1
|
Hartley A, Galbraith LCA, Shaw R, Tibbo A, Veeratterapillay R, Wilson L, Heer R, Blyth K, Leung H, Ahmad I. Loss of ARID1A accelerates prostate tumourigenesis with a proliferative collagen-poor phenotype through co-operation with AP1 subunit cFos. Br J Cancer 2025; 132:502-512. [PMID: 39885328 PMCID: PMC11920240 DOI: 10.1038/s41416-025-02944-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 12/20/2024] [Accepted: 01/14/2025] [Indexed: 02/01/2025] Open
Abstract
BACKGROUND Prostate cancer (PC) is the commonest male visceral cancer, and second leading cause of cancer mortality in men in the Western world. METHODS Using a forward-mutagenesis Sleeping Beauty (SB) transposon-based screen in a Probasin Cre-Recombinase (Pb-Cre) Pten-deficient mouse model of PC, we identified Arid1a loss as a driver in the development of metastatic disease. RESULTS The insertion of transposon in the Arid1a gene resulted in a 60% reduction of Arid1a expression, and reduced tumour free survival (SB:Ptenfl/fl Arid1aINT median 226 days vs SB:Ptenfl/fl Arid1aWT 293 days, p = 0.02),with elevated rates of metastasis (SB:Ptenfl/fl Arid1aINT 75% lung metastasis rate vs 17% SB:Ptenfl/fl Arid1aWT, p < 0.001). We further generated a Pb-Cre Pten- and Arid1a-deficient mouse model, in which loss of Arid1a demonstrated a profound acceleration in tumorigenesis in Ptenfl/fl mice compared to Pten loss alone (Pb-Cre Ptenfl/flArid1a+/+ median survival of 267 days vs Pb-Cre Ptenfl/fl Arid1afl/fl 103 days, p < 0.0001). CONCLUSION Our data revealed homozygous Arid1a loss is required to dramatically accelerate prostate tumourigenesis. Analysis of RNA and ChIP -Sequencing data suggests Arid1a loss enhanced the function of AP-1 subunit cFos. In clinical PC cohort, ARID1A and cFos levels stratified an aggressive subset of PC with a poor survival outcome with a median of only 30 months.
Collapse
Affiliation(s)
- Andrew Hartley
- School of Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G61 1QH, UK
- CRUK Scotland Institute, Garscube Estate, Switchback Road, Bearsden, Glasgow, G61 1BD, UK
| | - Laura C A Galbraith
- CRUK Scotland Institute, Garscube Estate, Switchback Road, Bearsden, Glasgow, G61 1BD, UK
| | - Robin Shaw
- CRUK Scotland Institute, Garscube Estate, Switchback Road, Bearsden, Glasgow, G61 1BD, UK
| | - Amy Tibbo
- School of Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G61 1QH, UK
- CRUK Scotland Institute, Garscube Estate, Switchback Road, Bearsden, Glasgow, G61 1BD, UK
| | | | - Laura Wilson
- Paul O'Gorman Building, Framlington Place, Newcastle Upon Tyne, NE2 4HH, UK
| | - Rakesh Heer
- Paul O'Gorman Building, Framlington Place, Newcastle Upon Tyne, NE2 4HH, UK
| | - Karen Blyth
- School of Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G61 1QH, UK
- CRUK Scotland Institute, Garscube Estate, Switchback Road, Bearsden, Glasgow, G61 1BD, UK
| | - Hing Leung
- School of Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G61 1QH, UK
- CRUK Scotland Institute, Garscube Estate, Switchback Road, Bearsden, Glasgow, G61 1BD, UK
| | - Imran Ahmad
- School of Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G61 1QH, UK.
- CRUK Scotland Institute, Garscube Estate, Switchback Road, Bearsden, Glasgow, G61 1BD, UK.
| |
Collapse
|
2
|
Mishra J, Chakraborty S, Nandi P, Manna S, Baral T, Niharika, Roy A, Mishra P, Patra SK. Epigenetic regulation of androgen dependent and independent prostate cancer. Adv Cancer Res 2024; 161:223-320. [PMID: 39032951 DOI: 10.1016/bs.acr.2024.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
Prostate cancer is one of the most common malignancies among men worldwide. Besides genetic alterations, epigenetic modulations including DNA methylation, histone modifications and miRNA mediated alteration of gene expression are the key driving forces for the prostate tumor development and cancer progression. Aberrant expression and/or the activity of the epigenetic modifiers/enzymes, results in aberrant expression of genes involved in DNA repair, cell cycle regulation, cell adhesion, apoptosis, autophagy, tumor suppression and hormone response and thereby disease progression. Altered epigenome is associated with prostate cancer recurrence, progression, aggressiveness and transition from androgen-dependent to androgen-independent phenotype. These epigenetic modifications are reversible and various compounds/drugs targeting the epigenetic enzymes have been developed that are effective in cancer treatment. This chapter focuses on the epigenetic alterations in prostate cancer initiation and progression, listing different epigenetic biomarkers for diagnosis and prognosis of the disease and their potential as therapeutic targets. This chapter also summarizes different epigenetic drugs approved for prostate cancer therapy and the drugs available for clinical trials.
Collapse
Affiliation(s)
- Jagdish Mishra
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha, India
| | - Subhajit Chakraborty
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha, India
| | - Piyasa Nandi
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha, India
| | - Soumen Manna
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha, India
| | - Tirthankar Baral
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha, India
| | - Niharika
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha, India
| | - Ankan Roy
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha, India
| | - Prahallad Mishra
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha, India
| | - Samir Kumar Patra
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha, India.
| |
Collapse
|
3
|
Kulac I, Roudier MP, Haffner MC. Molecular Pathology of Prostate Cancer. Clin Lab Med 2024; 44:161-180. [PMID: 38821639 DOI: 10.1016/j.cll.2023.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2024]
Abstract
Molecular profiling studies have shed new light on the complex biology of prostate cancer. Genomic studies have highlighted that structural rearrangements are among the most common recurrent alterations. In addition, both germline and somatic mutations in DNA repair genes are enriched in patients with advanced disease. Primary prostate cancer has long been known to be multifocal, but recent studies demonstrate that a large fraction of prostate cancer shows evidence of multiclonality, suggesting that genetically distinct, independently arising tumor clones coexist. Metastatic prostate cancer shows a high level of morphologic and molecular diversity, which is associated with resistance to systemic therapies. The resulting high level of intratumoral heterogeneity has important implications for diagnosis and poses major challenges for the implementation of molecular studies. Here we provide a concise review of the molecular pathology of prostate cancer, highlight clinically relevant alterations, and discuss opportunities for molecular testing.
Collapse
Affiliation(s)
- Ibrahim Kulac
- Department of Pathology, Koç University School of Medicine, Davutpasa Caddesi No:4, Istanbul 34010, Turkey
| | - Martine P Roudier
- Department of Urology, University of Washington, Northeast Pacific Street, Seattle, WA 98195, USA
| | - Michael C Haffner
- Division of Human Biology, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue, Seattle, WA 98109, USA; Division of Clinical Research, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue, Seattle, WA 98109, USA; Department of Pathology, University of Washington, Seattle, WA, USA; Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
4
|
Alonso-Gordoa T, Goodman M, Vulsteke C, Roubaud G, Zhang J, Parikh M, Piulats JM, Azaro A, James GD, Cavazzina R, Gangl ET, Thompson J, Pouliot G, Kumar R, Sweeney C. A phase II study (AARDVARC) of AZD4635 in combination with durvalumab and cabazitaxel in patients with progressive, metastatic, castration-resistant prostate cancer. ESMO Open 2024; 9:103446. [PMID: 38838502 PMCID: PMC11190476 DOI: 10.1016/j.esmoop.2024.103446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/04/2024] [Accepted: 04/08/2024] [Indexed: 06/07/2024] Open
Abstract
BACKGROUND This phase II nonrandomized study evaluated the efficacy and safety of AZD4635 in combination with durvalumab (Arm A) or durvalumab plus cabazitaxel (Arm B) in patients with metastatic castration-resistant prostate cancer (mCRPC) previously treated with docetaxel and ≥1 novel hormonal agent. PATIENTS AND METHODS The primary endpoint was radiographic progression-free survival (rPFS) per RECIST v1.1 (soft tissue) or the Prostate Cancer Clinical Trials Working Group 3 (bone). Secondary endpoints included safety, tolerability, overall survival, confirmed prostate-specific antigen (PSA50) response, pharmacokinetics, and objective response rate. Enrollment in Arm A was stopped following a sponsor decision unrelated to safety. The study was stopped based on the planned futility analysis due to low PSA50 response in Arm B. RESULTS In the final analysis (1 November 2021), 30 patients were treated (Arm A, n = 2; Arm B, n = 28). The median rPFS in Arm B was 5.8 months (95% confidence interval 4.2-not calculable). Median rPFS was 5.8 months versus 4.2 months for patients with high versus low blood-based adenosine signature. The most common treatment-related adverse events in Arm B were nausea (50.0%), diarrhea (46.4%), anemia and neutropenia (both 35.7%), asthenia (32.1%), and vomiting (28.6%). Overall, AZD4635 in combination with durvalumab or AZD4635 in combination with cabazitaxel and durvalumab showed limited efficacy in patients with mCRPC. CONCLUSIONS Although the safety profile of both combinations was consistent with known safety data of the individual agents, the results of this trial do not support further development of the combinations.
Collapse
Affiliation(s)
| | - M Goodman
- Atrium Health Wake Forest Baptist, Winston-Salem, USA
| | - C Vulsteke
- Integrated Cancer Center, Maria Middelares General Hospital, Ghent; Center for Oncological Research, University of Antwerp, Antwerp, Belgium
| | | | - J Zhang
- H. Lee Moffitt Cancer Center & Research Institute, Tampa
| | - M Parikh
- Hematology/Oncology Clinic, UC Davis Comprehensive Cancer Center, Sacramento, USA
| | - J M Piulats
- Catalan Institute of Oncology, Barcelona, Spain
| | - A Azaro
- Oncology R&D, AstraZeneca, Cambridge
| | - G D James
- Medical Statistics Consultancy Ltd, London, UK
| | | | | | | | | | - R Kumar
- Oncology R&D, AstraZeneca, Gaithersburg
| | - C Sweeney
- Dana-Farber Cancer Institute, Boston, USA
| |
Collapse
|
5
|
Craddock J, Jiang J, Patrick SM, Mutambirwa SBA, Stricker PD, Bornman MSR, Jaratlerdsiri W, Hayes VM. Alterations in the Epigenetic Machinery Associated with Prostate Cancer Health Disparities. Cancers (Basel) 2023; 15:3462. [PMID: 37444571 DOI: 10.3390/cancers15133462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/27/2023] [Accepted: 06/29/2023] [Indexed: 07/15/2023] Open
Abstract
Prostate cancer is driven by acquired genetic alterations, including those impacting the epigenetic machinery. With African ancestry as a significant risk factor for aggressive disease, we hypothesize that dysregulation among the roughly 656 epigenetic genes may contribute to prostate cancer health disparities. Investigating prostate tumor genomic data from 109 men of southern African and 56 men of European Australian ancestry, we found that African-derived tumors present with a longer tail of epigenetic driver gene candidates (72 versus 10). Biased towards African-specific drivers (63 versus 9 shared), many are novel to prostate cancer (18/63), including several putative therapeutic targets (CHD7, DPF3, POLR1B, SETD1B, UBTF, and VPS72). Through clustering of all variant types and copy number alterations, we describe two epigenetic PCa taxonomies capable of differentiating patients by ancestry and predicted clinical outcomes. We identified the top genes in African- and European-derived tumors representing a multifunctional "generic machinery", the alteration of which may be instrumental in epigenetic dysregulation and prostate tumorigenesis. In conclusion, numerous somatic alterations in the epigenetic machinery drive prostate carcinogenesis, but African-derived tumors appear to achieve this state with greater diversity among such alterations. The greater novelty observed in African-derived tumors illustrates the significant clinical benefit to be derived from a much needed African-tailored approach to prostate cancer healthcare aimed at reducing prostate cancer health disparities.
Collapse
Affiliation(s)
- Jenna Craddock
- School of Health Systems and Public Health, Faculty of Health Sciences, University of Pretoria, Pretoria 0084, South Africa
| | - Jue Jiang
- Ancestry and Health Genomics Laboratory, Charles Perkins Centre, School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW 2006, Australia
| | - Sean M Patrick
- School of Health Systems and Public Health, Faculty of Health Sciences, University of Pretoria, Pretoria 0084, South Africa
| | - Shingai B A Mutambirwa
- Department of Urology, Sefako Makgatho Health Science University, Dr George Mukhari Academic Hospital, Medunsa 0208, South Africa
| | - Phillip D Stricker
- Department of Urology, St Vincent's Hospital, Darlinghurst, NSW 2010, Australia
| | - M S Riana Bornman
- School of Health Systems and Public Health, Faculty of Health Sciences, University of Pretoria, Pretoria 0084, South Africa
| | - Weerachai Jaratlerdsiri
- Ancestry and Health Genomics Laboratory, Charles Perkins Centre, School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW 2006, Australia
| | - Vanessa M Hayes
- School of Health Systems and Public Health, Faculty of Health Sciences, University of Pretoria, Pretoria 0084, South Africa
- Ancestry and Health Genomics Laboratory, Charles Perkins Centre, School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW 2006, Australia
- Manchester Cancer Research Centre, University of Manchester, Manchester M20 4GJ, UK
| |
Collapse
|
6
|
Zeng J, Chen J, Li M, Zhong C, Liu Z, Wang Y, Li Y, Jiang F, Fang S, Zhong W. Integrated high-throughput analysis identifies super enhancers in metastatic castration-resistant prostate cancer. Front Pharmacol 2023; 14:1191129. [PMID: 37292153 PMCID: PMC10244677 DOI: 10.3389/fphar.2023.1191129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 04/25/2023] [Indexed: 06/10/2023] Open
Abstract
Background: Metastatic castration-resistant prostate cancer (mCRPC) is a highly aggressive stage of prostate cancer, and non-mutational epigenetic reprogramming plays a critical role in its progression. Super enhancers (SE), epigenetic elements, are involved in multiple tumor-promoting signaling pathways. However, the SE-mediated mechanism in mCRPC remains unclear. Methods: SE-associated genes and transcription factors were identified from a cell line (C4-2B) of mCRPC by the CUT&Tag assay. Differentially expressed genes (DEGs) between mCRPC and primary prostate cancer (PCa) samples in the GSE35988 dataset were identified. What's more, a recurrence risk prediction model was constructed based on the overlapping genes (termed SE-associated DEGs). To confirm the key SE-associated DEGs, BET inhibitor JQ1 was applied to cells to block SE-mediated transcription. Finally, single-cell analysis was performed to visualize cell subpopulations expressing the key SE-associated DEGs. Results: Nine human TFs, 867 SE-associated genes and 5417 DEGs were identified. 142 overlapping SE-associated DEGs showed excellent performance in recurrence prediction. Time-dependent receiver operating characteristic (ROC) curve analysis showed strong predictive power at 1 year (0.80), 3 years (0.85), and 5 years (0.88). The efficacy of his performance has also been validated in external datasets. In addition, FKBP5 activity was significantly inhibited by JQ1. Conclusion: We present a landscape of SE and their associated genes in mCPRC, and discuss the potential clinical implications of these findings in terms of their translation to the clinic.
Collapse
Affiliation(s)
- Jie Zeng
- Department of Urology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Jiahong Chen
- Department of Urology, Huizhou Municipal Central Hospital, Huizhou, Guangdong, China
| | - Maozhang Li
- Department of Urology, Huizhou Municipal Central Hospital, Huizhou, Guangdong, China
| | - Chuanfan Zhong
- Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Zezhen Liu
- Department of Urology, Minimally Invasive Surgery Center, The First Affiliated Hospital of Guangzhou Medical University, and Guangdong Key Laboratory of Urology, Guangzhou, Guangdong, China
| | - Yan Wang
- Department of Urology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Yuejiao Li
- Department of Urology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Funeng Jiang
- Department of Urology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Shumin Fang
- Department of Urology, Huizhou Municipal Central Hospital, Huizhou, Guangdong, China
| | - Weide Zhong
- Department of Urology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| |
Collapse
|
7
|
Roy P, Singh KP. Epigenetic mechanism of therapeutic resistance and potential of epigenetic therapeutics in chemorefractory prostate cancer. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2023; 380:173-210. [PMID: 37657858 DOI: 10.1016/bs.ircmb.2023.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/03/2023]
Abstract
Prostate cancer is the second leading cause of cancer death among men in the United States. Depending upon the histopathological subtypes of prostate cancers, various therapeutic options, such as androgen deprivation therapy (ADT), androgen receptor signaling inhibitors (ARSI), immunotherapy, and chemotherapy, are available to treat prostate cancer. While these therapeutics are effective in the initial stages during treatments, the tumors subsequently develop resistance to these therapies. Despite all the progress made so far, therapeutic resistance remains a major challenge in the treatment of prostate cancer. Although various mechanisms have been reported for the resistance development in prostate cancer, altered expression of genes either directly or indirectly involved in drug response pathways is a common event. In addition to the genetic basis of gene regulation such as mutations and gene amplifications, epigenetic alterations involved in the aberrant expression of genes have frequently been shown to be associated not only with cancer initiation and progression but also with therapeutic resistance development. There are several review articles compiling reports on genetic mechanisms involved in therapeutic resistance in prostate cancer. However, epigenetic mechanisms for the therapeutic resistance development in prostate cancer have not yet been summarized in a review article. Therefore, the objective of this article is to compile various reports and provide a comprehensive review of the epigenetic aberrations, and aberrant expression of genes by epigenetic mechanisms involved in CRPCs and therapeutic resistance development in prostate cancer. Additionally, the potential of epigenetic-based therapeutics in the treatment of chemorefractory prostate cancer as evidenced by clinical trials has also been discussed.
Collapse
Affiliation(s)
- Priti Roy
- Department of Environmental Toxicology, Texas Tech University, Lubbock, TX, United States
| | - Kamaleshwar P Singh
- Department of Environmental Toxicology, Texas Tech University, Lubbock, TX, United States.
| |
Collapse
|
8
|
Peng W, Feng H, Pang L, Zhang J, Hao Y, Wei X, Xia Q, Wei Z, Song W, Wang S, Liu J, Chen K, Wang T. Downregulation of CAMK2N1 due to DNA Hypermethylation Mediated by DNMT1 that Promotes the Progression of Prostate Cancer. JOURNAL OF ONCOLOGY 2023; 2023:4539045. [PMID: 36755811 PMCID: PMC9902116 DOI: 10.1155/2023/4539045] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/03/2022] [Accepted: 11/24/2022] [Indexed: 02/01/2023]
Abstract
Calcium/calmodulin-dependentprotein kinase II inhibitor I (CAMK2N1) as one of the tumor suppressor genes is significantly downregulated in prostate cancer (PCa). Reduced expression of CAMK2N1 is positively correlated with PCa progression. However, the mechanisms of CAMK2N1 downregulation in PCa are still unclear. The promoter region of CAMK2N1 contains a large number of CG loci, providing the possibility for DNA methylation. Consequently, we hypothesized that DNA methylation can result in the reduced expression of CAMK2N1 in PCa. In the presented study, the DNA methylation level of CAMK2N1 in prostate cells and clinical specimens was determined by bisulfite sequencing (BS), pyrosequencing, and in silico analysis. Results showed that CAMK2N1 was highly methylated in PCa cells and tissues compared to normal prostate epithelial cells and nonmalignant prostate tissues, which was associated with the clinicopathological characteristics in PCa patients. Afterwards, we explored the expression of CAMK2N1 and its DNA methylation level by qRT-PCR, western blot, BS, and methylation-specific PCR in PCa cells after 5-Aza-CdR treatment or DNMT1 genetic modification, which demonstrated that the reduced expression of CAMK2N1 can be restored by 5-Aza-CdR treatment via demethylation. Moreover, DNMT1 formed a positive feedback loop with CAMK2N1 in PCa cells. The expression of CAMK2N1 was downregulated by DNMT1-mediated DNA methylation, which reversely induced DNMT1 expression through activating AKT or ERK signaling pathway. Finally, functional assays including wound healing, invasion, and migration assay, as well as the xenograft model in nude mice indicated that CAMK2N1 inhibited the invasion, migration, and proliferation of PCa cells and these effects were reversed by DNMT1 overexpression. In conclusion, DNMT1-mediated hypermethylation of CAMK2N1 not only downregulates the gene expression but also promotes the progression of PCa.
Collapse
Affiliation(s)
- Wei Peng
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huan Feng
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Linhao Pang
- Department of Urology, Suining Central Hospital, Chongqing Medical University, Suining, China
| | - Junfeng Zhang
- Department of Urology, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, China
| | - Yi Hao
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xian Wei
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qidong Xia
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhewen Wei
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wen Song
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shaogang Wang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jihong Liu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ke Chen
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tao Wang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
9
|
Bryzgunova O, Bondar A, Ruzankin P, Tarasenko A, Zaripov M, Kabilov M, Laktionov P. Locus-Specific Bisulfate NGS Sequencing of GSTP1, RNF219, and KIAA1539 Genes in the Total Pool of Cell-Free and Cell-Surface-Bound DNA in Prostate Cancer: A Novel Approach for Prostate Cancer Diagnostics. Cancers (Basel) 2023; 15:cancers15020431. [PMID: 36672380 PMCID: PMC9856824 DOI: 10.3390/cancers15020431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/27/2022] [Accepted: 12/27/2022] [Indexed: 01/11/2023] Open
Abstract
The locus-specific methylation of three genes (GSTP1, RNF219, and KIAA1539, also known as FAM214B) in the total pool of blood cell-free DNA, including cell-free DNA from plasma and cell-surface-bound DNA, of patients with prostate cancer and healthy donors was studied on the MiSeq platform. Our study found a higher methylation index of loci for total cell-free DNA compared with cell-free DNA. For total cell-free DNA, the methylation of GSTP1 in each of the 11 positions provided a complete separation of cancer patients from healthy donors, whereas for cell-free DNA, there were no positions in the three genes allowing for such separation. Among the prostate cancer patients, the minimum proportion of GSTP1 genes methylated in any of the 17 positions was 12.1% of the total circulated DNA fragments, and the minimum proportion of GSTP1 genes methylated in any of the 11 diagnostically specific positions was 8.4%. Total cell-free DNA was shown to be more convenient and informative as a source of methylated DNA molecules circulating in the blood than cell-free DNA.
Collapse
Affiliation(s)
- Olga Bryzgunova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch Russian Academy of Sciences, 630090 Novosibirsk, Russia
- Correspondence: ; Tel.: +7-383-363-51-44; Fax: +7-383-363-51-53
| | - Anna Bondar
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Pavel Ruzankin
- Sobolev Institute of Mathematics, Siberian Branch Russian Academy of Sciences, 630090 Novosibirsk, Russia
- Department of Mathematics and Mechanics, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Anton Tarasenko
- Sobolev Institute of Mathematics, Siberian Branch Russian Academy of Sciences, 630090 Novosibirsk, Russia
- Department of Mathematics and Mechanics, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Marat Zaripov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Marsel Kabilov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Pavel Laktionov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch Russian Academy of Sciences, 630090 Novosibirsk, Russia
| |
Collapse
|
10
|
Man YG, Mannion C, Jewett A, Hsiao YH, Liu A, Semczuk A, Zarogoulidis P, Gapeev AB, Cimadamore A, Lee P, Lopez-Beltran A, Montironi R, Massari F, Lu X, Cheng L. The most effective but largely ignored target for prostate cancer early detection and intervention. J Cancer 2022; 13:3463-3475. [PMID: 36313040 PMCID: PMC9608211 DOI: 10.7150/jca.72973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 10/01/2022] [Indexed: 11/05/2022] Open
Abstract
Over the past two decades, the global efforts for the early detection and intervention of prostate cancer seem to have made significant progresses in the basic researches, but the clinic outcomes have been disappointing: (1) prostate cancer is still the most common non-cutaneous cancer in Europe in men, (2) the age-standardized prostate cancer rate has increased in nearly all Asian and African countries, (3) the proportion of advanced cancers at the diagnosis has increased to 8.2% from 3.9% in the USA, (4) the worldwide use of PSA testing and digital rectal examination have failed to reduce the prostate cancer mortality, and (5) there is still no effective preventive method to significantly reduce the development, invasion, and metastasis of prostate cancer… Together, these facts strongly suggest that the global efforts during the past appear to be not in a correlated target with markedly inconsistent basic research and clinic outcomes. The most likely cause for the inconsistence appears due to the fact that basic scientific studies are traditionally conducted on the cell lines and animal models, where it is impossible to completely reflect or replicate the in vivo status. Thus, we would like to propose the human prostate basal cell layer (PBCL) as “the most effective target for the early detection and intervention of prostate cancer”. Our proposal is based on the morphologic, immunohistochemical and molecular evidence from our recent studies of normal and cancerous human prostate tissues with detailed clinic follow-up data. We believe that the human tissue-derived basic research data may provide a more realistic roadmap to guide the clinic practice and to avoid the potential misleading from in vitro and animal studies.
Collapse
Affiliation(s)
- Yan-gao Man
- Department of Pathology, Hackensack Meridian School of Medicine, Nutley, NJ, USA,✉ Corresponding authors: Yan-gao Man., MD., PhD. E-mail: or or Liang Cheng., MD. E-mail: or
| | - Ciaran Mannion
- Department of Pathology, Hackensack Meridian School of Medicine, Nutley, NJ, USA
| | - Anahid Jewett
- Tumor Immunology Laboratory, Jonsson Comprehensive Cancer Center, UCLA School of Dentistry and Medicine, Los Angeles, CA, USA
| | - Yi-Hsuan Hsiao
- Department of Obstetrics and Gynecology, Changhua Christian Hospital, Changhua, Taiwan
| | - Aijun Liu
- Department of Pathology, Chinese PLA General Hospital 7 th Medical Center, Beijing, China
| | - Andrzej Semczuk
- II ND Department of Gynecology, Lublin Medical University, Lublin, Poland
| | - Paul Zarogoulidis
- Pulmonary-Oncology Department, "Theageneio" Cancer Hospital, Thessaloniki, Greece
| | - Andrei B. Gapeev
- Laboratory of Biological Effects of Non-Ionizing Radiation, Institute of Cell Biophysics, Russian Academy of Sciences, Russian Federation
| | - Alessia Cimadamore
- Section of Pathological Anatomy, Polytechnic University of the Marche Region, School of Medicine, United Hospitals, Ancona, Italy
| | - Peng Lee
- Department of Pathology, New York University School of Medicine, New York, NY, USA.,Department of Pathology, New York Harbor Healthcare System, New York, NY, USA
| | - Antonio Lopez-Beltran
- Department of Morphological Sciences, Cordoba University Medical School, Cordoba, Spain
| | - Rodolfo Montironi
- Molecular Medicine and Cell Therapy Foundation, Department of Clinical & Molecular Sciences, Polytechnic University of the Marche Region, Ancona, Italy
| | - Francesco Massari
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Xin Lu
- Department of Biological Sciences, Boler-Parseghian Center for Rare and Neglected Diseases, Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN, USA.,Tumor Microenvironment and Metastasis Program, Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, IN, USA
| | - Liang Cheng
- Department of Pathology and Laboratory Medicine, Brown University Medical School
- Lifespan Academic Medical Center, RI, USA.,✉ Corresponding authors: Yan-gao Man., MD., PhD. E-mail: or or Liang Cheng., MD. E-mail: or
| |
Collapse
|
11
|
Liu D, Che B, Chen P, He J, Mu Y, Chen K, Zhang W, Xu S, Tang K. GSTT1, an increased risk factor for prostate cancer in patients with metabolic syndrome. J Clin Lab Anal 2022; 36:e24352. [PMID: 35293017 PMCID: PMC8993662 DOI: 10.1002/jcla.24352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 03/03/2022] [Accepted: 03/05/2022] [Indexed: 12/24/2022] Open
Abstract
Background Glutathione S‐transferase (GSTs) gene polymorphism and metabolic syndrome (Mets) are generally considered to be risk factors for prostate cancer (PCa). However, this conclusion is still controversial. There is a close relationship between GSTs gene polymorphism and Mets. We suspect that the effect of GSTs gene polymorphism and Mets on PCa may be the result of their joint action. As a result, the purpose of this study was to investigate the potential effect of GSTs gene polymorphism on PCa in patients with Mets. Methods We collected blood samples from 128 patients with PCa and 200 controls. The GSTs gene polymorphism was detected by polymerase chain reaction‐restriction fragment length polymorphism (PCR–RFLP). Age, characteristics of Mets, frequencies of GSTs gene polymorphism, total prostate volume (TPV), Gleason score, and prostate‐specific antigen (PSA) were recorded and analyzed. Results There were significant differences in BMI, TG, LDL‐C, FBG, SBP, DBP, and HDL‐C among the control group, N‐PCa group, and Mets‐PCa group (p < 0.05). GSTT1 null genotype (OR = 2.844, 95% CI: 1.791–4.517), GSTM1 null genotype (OR = 2.192, 95% CI: 1.395–3.446), and GSTP1 (A/G + G/G) genotype (OR = 2.315, 95% CI: 1.465–3.657) were associated with PCa susceptibility and malignancy. Only the GSTT1 null genotype in Mets patients was positively correlated with PCa. Conclusions Our study suggests that GSTs gene polymorphism may be a risk factor for PCa and can predict the susceptibility and malignancy of PCa. Secondly, in Mets patients, GSTT1 null genotype significantly increased the risk of PCa. GSTM1 null genotype and the effect of GSTP1 (AG + GG) on PCa were not significantly related to Mets.
Collapse
Affiliation(s)
- Dongdong Liu
- Department of Urology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Bangwei Che
- Department of Urology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Pan Chen
- Department of Urology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Jun He
- Department of Urology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Yi Mu
- Department of Urology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Kehang Chen
- Department of Urology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Wenjun Zhang
- Department of Urology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Shenghan Xu
- Department of Urology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Kaifa Tang
- Department of Urology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China.,Institute of Medical Science of Guizhou Medical University, Guiyang, China
| |
Collapse
|
12
|
Pardo JC, Ruiz de Porras V, Gil J, Font A, Puig-Domingo M, Jordà M. Lipid Metabolism and Epigenetics Crosstalk in Prostate Cancer. Nutrients 2022; 14:851. [PMID: 35215499 PMCID: PMC8874497 DOI: 10.3390/nu14040851] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/27/2022] [Accepted: 02/14/2022] [Indexed: 02/07/2023] Open
Abstract
Prostate cancer (PCa) is the most commonly diagnosed malignant neoplasm in men in the Western world. Localized low-risk PCa has an excellent prognosis thanks to effective local treatments; however, despite the incorporation of new therapeutic strategies, metastatic PCa remains incurable mainly due to disease heterogeneity and the development of resistance to therapy. The mechanisms underlying PCa progression and therapy resistance are multiple and include metabolic reprogramming, especially in relation to lipid metabolism, as well as epigenetic remodelling, both of which enable cancer cells to adapt to dynamic changes in the tumour. Interestingly, metabolism and epigenetics are interconnected. Metabolism can regulate epigenetics through the direct influence of metabolites on epigenetic processes, while epigenetics can control metabolism by directly or indirectly regulating the expression of metabolic genes. Moreover, epidemiological studies suggest an association between a high-fat diet, which can alter the availability of metabolites, and PCa progression. Here, we review the alterations of lipid metabolism and epigenetics in PCa, before focusing on the mechanisms that connect them. We also discuss the influence of diet in this scenario. This information may help to identify prognostic and predictive biomarkers as well as targetable vulnerabilities.
Collapse
Affiliation(s)
- Juan C. Pardo
- Department of Medical Oncology, Catalan Institute of Oncology, University Hospital Germans Trias i Pujol, Ctra. Can Ruti-Camí de les Escoles s/n, 08916 Badalona, Spain; (J.C.P.); (A.F.)
- Catalan Institute of Oncology, Badalona Applied Research Group in Oncology (B·ARGO), Ctra. Can Ruti-Camí de les Escoles s/n, 08916 Badalona, Spain;
| | - Vicenç Ruiz de Porras
- Catalan Institute of Oncology, Badalona Applied Research Group in Oncology (B·ARGO), Ctra. Can Ruti-Camí de les Escoles s/n, 08916 Badalona, Spain;
- Germans Trias i Pujol Research Institute (IGTP), Ctra. Can Ruti-Camí de les Escoles s/n, 08916 Badalona, Spain; (J.G.); (M.P.-D.)
| | - Joan Gil
- Germans Trias i Pujol Research Institute (IGTP), Ctra. Can Ruti-Camí de les Escoles s/n, 08916 Badalona, Spain; (J.G.); (M.P.-D.)
- Department of Endocrinology and Medicine, CIBERER U747, ISCIII, Research Center for Pituitary Diseases, Hospital Sant Pau, IIB-SPau, Universitat Autònoma de Barcelona, 08041 Barcelona, Spain
| | - Albert Font
- Department of Medical Oncology, Catalan Institute of Oncology, University Hospital Germans Trias i Pujol, Ctra. Can Ruti-Camí de les Escoles s/n, 08916 Badalona, Spain; (J.C.P.); (A.F.)
- Catalan Institute of Oncology, Badalona Applied Research Group in Oncology (B·ARGO), Ctra. Can Ruti-Camí de les Escoles s/n, 08916 Badalona, Spain;
| | - Manel Puig-Domingo
- Germans Trias i Pujol Research Institute (IGTP), Ctra. Can Ruti-Camí de les Escoles s/n, 08916 Badalona, Spain; (J.G.); (M.P.-D.)
- Department of Endocrinology and Nutrition, University Germans Trias i Pujol Hospital, Ctra. Can Ruti-Camí de les Escoles s/n, 08916 Badalona, Spain
- Department of Medicine, Autonomous University of Barcelona (UAB), Ctra. Can Ruti-Camí de les Escoles s/n, 08916 Badalona, Spain
| | - Mireia Jordà
- Germans Trias i Pujol Research Institute (IGTP), Ctra. Can Ruti-Camí de les Escoles s/n, 08916 Badalona, Spain; (J.G.); (M.P.-D.)
| |
Collapse
|
13
|
Epigenetic Coregulation of Androgen Receptor Signaling. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1390:277-293. [DOI: 10.1007/978-3-031-11836-4_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
14
|
Locus-Specific Methylation of GSTP1, RNF219, and KIAA1539 Genes with Single Molecule Resolution in Cell-Free DNA from Healthy Donors and Prostate Tumor Patients: Application in Diagnostics. Cancers (Basel) 2021; 13:cancers13246234. [PMID: 34944854 PMCID: PMC8699300 DOI: 10.3390/cancers13246234] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/09/2021] [Accepted: 12/10/2021] [Indexed: 12/24/2022] Open
Abstract
Simple Summary Prostate cancer (PCa) is the second most commonly diagnosed cancer in men, which is constantly accompanied by benign prostate hyperplasia (BPH). To reach a 100% 5-year survival rate in PCa, which is characteristic for PCa if it is diagnosed in early stages, efficient PCa diagnostics against the background of BPH are demanded. The article describes a liquid biopsy approach to differential PCa diagnostics based on the data on locus-specific methylation of the three genes (GSTP1, RNF219, and KIAA1539) obtained with NGS of cell-free DNA from blood plasma of PCa, BPH, and healthy individuals. We offered a diagnostic approach including the analysis of simultaneous methylation status of two CpGs in one cell-free DNA molecule, allowing the discrimination of all patients with absolute sensitivity and specificity. Abstract The locus-specific methylation of three genes (GSTP1, RNF219, and KIAA1539 (also known as FAM214B)) in the blood plasma cell-free DNA (cfDNA) of 20 patients with prostate cancer (PCa), 18 healthy donors (HDs), and 17 patients with benign prostatic hyperplasia (BPH) was studied via the MiSeq platform. The methylation status of two CpGs within the same loci were used as the diagnostic feature for discriminating the patient groups. Many variables had good diagnostic characteristics, e.g., each of the variables GSTP1.C3.C9, GSTP1.C9, and GSTP1.C9.T17 demonstrated an 80% sensitivity at a 100% specificity for PCa patients vs. the others comparison. The analysis of RNF219 gene loci methylation allowed discriminating BPH patients with absolute sensitivity and specificity. The data on the methylation of the genes GSTP1 and RNF219 allowed discriminating PCa patients, as well as HDs, with absolute sensitivity and specificity. Thus, the data on the locus-specific methylation of cfDNA (with single-molecule resolution) combined with a diagnostic approach considering the simultaneous methylation of several CpGs in one locus enabled the discrimination of HD, BPH, and PCa patients.
Collapse
|
15
|
|
16
|
Pacheco MB, Camilo V, Lopes N, Moreira-Silva F, Correia MP, Henrique R, Jerónimo C. Hydralazine and Panobinostat Attenuate Malignant Properties of Prostate Cancer Cell Lines. Pharmaceuticals (Basel) 2021; 14:ph14070670. [PMID: 34358096 PMCID: PMC8308508 DOI: 10.3390/ph14070670] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 07/07/2021] [Accepted: 07/09/2021] [Indexed: 12/23/2022] Open
Abstract
Among the well-established alterations contributing to prostate cancer (PCa) pathogenesis, epigenetics is an important player in its development and aggressive disease state. Moreover, since no curative therapies are available for advanced stage disease, there is an urgent need for novel therapeutic strategies targeting this subset of patients. Thus, we aimed to evaluate the combined antineoplastic effects of DNA methylation inhibitor hydralazine and histone deacetylase inhibitors panobinostat and valproic acid in several prostate cell lines. The effect of these drugs was assessed in four PCa (LNCaP, 22Rv1, DU145 and PC-3) cell lines, as well as in non-malignant epithelial (RWPE-1) and stromal (WPMY-1) cell lines, using several assays to evaluate cell viability, apoptosis, proliferation, DNA damage and clonogenic potential. We found that exposure to each epidrug separately reduced viability of all PCa cells in a dose-dependent manner and that combined treatments led to synergic growth inhibitory effects, impacting also on colony formation, invasion, apoptotic and proliferation rates. Interestingly, antitumoral effects of combined treatment were particularly expressive in DU145 cells. We concluded that hydralazine and panobinostat attenuate malignant properties of PCa cells, constituting a potential therapeutic tool to counteract PCa progression.
Collapse
Affiliation(s)
- Mariana Brütt Pacheco
- Cancer Biology and Epigenetics Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; (M.B.P.); (V.C.); (N.L.); (F.M.-S.); (M.P.C.); (R.H.)
| | - Vânia Camilo
- Cancer Biology and Epigenetics Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; (M.B.P.); (V.C.); (N.L.); (F.M.-S.); (M.P.C.); (R.H.)
| | - Nair Lopes
- Cancer Biology and Epigenetics Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; (M.B.P.); (V.C.); (N.L.); (F.M.-S.); (M.P.C.); (R.H.)
| | - Filipa Moreira-Silva
- Cancer Biology and Epigenetics Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; (M.B.P.); (V.C.); (N.L.); (F.M.-S.); (M.P.C.); (R.H.)
| | - Margareta P. Correia
- Cancer Biology and Epigenetics Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; (M.B.P.); (V.C.); (N.L.); (F.M.-S.); (M.P.C.); (R.H.)
- Department of Pathology and Molecular Immunology, School of Medicine and Biomedical Sciences, University of Porto (ICBAS-UP), Rua Jorge Viterbo Ferreira 228, 4050-513 Porto, Portugal
| | - Rui Henrique
- Cancer Biology and Epigenetics Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; (M.B.P.); (V.C.); (N.L.); (F.M.-S.); (M.P.C.); (R.H.)
- Department of Pathology and Molecular Immunology, School of Medicine and Biomedical Sciences, University of Porto (ICBAS-UP), Rua Jorge Viterbo Ferreira 228, 4050-513 Porto, Portugal
- Department of Pathology, Portuguese Oncology Institute of Porto (IPOP), Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal
| | - Carmen Jerónimo
- Cancer Biology and Epigenetics Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; (M.B.P.); (V.C.); (N.L.); (F.M.-S.); (M.P.C.); (R.H.)
- Department of Pathology and Molecular Immunology, School of Medicine and Biomedical Sciences, University of Porto (ICBAS-UP), Rua Jorge Viterbo Ferreira 228, 4050-513 Porto, Portugal
- Correspondence: or ; Tel.: +351-225-084-000; Fax: +351-225-084-199
| |
Collapse
|
17
|
Vidal I, Zheng Q, Hicks JL, Chen J, Platz EA, Trock BJ, Kulac I, Baena-Del Valle JA, Sfanos KS, Ernst S, Jones T, Maynard JP, Glavaris SA, Nelson WG, Yegnasubramanian S, De Marzo AM. GSTP1 positive prostatic adenocarcinomas are more common in Black than White men in the United States. PLoS One 2021; 16:e0241934. [PMID: 34191807 PMCID: PMC8244883 DOI: 10.1371/journal.pone.0241934] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 05/28/2021] [Indexed: 12/16/2022] Open
Abstract
GSTP1 is a member of the Glutathione-S-transferase (GST) family silenced by CpG island DNA hypermethylation in 90-95% of prostate cancers. However, prostate cancers expressing GSTP1 have not been well characterized. We used immunohistochemistry against GSTP1 to examine 1673 primary prostatic adenocarcinomas on tissue microarrays (TMAs) with redundant sampling from the index tumor from prostatectomies. GSTP1 protein was positive in at least one TMA core in 7.7% of cases and in all TMA cores in 4.4% of cases. The percentage of adenocarcinomas from Black patients who had any GSTP1 positive TMA cores was 14.9%, which was 2.5 times higher than the percentage from White patients (5.9%; P < 0.001). Further, the percentages of tumors from Black patients who had all TMA spots positive for GSTP1 (9.5%) was 3-fold higher than the percentage from White patients (3.2%; P<0.001). In terms of association with other molecular alterations, GSTP1 positivity was enriched in ERG positive cancers among Black men. By in situ hybridization, GSTP1 mRNA expression was concordant with protein staining, supporting the lack of silencing of at least some GSTP1 alleles in GSTP1-positive tumor cells. This is the first report revealing that GSTP1-positive prostate cancers are substantially over-represented among prostate cancers from Black compared to White men. This observation should prompt additional studies to determine whether GSTP1 positive cases represent a distinct molecular subtype of prostate cancer and whether GSTP1 expression could provide a biological underpinning for the observed disparate outcomes for Black men.
Collapse
Affiliation(s)
- Igor Vidal
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Qizhi Zheng
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Jessica L. Hicks
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Jiayu Chen
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Elizabeth A. Platz
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland, United States of America
- The Brady Urological Research Institute at Johns Hopkins, Baltimore, Maryland, United States of America
- Department of Epidemiology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Bruce J. Trock
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland, United States of America
- The Brady Urological Research Institute at Johns Hopkins, Baltimore, Maryland, United States of America
- Department of Urology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | | | | | - Karen S. Sfanos
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland, United States of America
- The Brady Urological Research Institute at Johns Hopkins, Baltimore, Maryland, United States of America
- Department of Urology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Sarah Ernst
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Tracy Jones
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Janielle P. Maynard
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Stephanie A. Glavaris
- Department of Urology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - William G. Nelson
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland, United States of America
- The Brady Urological Research Institute at Johns Hopkins, Baltimore, Maryland, United States of America
- Department of Urology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Srinivasan Yegnasubramanian
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland, United States of America
- The Brady Urological Research Institute at Johns Hopkins, Baltimore, Maryland, United States of America
- Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Angelo M. De Marzo
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland, United States of America
- The Brady Urological Research Institute at Johns Hopkins, Baltimore, Maryland, United States of America
- Department of Urology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| |
Collapse
|
18
|
Pacheco MB, Camilo V, Henrique R, Jerónimo C. Epigenetic Editing in Prostate Cancer: Challenges and Opportunities. Epigenetics 2021; 17:564-588. [PMID: 34130596 DOI: 10.1080/15592294.2021.1939477] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Epigenome editing consists of fusing a predesigned DNA recognition unit to the catalytic domain of a chromatin modifying enzyme leading to the introduction or removal of an epigenetic mark at a specific locus. These platforms enabled the study of the mechanisms and roles of epigenetic changes in several research domains such as those addressing pathogenesis and progression of cancer. Despite the continued efforts required to overcome some limitations, which include specificity, off-target effects, efficacy, and longevity, these tools have been rapidly progressing and improving.Since prostate cancer is characterized by multiple genetic and epigenetic alterations that affect different signalling pathways, epigenetic editing constitutes a promising strategy to hamper cancer progression. Therefore, by modulating chromatin structure through epigenome editing, its conformation might be better understood and events that drive prostate carcinogenesis might be further unveiled.This review describes the different epigenome engineering tools, their mechanisms concerning gene's expression and regulation, highlighting the challenges and opportunities concerning prostate cancer research.
Collapse
Affiliation(s)
- Mariana Brütt Pacheco
- Cancer Biology and Epigenetics Group, Research Center (GEBC CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto) & Porto Comprehensive Cancer Center (P.CCC), R. Dr. António Bernardino de Almeida, Porto, Portugal
| | - Vânia Camilo
- Cancer Biology and Epigenetics Group, Research Center (GEBC CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto) & Porto Comprehensive Cancer Center (P.CCC), R. Dr. António Bernardino de Almeida, Porto, Portugal
| | - Rui Henrique
- Cancer Biology and Epigenetics Group, Research Center (GEBC CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto) & Porto Comprehensive Cancer Center (P.CCC), R. Dr. António Bernardino de Almeida, Porto, Portugal.,Department of Pathology, Portuguese Oncology Institute of Porto (IPOP), R. DR. António Bernardino De Almeida, Porto, Portugal.,Department of Pathology and Molecular Immunology, School of Medicine & Biomedical Sciences, University of Porto (ICBAS-UP), Rua Jorge Viterbo Ferreira 228, Porto, Portugal
| | - Carmen Jerónimo
- Cancer Biology and Epigenetics Group, Research Center (GEBC CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto) & Porto Comprehensive Cancer Center (P.CCC), R. Dr. António Bernardino de Almeida, Porto, Portugal.,Department of Pathology and Molecular Immunology, School of Medicine & Biomedical Sciences, University of Porto (ICBAS-UP), Rua Jorge Viterbo Ferreira 228, Porto, Portugal
| |
Collapse
|
19
|
Phua TJ. The Etiology and Pathophysiology Genesis of Benign Prostatic Hyperplasia and Prostate Cancer: A New Perspective. MEDICINES 2021; 8:medicines8060030. [PMID: 34208086 PMCID: PMC8230771 DOI: 10.3390/medicines8060030] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/31/2021] [Accepted: 06/08/2021] [Indexed: 12/13/2022]
Abstract
Background: The etiology of benign prostatic hyperplasia and prostate cancer are unknown, with ageing being the greatness risk factor. Methods: This new perspective evaluates the available interdisciplinary evidence regarding prostate ageing in terms of the cell biology of regulation and homeostasis, which could explain the timeline of evolutionary cancer biology as degenerative, inflammatory and neoplasm progressions in these multifactorial and heterogeneous prostatic diseases. Results: This prostate ageing degeneration hypothesis encompasses the testosterone-vascular-inflamm-ageing triad, along with the cell biology regulation of amyloidosis and autophagy within an evolutionary tumorigenesis microenvironment. Conclusions: An understanding of these biological processes of prostate ageing can provide potential strategies for early prevention and could contribute to maintaining quality of life for the ageing individual along with substantial medical cost savings.
Collapse
Affiliation(s)
- Teow J Phua
- Molecular Medicine, NSW Health Pathology, John Hunter Hospital, Newcastle, NSW 2305, Australia
| |
Collapse
|
20
|
Huang K, Tang Y. SChLAP1 promotes prostate cancer development through interacting with EZH2 to mediate promoter methylation modification of multiple miRNAs of chromosome 5 with a DNMT3a-feedback loop. Cell Death Dis 2021; 12:188. [PMID: 33589600 PMCID: PMC7884413 DOI: 10.1038/s41419-021-03455-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 01/07/2021] [Accepted: 01/19/2021] [Indexed: 12/20/2022]
Abstract
This study aimed to investigate the mechanism of SChLAP1 (second chromosome locus associated with prostate-1) on microRNA expression in prostate cancer. Differential expression of lncRNAs and microRNA prostate cancer cells were predicted by informatics and confirmed by qRT-PCR. SChLAP1-interacting proteins were characterized by RNA pull-down combined with western blotting, which was verified using RIP and qPCR analysis. Then ChIP assay and DNA pull-down were used to validate the binding of DNMT3a and HEK27me3 with miRNA gene promoters. Target genes of miRNAs were bioinformatically predicted and validated by dual-luciferase reporter assays. The tumorigenicity of prostate cancer cells was assessed using the cancer cell line-based xenograft (CDX) model. We found that SChLAP1 expression was significantly elevated in prostate cancer tissues and cell lines, which was negatively correlated with miR-340 expression. SChLAP1 directly binds with EZH2 and repressed multiple miRNA expression on chromosome 5 including the miR-340-3p in prostate cancer cells through recruiting H3K27me3 to mediate promoter methylation modification of miR-340-5p/miR-143-3p/miR-145-5p to suppress gene transcription. Moreover, DNMT3a was one of the common target genes of miR-340-5p/miR-143-3p/miR-145-5p in prostate cancer cells. And SChLAP1/EZH2 could also promote prostate cancer tumor development via the interaction of microRNA-DNMT3a signaling pathways in xenograft nude mice. Altogether, our results suggest that SChLAP1 enhanced the proliferation, migration, and tumorigenicity of prostate cancer cells through interacting with EZH2 to recruit H2K27me3 and mediate promoter methylation modification of miR-340-5p/miR-143-3p/miR-145-5p with a DNMT3a-feedback loop.
Collapse
Affiliation(s)
- Kai Huang
- Department of Urology, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan Province, P.R. China
| | - Yuxin Tang
- Department of Urology, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan Province, P.R. China.
| |
Collapse
|
21
|
Haffner MC, Zwart W, Roudier MP, True LD, Nelson WG, Epstein JI, De Marzo AM, Nelson PS, Yegnasubramanian S. Genomic and phenotypic heterogeneity in prostate cancer. Nat Rev Urol 2021; 18:79-92. [PMID: 33328650 PMCID: PMC7969494 DOI: 10.1038/s41585-020-00400-w] [Citation(s) in RCA: 280] [Impact Index Per Article: 70.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/05/2020] [Indexed: 02/07/2023]
Abstract
From a clinical, morphological and molecular perspective, prostate cancer is a heterogeneous disease. Primary prostate cancers are often multifocal, having topographically and morphologically distinct tumour foci. Sequencing studies have revealed that individual tumour foci can arise as clonally distinct lesions with no shared driver gene alterations. This finding demonstrates that multiple genomically and phenotypically distinct primary prostate cancers can be present in an individual patient. Lethal metastatic prostate cancer seems to arise from a single clone in the primary tumour but can exhibit subclonal heterogeneity at the genomic, epigenetic and phenotypic levels. Collectively, this complex heterogeneous constellation of molecular alterations poses obstacles for the diagnosis and treatment of prostate cancer. However, advances in our understanding of intra-tumoural heterogeneity and the development of novel technologies will allow us to navigate these challenges, refine approaches for translational research and ultimately improve patient care.
Collapse
Affiliation(s)
- Michael C. Haffner
- Divisions of Human Biology and Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, WA, USA,Department of Pathology, University of Washington, Seattle, WA, USA,Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA,
| | - Wilbert Zwart
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, Netherlands
| | | | - Lawrence D. True
- Department of Pathology, University of Washington, Seattle, WA, USA
| | - William G. Nelson
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA,Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA,Department of Urology, James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jonathan I. Epstein
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA,Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA,Department of Urology, James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Angelo M. De Marzo
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA,Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA,Department of Urology, James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Peter S. Nelson
- Divisions of Human Biology and Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | | |
Collapse
|
22
|
Demircan Tan B, Turan T, Yucel B, Altundag Kara S, Salman Yilmaz S, Yildirim A. Aberrant SOCS3 Promoter Methylation as a Noninvasive Diagnostic Biomarker for Locally Advanced Prostate Cancer. Medeni Med J 2020; 35:99-105. [PMID: 32733758 PMCID: PMC7384502 DOI: 10.5222/mmj.2020.58708] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 04/12/2020] [Indexed: 11/05/2022] Open
Abstract
Objective The aim of this study was to investigate the promoter methylation status of Rasassociated domain family 1A (RASSF1A), O-6-methylguanine-DNA methyltransferase (MGMT), Phosphatase with tensin homology (PTEN) and Suppressor of cytokine signaling 3 (SOCS3) tumor suppressor genes and evaluate the clinical utility of these genes as noninvasive, blood-based epigenetic biomarkers for the diagnosis of Prostate Cancer (PCa). Method A total of 41 consecutive patients and 10 healthy control groups were enrolled in the study. Pyrosequencing was performed to analyze the methylation levels of the promoter regions of the four tumor suppressor genes in patients compared to healthy controls. Results The promoter methylation levels of RASSF1A, MGMT, PTEN and SOCS3 did not differ between the patient and control groups. However, SOCS3 promoter methylation level was significantly higher for patients having locally advanced PCa compared to those having localizedPCa (p<0.05). Conclusion Our results indicated that SOCS3 could be a useful, noninvasive blood-based epigenetic biomarker for the diagnosis of locally advanced PCa.
Collapse
Affiliation(s)
- Berna Demircan Tan
- Istanbul Medeniyet University, Faculty of Medicine Department of Medical Biology, Istanbul, Turkey
| | - Turgay Turan
- Istanbul Medeniyet University, Faculty of Medicine, Department of Urology, Istanbul, Turkey
| | - Burcu Yucel
- Istanbul Medeniyet University, Faculty of Medicine, Department of Medical Biology, Istanbul, Turkey
| | - Sedef Altundag Kara
- Istanbul Okan University, Faculty of Medicine, Department of Histology, Istanbul, Turkey
| | - Seda Salman Yilmaz
- Istanbul University Cerrahpasa, Faculty of Medicine, Department of Medical Genetics, Istanbul, Turkey
| | - Asif Yildirim
- Istanbul Medeniyet University, Faculty of Medicine, Department of Urology, Istanbul, Turkey
| |
Collapse
|
23
|
Reavis HD, Drapkin R. The tubal epigenome - An emerging target for ovarian cancer. Pharmacol Ther 2020; 210:107524. [PMID: 32197795 DOI: 10.1016/j.pharmthera.2020.107524] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 02/18/2020] [Accepted: 02/26/2020] [Indexed: 02/07/2023]
Abstract
Ovarian cancer is the most lethal gynecologic malignancy in the United States. The mortality of this disease is primarily attributed to challenges in early detection and therapeutic resistance. Recent studies indicate that the majority of high-grade serous ovarian carcinomas (HGSCs) originate from aberrant fallopian tube epithelial (FTE) cells. This shift in thinking about ovarian cancer pathogenesis has been met with an effort to identify the early genetic and epigenetic changes that underlie the transformation of normal FTE cells and prompt them to migrate and colonize the ovary, ultimately giving rise to aggressive HGSC. While identification of these early changes is important for biomarker discovery, the emergence of epigenetic alterations in FTE chromatin may also provide new opportunities for early detection, prevention, and therapeutic intervention. Here we provide a comprehensive overview of the current knowledge regarding early epigenetic reprogramming that precedes HGSC tumor development, the way that these alterations affect both intrinsic and extrinsic tumor properties, and how the epigenome may be targeted to thwart HGSC tumorigenesis.
Collapse
Affiliation(s)
- Hunter D Reavis
- Penn Ovarian Cancer Research Center, Department of Obstetrics and Gynecology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA; Graduate Program in Cell and Molecular Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA; Department of Cancer Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Ronny Drapkin
- Penn Ovarian Cancer Research Center, Department of Obstetrics and Gynecology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA; Graduate Program in Cell and Molecular Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA; Basser Center for BRCA, Abramson Cancer Center, University of Pennsylvania School of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
24
|
Yuan Y, Du Y, Wang L, Liu X. The value of endothelin receptor type B promoter methylation as a biomarker for the risk assessment and diagnosis of prostate cancer: A meta-analysis. Pathol Res Pract 2019; 216:152796. [PMID: 31926772 DOI: 10.1016/j.prp.2019.152796] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 11/23/2019] [Accepted: 12/12/2019] [Indexed: 02/06/2023]
Abstract
Previous researches have demonstrated that the methylation status of the EDNRB promoter was associated with the prostate cancer (PCa), but these conclusions remained controversial. Thus, the aim of this meta-analysis was to evaluate the association between EDNRB promoter methylation and the PCa. According to the PRISMA statement, the Web of Science, PubMed, EMBASE, and Cochrane Library databases were retrieved. The ORs and 95 % CIs were analyzed to evaluate the associations between EDNRB promoter methylation and the risk and clinical features of PCa. Heterogeneity among the included studies was estimated by I2 statistic and Q test. Publication bias and sensitivity analysis were utilized to test the robustness of our outcomes. In addition, the pooled sensitivity and specificity were calculated to assess the diagnostic value of EDNRB methylation for PCa. Ultimately, 11 eligible studies were included. Under the random-effects model, the pooled OR shown that the frequency of EDNRB methylation was substantially higher in cases compared with controls (OR = 5.42, 95 % CI = 1.98-14.88, P = 0.001). The similar results were also found by the data from TCGA database. Subgroup analysis according to the methylation detection method showed that the heterogeneity in quantitative methylation-specific polymerase chain reaction (qMSP) group was insignificant (I2 = 0.0 %, P = 0.669). Moreover, the pooled sensitivity for all-inclusive studies was 0.55 (95 % CI: 0.26-0.81), and the pooled specificity was 0.93 (95 % CI: 0.55-0.99). The methylation of EDNRB promoter might increase the risk of PCa. Meanwhile, EDNRB promoter methylation test combined with PSA testing and/or other biomarkers could be promising diagnostic biomarkers for more accurate detection of PCa.
Collapse
Affiliation(s)
- Yan Yuan
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, PR China
| | - Yang Du
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, PR China
| | - Lei Wang
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, PR China
| | - Xiuheng Liu
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, PR China.
| |
Collapse
|
25
|
Toth R, Schiffmann H, Hube-Magg C, Büscheck F, Höflmayer D, Weidemann S, Lebok P, Fraune C, Minner S, Schlomm T, Sauter G, Plass C, Assenov Y, Simon R, Meiners J, Gerhäuser C. Random forest-based modelling to detect biomarkers for prostate cancer progression. Clin Epigenetics 2019; 11:148. [PMID: 31640781 PMCID: PMC6805338 DOI: 10.1186/s13148-019-0736-8] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 09/03/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The clinical course of prostate cancer (PCa) is highly variable, demanding an individualized approach to therapy. Overtreatment of indolent PCa cases, which likely do not progress to aggressive stages, may be associated with severe side effects and considerable costs. These could be avoided by utilizing robust prognostic markers to guide treatment decisions. RESULTS We present a random forest-based classification model to predict aggressive behaviour of prostate cancer. DNA methylation changes between PCa cases with good or poor prognosis (discovery cohort with n = 70) were used as input. DNA was extracted from formalin-fixed tumour tissue, and genome-wide DNA methylation differences between both groups were assessed using Illumina HumanMethylation450 arrays. For the random forest-based modelling, the discovery cohort was randomly split into a training (80%) and a test set (20%). Our methylation-based classifier demonstrated excellent performance in discriminating prognosis subgroups in the test set (Kaplan-Meier survival analyses with log-rank p value < 0.0001). The area under the receiver operating characteristic curve (AUC) for the sensitivity analysis was 95%. Using the ICGC cohort of early- and late-onset prostate cancer (n = 222) and the TCGA PRAD cohort (n = 477) for external validation, AUCs for sensitivity analyses were 77.1% and 68.7%, respectively. Cancer progression-related DNA hypomethylation was frequently located in 'partially methylated domains' (PMDs)-large-scale genomic areas with progressive loss of DNA methylation linked to mitotic cell division. We selected several candidate genes with differential methylation in gene promoter regions for additional validation at the protein expression level by immunohistochemistry in > 12,000 tissue micro-arrayed PCa cases. Loss of ZIC2 protein expression was associated with poor prognosis and correlated with significantly shorter time to biochemical recurrence. The prognostic value of ZIC2 proved to be independent from established clinicopathological variables including Gleason grade, tumour stage, nodal stage and prostate-specific-antigen. CONCLUSIONS Our results highlight the prognostic relevance of methylation loss in PMD regions, as well as of several candidate genes not previously associated with PCa progression. Our robust and externally validated PCa classification model either directly or via protein expression analyses of the identified top-ranked candidate genes will support the clinical management of prostate cancer.
Collapse
Affiliation(s)
- Reka Toth
- Cancer Epigenomics, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Heiko Schiffmann
- Department of Pathology, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Claudia Hube-Magg
- Department of Pathology, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Franziska Büscheck
- Department of Pathology, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Doris Höflmayer
- Department of Pathology, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Sören Weidemann
- Department of Pathology, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Patrick Lebok
- Department of Pathology, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Christoph Fraune
- Department of Pathology, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Sarah Minner
- Department of Pathology, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Thorsten Schlomm
- Department of Pathology, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany.,Department of Urology, Charité Universitätsmedizin Berlin, 10117, Berlin, Germany
| | - Guido Sauter
- Department of Pathology, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Christoph Plass
- Cancer Epigenomics, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany.,German Cancer Consortium (DKTK), 69120, Heidelberg, Germany
| | - Yassen Assenov
- Cancer Epigenomics, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Ronald Simon
- Department of Pathology, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Jan Meiners
- General, Visceral and Thoracic Surgery Department and Clinic, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Clarissa Gerhäuser
- Cancer Epigenomics, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany.
| |
Collapse
|
26
|
A high-throughput screen of pharmacologically active compounds for inhibitors of UHRF1 reveals epigenetic activity of anthracycline derivative chemotherapeutic drugs. Oncotarget 2019; 10:3040-3050. [PMID: 31105884 PMCID: PMC6508961 DOI: 10.18632/oncotarget.26889] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 04/11/2019] [Indexed: 01/04/2023] Open
Abstract
DNA methylation can mediate epigenetic silencing of tumor suppressor and cancer protective genes. The protein ubiquitin-like containing PHD and ring finger domains 1 (UHRF1) is an essential component in cells for DNA methylation maintenance. The SET- and RING-associated (SRA) domain of UHRF1 can bind hemimethylated DNA, and mediate recruitment of DNA methyltransferases to copy the methylation pattern to the newly synthesized daughter strand. Loss of UHRF1 function can lead to demethylation and re-expression of epigenetically silenced tumor suppressor genes and can reduce cancer cell growth and survival. We created a high-throughput time-resolved fluorescence resonance energy transfer (TR-FRET) assay to screen for inhibitors capable of disrupting the interaction between the UHRF1-SRA domain and hemimethylated DNA. Using this assay (Z' factor of 0.74 in 384-well format) we screened the Library of Pharmacologically Active Compounds (LOPAC) for UHRF1-SRA inhibitors, and validated 7 hit compounds. These compounds included the anthracycline derivatives idarubicin and mitoxantrone, which are commonly used chemotherapeutic drugs known to mediate cytotoxicity by acting as class II topoisomerase (TOP2) poisons. In a panel of additional known topoisomerase poisons, only the anthracycline derivatives showed dose responsive inhibition of UHRF1-SRA. Additionally, mitoxantrone and doxorubicin showed dose-responsive global DNA demethylation and demonstrated a synergistic growth inhibition of multiple cancer cell lines when combined with the DNA methyltransferase (DNMT) inhibitor decitabine. These data validate a novel TR-FRET assay for identification of UHRF1 inhibitors, and revealed unexpected epigenetic properties of commonly used chemotherapeutic drugs that showed synergistic cytotoxicity of cancer cells when combined with a demethylating agent.
Collapse
|
27
|
Abstract
Prostate cancer development involves corruption of the normal prostate transcriptional network, following deregulated expression or mutation of key transcription factors. Here, we provide an overview of the transcription factors that are important in normal prostate homeostasis (NKX3-1, p63, androgen receptor [AR]), primary prostate cancer (ETS family members, c-MYC), castration-resistant prostate cancer (AR, FOXA1), and AR-independent castration-resistant neuroendocrine prostate cancer (RB1, p53, N-MYC). We use functional (in vitro and in vivo) as well as clinical data to discuss evidence that unveils their roles in the initiation and progression of prostate cancer, with an emphasis on results of chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-seq).
Collapse
Affiliation(s)
- David P Labbé
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School and Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts 02215
| | - Myles Brown
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School and Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts 02215
| |
Collapse
|