; Neurodegenerative Brain Diseases Group (A.S., S.V.M., C.V.B.), Center for Molecular Neurology, VIB; Neuropathology and Laboratory of Neurochemistry and Behavior (A.S.), Laboratory of Neurogenetics (S.V.M., C.V.B.), and Laboratory of Neuromuscular Pathology and Translational Neurosciences (C.C.-d.G.), Institute Born-Bunge, University of Antwerp, Belgium; Institute of Pathology, First Faculty of Medicine (H.H., R.M.), Charles University and General University Hospital; Department of Pathology and Molecular Medicine (R.M.), National Reference Laboratory for Diagnostics of Human Prion Diseases, Thomayer Hospital, Prague, Czech Republic; Epilepsy Research Centre, Department of Medicine (S.F.B.), University of Melbourne, Austin Health, Heidelberg, Australia; and Inserm U1167 (B.D.), Laboratoire d'Excellence Distalz, Institut Pasteur de Lille, Longevity Research Center, Université de Lille, France. J.v.d.A. is currently affiliated with the Department of Clinical Neurosciences and WT/CRUK Gurdon Institute, University of Cambridge, UK
| | - Chantal Ceuterick-de Groote
- From the Department of Neurology (J.v.d.A., A.S., A.M., P.S., B.D.) and Center for Medical Genetics (B.D.), Ghent University Hospital, Belgium; Institute for Inherited Metabolic Disorders (I.J., A.P., H.H., S.K.), Prague, First Faculty of Medicine, Charles University in Prague, Czech Republic; Neurodegenerative Brain Diseases Group (A.S., S.V.M., C.V.B.), Center for Molecular Neurology, VIB; Neuropathology and Laboratory of Neurochemistry and Behavior (A.S.), Laboratory of Neurogenetics (S.V.M., C.V.B.), and Laboratory of Neuromuscular Pathology and Translational Neurosciences (C.C.-d.G.), Institute Born-Bunge, University of Antwerp, Belgium; Institute of Pathology, First Faculty of Medicine (H.H., R.M.), Charles University and General University Hospital; Department of Pathology and Molecular Medicine (R.M.), National Reference Laboratory for Diagnostics of Human Prion Diseases, Thomayer Hospital, Prague, Czech Republic; Epilepsy Research Centre, Department of Medicine (S.F.B.), University of Melbourne, Austin Health, Heidelberg, Australia; and Inserm U1167 (B.D.), Laboratoire d'Excellence Distalz, Institut Pasteur de Lille, Longevity Research Center, Université de Lille, France. J.v.d.A. is currently affiliated with the Department of Clinical Neurosciences and WT/CRUK Gurdon Institute, University of Cambridge, UK
| | - Helena Hůlková
- From the Department of Neurology (J.v.d.A., A.S., A.M., P.S., B.D.) and Center for Medical Genetics (B.D.), Ghent University Hospital, Belgium; Institute for Inherited Metabolic Disorders (I.J., A.P., H.H., S.K.), Prague, First Faculty of Medicine, Charles University in Prague, Czech Republic; Neurodegenerative Brain Diseases Group (A.S., S.V.M., C.V.B.), Center for Molecular Neurology, VIB; Neuropathology and Laboratory of Neurochemistry and Behavior (A.S.), Laboratory of Neurogenetics (S.V.M., C.V.B.), and Laboratory of Neuromuscular Pathology and Translational Neurosciences (C.C.-d.G.), Institute Born-Bunge, University of Antwerp, Belgium; Institute of Pathology, First Faculty of Medicine (H.H., R.M.), Charles University and General University Hospital; Department of Pathology and Molecular Medicine (R.M.), National Reference Laboratory for Diagnostics of Human Prion Diseases, Thomayer Hospital, Prague, Czech Republic; Epilepsy Research Centre, Department of Medicine (S.F.B.), University of Melbourne, Austin Health, Heidelberg, Australia; and Inserm U1167 (B.D.), Laboratoire d'Excellence Distalz, Institut Pasteur de Lille, Longevity Research Center, Université de Lille, France. J.v.d.A. is currently affiliated with the Department of Clinical Neurosciences and WT/CRUK Gurdon Institute, University of Cambridge, UK
| | - Radoslav Matej
- From the Department of Neurology (J.v.d.A., A.S., A.M., P.S., B.D.) and Center for Medical Genetics (B.D.), Ghent University Hospital, Belgium; Institute for Inherited Metabolic Disorders (I.J., A.P., H.H., S.K.), Prague, First Faculty of Medicine, Charles University in Prague, Czech Republic; Neurodegenerative Brain Diseases Group (A.S., S.V.M., C.V.B.), Center for Molecular Neurology, VIB; Neuropathology and Laboratory of Neurochemistry and Behavior (A.S.), Laboratory of Neurogenetics (S.V.M., C.V.B.), and Laboratory of Neuromuscular Pathology and Translational Neurosciences (C.C.-d.G.), Institute Born-Bunge, University of Antwerp, Belgium; Institute of Pathology, First Faculty of Medicine (H.H., R.M.), Charles University and General University Hospital; Department of Pathology and Molecular Medicine (R.M.), National Reference Laboratory for Diagnostics of Human Prion Diseases, Thomayer Hospital, Prague, Czech Republic; Epilepsy Research Centre, Department of Medicine (S.F.B.), University of Melbourne, Austin Health, Heidelberg, Australia; and Inserm U1167 (B.D.), Laboratoire d'Excellence Distalz, Institut Pasteur de Lille, Longevity Research Center, Université de Lille, France. J.v.d.A. is currently affiliated with the Department of Clinical Neurosciences and WT/CRUK Gurdon Institute, University of Cambridge, UK
| | - Alfred Meurs
- From the Department of Neurology (J.v.d.A., A.S., A.M., P.S., B.D.) and Center for Medical Genetics (B.D.), Ghent University Hospital, Belgium; Institute for Inherited Metabolic Disorders (I.J., A.P., H.H., S.K.), Prague, First Faculty of Medicine, Charles University in Prague, Czech Republic; Neurodegenerative Brain Diseases Group (A.S., S.V.M., C.V.B.), Center for Molecular Neurology, VIB; Neuropathology and Laboratory of Neurochemistry and Behavior (A.S.), Laboratory of Neurogenetics (S.V.M., C.V.B.), and Laboratory of Neuromuscular Pathology and Translational Neurosciences (C.C.-d.G.), Institute Born-Bunge, University of Antwerp, Belgium; Institute of Pathology, First Faculty of Medicine (H.H., R.M.), Charles University and General University Hospital; Department of Pathology and Molecular Medicine (R.M.), National Reference Laboratory for Diagnostics of Human Prion Diseases, Thomayer Hospital, Prague, Czech Republic; Epilepsy Research Centre, Department of Medicine (S.F.B.), University of Melbourne, Austin Health, Heidelberg, Australia; and Inserm U1167 (B.D.), Laboratoire d'Excellence Distalz, Institut Pasteur de Lille, Longevity Research Center, Université de Lille, France. J.v.d.A. is currently affiliated with the Department of Clinical Neurosciences and WT/CRUK Gurdon Institute, University of Cambridge, UK
| | - Christine Van Broeckhoven
- From the Department of Neurology (J.v.d.A., A.S., A.M., P.S., B.D.) and Center for Medical Genetics (B.D.), Ghent University Hospital, Belgium; Institute for Inherited Metabolic Disorders (I.J., A.P., H.H., S.K.), Prague, First Faculty of Medicine, Charles University in Prague, Czech Republic; Neurodegenerative Brain Diseases Group (A.S., S.V.M., C.V.B.), Center for Molecular Neurology, VIB; Neuropathology and Laboratory of Neurochemistry and Behavior (A.S.), Laboratory of Neurogenetics (S.V.M., C.V.B.), and Laboratory of Neuromuscular Pathology and Translational Neurosciences (C.C.-d.G.), Institute Born-Bunge, University of Antwerp, Belgium; Institute of Pathology, First Faculty of Medicine (H.H., R.M.), Charles University and General University Hospital; Department of Pathology and Molecular Medicine (R.M.), National Reference Laboratory for Diagnostics of Human Prion Diseases, Thomayer Hospital, Prague, Czech Republic; Epilepsy Research Centre, Department of Medicine (S.F.B.), University of Melbourne, Austin Health, Heidelberg, Australia; and Inserm U1167 (B.D.), Laboratoire d'Excellence Distalz, Institut Pasteur de Lille, Longevity Research Center, Université de Lille, France. J.v.d.A. is currently affiliated with the Department of Clinical Neurosciences and WT/CRUK Gurdon Institute, University of Cambridge, UK
| | - Samuel F Berkovic
- From the Department of Neurology (J.v.d.A., A.S., A.M., P.S., B.D.) and Center for Medical Genetics (B.D.), Ghent University Hospital, Belgium; Institute for Inherited Metabolic Disorders (I.J., A.P., H.H., S.K.), Prague, First Faculty of Medicine, Charles University in Prague, Czech Republic; Neurodegenerative Brain Diseases Group (A.S., S.V.M., C.V.B.), Center for Molecular Neurology, VIB; Neuropathology and Laboratory of Neurochemistry and Behavior (A.S.), Laboratory of Neurogenetics (S.V.M., C.V.B.), and Laboratory of Neuromuscular Pathology and Translational Neurosciences (C.C.-d.G.), Institute Born-Bunge, University of Antwerp, Belgium; Institute of Pathology, First Faculty of Medicine (H.H., R.M.), Charles University and General University Hospital; Department of Pathology and Molecular Medicine (R.M.), National Reference Laboratory for Diagnostics of Human Prion Diseases, Thomayer Hospital, Prague, Czech Republic; Epilepsy Research Centre, Department of Medicine (S.F.B.), University of Melbourne, Austin Health, Heidelberg, Australia; and Inserm U1167 (B.D.), Laboratoire d'Excellence Distalz, Institut Pasteur de Lille, Longevity Research Center, Université de Lille, France. J.v.d.A. is currently affiliated with the Department of Clinical Neurosciences and WT/CRUK Gurdon Institute, University of Cambridge, UK
| | - Patrick Santens
- From the Department of Neurology (J.v.d.A., A.S., A.M., P.S., B.D.) and Center for Medical Genetics (B.D.), Ghent University Hospital, Belgium; Institute for Inherited Metabolic Disorders (I.J., A.P., H.H., S.K.), Prague, First Faculty of Medicine, Charles University in Prague, Czech Republic; Neurodegenerative Brain Diseases Group (A.S., S.V.M., C.V.B.), Center for Molecular Neurology, VIB; Neuropathology and Laboratory of Neurochemistry and Behavior (A.S.), Laboratory of Neurogenetics (S.V.M., C.V.B.), and Laboratory of Neuromuscular Pathology and Translational Neurosciences (C.C.-d.G.), Institute Born-Bunge, University of Antwerp, Belgium; Institute of Pathology, First Faculty of Medicine (H.H., R.M.), Charles University and General University Hospital; Department of Pathology and Molecular Medicine (R.M.), National Reference Laboratory for Diagnostics of Human Prion Diseases, Thomayer Hospital, Prague, Czech Republic; Epilepsy Research Centre, Department of Medicine (S.F.B.), University of Melbourne, Austin Health, Heidelberg, Australia; and Inserm U1167 (B.D.), Laboratoire d'Excellence Distalz, Institut Pasteur de Lille, Longevity Research Center, Université de Lille, France. J.v.d.A. is currently affiliated with the Department of Clinical Neurosciences and WT/CRUK Gurdon Institute, University of Cambridge, UK
| | - Stanislav Kmoch
- From the Department of Neurology (J.v.d.A., A.S., A.M., P.S., B.D.) and Center for Medical Genetics (B.D.), Ghent University Hospital, Belgium; Institute for Inherited Metabolic Disorders (I.J., A.P., H.H., S.K.), Prague, First Faculty of Medicine, Charles University in Prague, Czech Republic; Neurodegenerative Brain Diseases Group (A.S., S.V.M., C.V.B.), Center for Molecular Neurology, VIB; Neuropathology and Laboratory of Neurochemistry and Behavior (A.S.), Laboratory of Neurogenetics (S.V.M., C.V.B.), and Laboratory of Neuromuscular Pathology and Translational Neurosciences (C.C.-d.G.), Institute Born-Bunge, University of Antwerp, Belgium; Institute of Pathology, First Faculty of Medicine (H.H., R.M.), Charles University and General University Hospital; Department of Pathology and Molecular Medicine (R.M.), National Reference Laboratory for Diagnostics of Human Prion Diseases, Thomayer Hospital, Prague, Czech Republic; Epilepsy Research Centre, Department of Medicine (S.F.B.), University of Melbourne, Austin Health, Heidelberg, Australia; and Inserm U1167 (B.D.), Laboratoire d'Excellence Distalz, Institut Pasteur de Lille, Longevity Research Center, Université de Lille, France. J.v.d.A. is currently affiliated with the Department of Clinical Neurosciences and WT/CRUK Gurdon Institute, University of Cambridge, UK
| | - Bart Dermaut
- From the Department of Neurology (J.v.d.A., A.S., A.M., P.S., B.D.) and Center for Medical Genetics (B.D.), Ghent University Hospital, Belgium; Institute for Inherited Metabolic Disorders (I.J., A.P., H.H., S.K.), Prague, First Faculty of Medicine, Charles University in Prague, Czech Republic; Neurodegenerative Brain Diseases Group (A.S., S.V.M., C.V.B.), Center for Molecular Neurology, VIB; Neuropathology and Laboratory of Neurochemistry and Behavior (A.S.), Laboratory of Neurogenetics (S.V.M., C.V.B.), and Laboratory of Neuromuscular Pathology and Translational Neurosciences (C.C.-d.G.), Institute Born-Bunge, University of Antwerp, Belgium; Institute of Pathology, First Faculty of Medicine (H.H., R.M.), Charles University and General University Hospital; Department of Pathology and Molecular Medicine (R.M.), National Reference Laboratory for Diagnostics of Human Prion Diseases, Thomayer Hospital, Prague, Czech Republic; Epilepsy Research Centre, Department of Medicine (S.F.B.), University of Melbourne, Austin Health, Heidelberg, Australia; and Inserm U1167 (B.D.), Laboratoire d'Excellence Distalz, Institut Pasteur de Lille, Longevity Research Center, Université de Lille, France. J.v.d.A. is currently affiliated with the Department of Clinical Neurosciences and WT/CRUK Gurdon Institute, University of Cambridge, UK.
| |
Collapse
|
26
|
Dugger BN, Dickson DW. Pathology of Neurodegenerative Diseases. Cold Spring Harb Perspect Biol 2017; 9:cshperspect.a028035. [PMID: 28062563 DOI: 10.1101/cshperspect.a028035] [Citation(s) in RCA: 963] [Impact Index Per Article: 120.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Neurodegenerative disorders are characterized by progressive loss of selectively vulnerable populations of neurons, which contrasts with select static neuronal loss because of metabolic or toxic disorders. Neurodegenerative diseases can be classified according to primary clinical features (e.g., dementia, parkinsonism, or motor neuron disease), anatomic distribution of neurodegeneration (e.g., frontotemporal degenerations, extrapyramidal disorders, or spinocerebellar degenerations), or principal molecular abnormality. The most common neurodegenerative disorders are amyloidoses, tauopathies, α-synucleinopathies, and TDP-43 proteinopathies. The protein abnormalities in these disorders have abnormal conformational properties. Growing experimental evidence suggests that abnormal protein conformers may spread from cell to cell along anatomically connected pathways, which may in part explain the specific anatomical patterns observed at autopsy. In this review, we detail the human pathology of select neurodegenerative disorders, focusing on their main protein aggregates.
Collapse
Affiliation(s)
- Brittany N Dugger
- Institute for Neurodegenerative Diseases, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, California 94143
| | | |
Collapse
|