1
|
Translational control of E2f1 regulates the Drosophila cell cycle. Proc Natl Acad Sci U S A 2022; 119:2113704119. [PMID: 35074910 PMCID: PMC8795540 DOI: 10.1073/pnas.2113704119] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/10/2021] [Indexed: 12/21/2022] Open
Abstract
E2F transcription factors are master regulators of the eukaryotic cell cycle. In Drosophila, the sole activating E2F, E2F1, is both required for and sufficient to promote G1→S progression. E2F1 activity is regulated both by binding to RB Family repressors and by posttranscriptional control of E2F1 protein levels by the EGFR and TOR signaling pathways. Here, we investigate cis-regulatory elements in the E2f1 messenger RNA (mRNA) that enable E2f1 translation to respond to these signals and promote mitotic proliferation of wing imaginal disc and intestinal stem cells. We show that small upstream open reading frames (uORFs) in the 5' untranslated region (UTR) of the E2f1 mRNA limit its translation, impacting rates of cell proliferation. E2f1 transgenes lacking these 5'UTR uORFs caused TOR-independent expression and excess cell proliferation, suggesting that TOR activity can bypass uORF-mediated translational repression. EGFR signaling also enhanced translation but through a mechanism less dependent on 5'UTR uORFs. Further, we mapped a region in the E2f1 mRNA that contains a translational enhancer, which may also be targeted by TOR signaling. This study reveals translational control mechanisms through which growth signaling regulates cell cycle progression.
Collapse
|
2
|
EDMD-Causing Emerin Mutant Myogenic Progenitors Exhibit Impaired Differentiation Using Similar Mechanisms. Cells 2020; 9:cells9061463. [PMID: 32549231 PMCID: PMC7349064 DOI: 10.3390/cells9061463] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 06/05/2020] [Accepted: 06/09/2020] [Indexed: 11/17/2022] Open
Abstract
Mutations in the gene encoding emerin (EMD) cause Emery–Dreifuss muscular dystrophy (EDMD1), an inherited disorder characterized by progressive skeletal muscle wasting, irregular heart rhythms and contractures of major tendons. The skeletal muscle defects seen in EDMD are caused by failure of muscle stem cells to differentiate and regenerate the damaged muscle. However, the underlying mechanisms remain poorly understood. Most EDMD1 patients harbor nonsense mutations and have no detectable emerin protein. There are three EDMD-causing emerin mutants (S54F, Q133H, and Δ95–99) that localize correctly to the nuclear envelope and are expressed at wildtype levels. We hypothesized these emerin mutants would share in the disruption of key molecular pathways involved in myogenic differentiation. We generated myogenic progenitors expressing wildtype emerin and each EDMD1-causing emerin mutation (S54F, Q133H, Δ95–99) in an emerin-null (EMD−/y) background. S54F, Q133H, and Δ95–99 failed to rescue EMD−/y myogenic differentiation, while wildtype emerin efficiently rescued differentiation. RNA sequencing was done to identify pathways and networks important for emerin regulation of myogenic differentiation. This analysis significantly reduced the number of pathways implicated in EDMD1 muscle pathogenesis.
Collapse
|
3
|
Hinnant TD, Alvarez AA, Ables ET. Temporal remodeling of the cell cycle accompanies differentiation in the Drosophila germline. Dev Biol 2017; 429:118-131. [PMID: 28711427 DOI: 10.1016/j.ydbio.2017.07.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Revised: 06/15/2017] [Accepted: 07/05/2017] [Indexed: 12/27/2022]
Abstract
Development of multicellular organisms relies upon the coordinated regulation of cellular differentiation and proliferation. Growing evidence suggests that some molecular regulatory pathways associated with the cell cycle machinery also dictate cell fate; however, it remains largely unclear how the cell cycle is remodeled in concert with cell differentiation. During Drosophila oogenesis, mature oocytes are created through a series of precisely controlled division and differentiation steps, originating from a single tissue-specific stem cell. Further, germline stem cells (GSCs) and their differentiating progeny remain in a predominantly linear arrangement as oogenesis proceeds. The ability to visualize the stepwise events of differentiation within the context of a single tissue make the Drosophila ovary an exceptional model for study of cell cycle remodeling. To describe how the cell cycle is remodeled in germ cells as they differentiate in situ, we used the Drosophila Fluorescence Ubiquitin-based Cell Cycle Indicator (Fly-FUCCI) system, in which degradable versions of GFP::E2f1 and RFP::CycB fluorescently label cells in each phase of the cell cycle. We found that the lengths of the G1, S, and G2 phases of the cell cycle change dramatically over the course of differentiation, and identified the 4/8-cell cyst as a key developmental transition state in which cells prepare for specialized cell cycles. Our data suggest that the transcriptional activator E2f1, which controls the transition from G1 to S phase, is a key regulator of mitotic divisions in the early germline. Our data support the model that E2f1 is necessary for proper GSC proliferation, self-renewal, and daughter cell development. In contrast, while E2f1 degradation by the Cullin 4 (Cul4)-containing ubiquitin E3 ligase (CRL4) is essential for developmental transitions in the early germline, our data do not support a role for E2f1 degradation as a mechanism to limit GSC proliferation or self-renewal. Taken together, these findings provide further insight into the regulation of cell proliferation and the acquisition of differentiated cell fate, with broad implications across developing tissues.
Collapse
Affiliation(s)
- Taylor D Hinnant
- Department of Biology, East Carolina University, Greenville, NC 27858, USA
| | - Arturo A Alvarez
- Department of Biology, East Carolina University, Greenville, NC 27858, USA
| | - Elizabeth T Ables
- Department of Biology, East Carolina University, Greenville, NC 27858, USA.
| |
Collapse
|
4
|
Thurlings I, de Bruin A. E2F Transcription Factors Control the Roller Coaster Ride of Cell Cycle Gene Expression. Methods Mol Biol 2016; 1342:71-88. [PMID: 26254918 DOI: 10.1007/978-1-4939-2957-3_4] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Initially, the E2F transcription factor was discovered as a factor able to bind the adenovirus E2 promoter and activate viral genes. Afterwards it was shown that E2F also binds to promoters of nonviral genes such as C-MYC and DHFR, which were already known at that time to be important for cell growth and DNA metabolism, respectively. These findings provided the first clues that the E2F transcription factor might be an important regulator of the cell cycle. Since this initial discovery in 1987, several additional E2F family members have been identified, and more than 100 targets genes have been shown to be directly regulated by E2Fs, the majority of these are important for controlling the cell cycle. The progression of a cell through the cell cycle is accompanied with the increased expression of a specific set of genes during one phase of the cell cycle and the decrease of the same set of genes during a later phase of the cell cycle. This roller coaster ride, or oscillation, of gene expression is essential for the proper progression through the cell cycle to allow accurate DNA replication and cell division. The E2F transcription factors have been shown to be critical for the temporal expression of the oscillating cell cycle genes. This review will focus on how the oscillation of E2Fs and their targets is regulated by transcriptional, post-transcriptional and post-translational mechanism in mammals, yeast, flies, and worms. Furthermore, we will discuss the functional impact of E2Fs on the cell cycle progression and outline the consequences when E2F expression is disturbed.
Collapse
Affiliation(s)
- Ingrid Thurlings
- Department of Pathobiology, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CL, Utrecht, The Netherlands
| | | |
Collapse
|
5
|
Elenbaas JS, Mouawad R, Henry RW, Arnosti DN, Payankaulam S. Role of Drosophila retinoblastoma protein instability element in cell growth and proliferation. Cell Cycle 2015; 14:589-97. [PMID: 25496208 DOI: 10.4161/15384101.2014.991182] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The RB tumor suppressor, a regulator of the cell cycle, apoptosis, senescence, and differentiation, is frequently mutated in human cancers. We recently described an evolutionarily conserved C-terminal "instability element" (IE) of the Drosophila Rbf1 retinoblastoma protein that regulates its turnover. Misexpression of wild-type or non-phosphorylatable forms of the Rbf1 protein leads to repression of cell cycle genes. In contrast, overexpression of a defective form of Rbf1 lacking the IE (ΔIE), a stabilized but transcriptionally less active form of the protein, induced ectopic S phase in cell culture. To determine how mutations in the Rbf1 IE may induce dominant effects in a developmental context, we assessed the impact of in vivo expression of mutant Rbf1 proteins on wing development. ΔIE expression resulted in overgrowth of larval wing imaginal discs and larger adult wings containing larger cells. In contrast, a point mutation in a conserved lysine of the IE (K774A) generated severely disrupted, reduced wings. These contrasting effects appear to correlate with control of apoptosis; expression of the pro-apoptotic reaper gene and DNA fragmentation measured by acridine orange stain increased in flies expressing the K774A isoform and was suppressed by expression of Rbf1ΔIE. Intriguingly, cancer associated mutations affecting RB homologs p130 and p107 may similarly induce dominant phenotypes.
Collapse
Key Words
- Apaf-1, Apoptotic protease activating factor 1
- Ark, Apaf-1 related killer
- CDK, Cyclin-dependent kinase
- COP9, Constitutive photomorphogenic 9
- Dpp, Decapentaplegic
- Drosophila
- E2F, E2 promoter binding factor
- Hid, Head involution defective
- IE, Instability element
- PCNA, Proliferating cell nuclear antigen
- Polα, DNA polymerase α
- Rb, Retinoblastoma
- Wnt, Wingless
- apoptosis
- cell size
- retinoblastoma
- transcriptional regulation
- tumor suppressor
- wing size
Collapse
Affiliation(s)
- Jared S Elenbaas
- a Department of Biochemistry and Molecular Biology ; Michigan State University ; East Lansing , MI USA
| | | | | | | | | |
Collapse
|
6
|
Sengupta S, Henry RW. Regulation of the retinoblastoma–E2F pathway by the ubiquitin–proteasome system. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2015; 1849:1289-97. [DOI: 10.1016/j.bbagrm.2015.08.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Revised: 08/18/2015] [Accepted: 08/20/2015] [Indexed: 12/16/2022]
|
7
|
Djabrayan NV, Cruz J, de Miguel C, Franch-Marro X, Casanova J. Specification of Differentiated Adult Progenitors via Inhibition of Endocycle Entry in the Drosophila Trachea. Cell Rep 2014; 9:859-65. [DOI: 10.1016/j.celrep.2014.09.043] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Revised: 06/16/2014] [Accepted: 09/24/2014] [Indexed: 12/11/2022] Open
|
8
|
The pro-apoptotic activity of Drosophila Rbf1 involves dE2F2-dependent downregulation of diap1 and buffy mRNA. Cell Death Dis 2014; 5:e1405. [PMID: 25188515 PMCID: PMC4540203 DOI: 10.1038/cddis.2014.372] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 07/23/2014] [Accepted: 07/28/2014] [Indexed: 11/16/2022]
Abstract
The retinoblastoma gene, rb, ensures at least its tumor suppressor function by inhibiting cell proliferation. Its role in apoptosis is more complex and less described than its role in cell cycle regulation. Rbf1, the Drosophila homolog of Rb, has been found to be pro-apoptotic in proliferative tissue. However, the way it induces apoptosis at the molecular level is still unknown. To decipher this mechanism, we induced rbf1 expression in wing proliferative tissue. We found that Rbf1-induced apoptosis depends on dE2F2/dDP heterodimer, whereas dE2F1 transcriptional activity is not required. Furthermore, we highlight that Rbf1 and dE2F2 downregulate two major anti-apoptotic genes in Drosophila: buffy, an anti-apoptotic member of Bcl-2 family and diap1, a gene encoding a caspase inhibitor. On the one hand, Rbf1/dE2F2 repress buffy at the transcriptional level, which contributes to cell death. On the other hand, Rbf1 and dE2F2 upregulate how expression. How is a RNA binding protein involved in diap1 mRNA degradation. By this way, Rbf1 downregulates diap1 at a post-transcriptional level. Moreover, we show that the dREAM complex has a part in these transcriptional regulations. Taken together, these data show that Rbf1, in cooperation with dE2F2 and some members of the dREAM complex, can downregulate the anti-apoptotic genes buffy and diap1, and thus promote cell death in a proliferative tissue.
Collapse
|
9
|
Endocycles: a recurrent evolutionary innovation for post-mitotic cell growth. Nat Rev Mol Cell Biol 2014; 15:197-210. [PMID: 24556841 DOI: 10.1038/nrm3756] [Citation(s) in RCA: 254] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In endoreplication cell cycles, known as endocycles, cells successively replicate their genomes without segregating chromosomes during mitosis and thereby become polyploid. Such cycles, for which there are many variants, are widespread in protozoa, plants and animals. Endocycling cells can achieve ploidies of >200,000 C (chromatin-value); this increase in genomic DNA content allows a higher genomic output, which can facilitate the construction of very large cells or enhance macromolecular secretion. These cells execute normal S phases, using a G1-S regulatory apparatus similar to the one used by mitotic cells, but their capability to segregate chromosomes has been suppressed, typically by downregulation of mitotic cyclin-dependent kinase activity. Endocycles probably evolved many times, and the various endocycle mechanisms found in nature highlight the versatility of the cell cycle control machinery.
Collapse
|
10
|
Ambrus AM, Islam ABMMK, Holmes KB, Moon NS, Lopez-Bigas N, Benevolenskaya EV, Frolov MV. Loss of dE2F compromises mitochondrial function. Dev Cell 2014; 27:438-51. [PMID: 24286825 DOI: 10.1016/j.devcel.2013.10.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Revised: 08/06/2013] [Accepted: 10/02/2013] [Indexed: 10/26/2022]
Abstract
E2F/DP transcription factors regulate cell proliferation and apoptosis. Here, we investigated the mechanism of the resistance of Drosophila dDP mutants to irradiation-induced apoptosis. Contrary to the prevailing view, this is not due to an inability to induce the apoptotic transcriptional program, because we show that this program is induced; rather, this is due to a mitochondrial dysfunction of dDP mutants. We attribute this defect to E2F/DP-dependent control of expression of mitochondria-associated genes. Genetic attenuation of several of these E2F/DP targets mimics the dDP mutant mitochondrial phenotype and protects against irradiation-induced apoptosis. Significantly, the role of E2F/DP in the regulation of mitochondrial function is conserved between flies and humans. Thus, our results uncover a role of E2F/DP in the regulation of mitochondrial function and demonstrate that this aspect of E2F regulation is critical for the normal induction of apoptosis in response to irradiation.
Collapse
Affiliation(s)
- Aaron M Ambrus
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL 60607, USA
| | | | | | | | | | | | | |
Collapse
|
11
|
Abstract
The accurate transition from G1 phase of the cell cycle to S phase is crucial for the control of eukaryotic cell proliferation, and its misregulation promotes oncogenesis. During G1 phase, growth-dependent cyclin-dependent kinase (CDK) activity promotes DNA replication and initiates G1-to-S phase transition. CDK activation initiates a positive feedback loop that further increases CDK activity, and this commits the cell to division by inducing genome-wide transcriptional changes. G1-S transcripts encode proteins that regulate downstream cell cycle events. Recent work is beginning to reveal the complex molecular mechanisms that control the temporal order of transcriptional activation and inactivation, determine distinct functional subgroups of genes and link cell cycle-dependent transcription to DNA replication stress in yeast and mammals.
Collapse
|
12
|
Kawamori A, Shimaji K, Yamaguchi M. Control of e2f1 and PCNA by Drosophila transcription factor DREF. Genesis 2013; 51:741-50. [PMID: 23907762 DOI: 10.1002/dvg.22419] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Revised: 07/19/2013] [Accepted: 07/24/2013] [Indexed: 12/26/2022]
Abstract
DREF (DNA replication-related element-binding factor), a zinc finger type transcription factor required for proper cell cycle progression in both mitotic and endocycling cells, is a positive regulator of E2F1, an important transcription factor which regulates genes related to the S-phase of the cell cycle. DREF and E2F1 regulate similar sets of replication-related genes, including proliferating cell nuclear antigen (PCNA), and play roles in the G1 to S phase transition. However, the relationships between dref and e2f1 or PCNA during development are poorly understood. Here, we provided evidence for novel control of e2f1 and PCNA involving DREF in endocycling cells. Somatic clone analysis demonstrated that dref knockdown stabilized E2F1 expression at posttranscriptional levels in endocycling salivary gland cells. Similarly, PCNA expression was up-regulated in the endocycling salivary gland cells. Genetic interaction analysis indicated that the endoreplication defects are partly caused via possible enhancement of E2F1 activity. From these results and previous reports, we conclude that regulation of e2f1 and PCNA by DREF in vivo is complex and the regulation mechanism may differ with the tissue and/or positions in the tissue.
Collapse
Affiliation(s)
- Akihito Kawamori
- Department of Applied Biology and Insect Biomedical Research Center, Kyoto Institute of Technology, Sakyo-ku, Kyoto, Japan
| | | | | |
Collapse
|
13
|
Garcia-Jove Navarro M, Basset C, Arcondéguy T, Touriol C, Perez G, Prats H, Lacazette E. Api5 contributes to E2F1 control of the G1/S cell cycle phase transition. PLoS One 2013; 8:e71443. [PMID: 23940755 PMCID: PMC3737092 DOI: 10.1371/journal.pone.0071443] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2011] [Accepted: 07/05/2013] [Indexed: 02/02/2023] Open
Abstract
Background The E2f transcription factor family has a pivotal role in controlling the cell fate in general, and in particular cancer development, by regulating the expression of several genes required for S phase entry and progression through the cell cycle. It has become clear that the transcriptional activation of at least one member of the family, E2F1, can also induce apoptosis. An appropriate balance of positive and negative regulators appears to be necessary to modulate E2F1 transcriptional activity, and thus cell fate. Methodology/Principal Findings In this report, we show that Api5, already known as a regulator of E2F1 induced-apoptosis, is required for the E2F1 transcriptional activation of G1/S transition genes, and consequently, for cell cycle progression and cell proliferation. Api5 appears to be a cell cycle regulated protein. Removal of Api5 reduces cyclin E, cyclin A, cyclin D1 and Cdk2 levels, causing G1 cell cycle arrest and cell cycle delay. Luciferase assays established that Api5 directly regulates the expression of several G1/S genes under E2F1 control. Using protein/protein and protein/DNA immunoprecipitation studies, we demonstrate that Api5, even if not physically interacting with E2F1, contributes positively to E2F1 transcriptional activity by increasing E2F1 binding to its target promoters, through an indirect mechanism. Conclusion/Significance The results described here support the pivotal role of cell cycle related proteins, that like E2F1, may act as tumor suppressors or as proto-oncogenes during cancer development, depending on the behavior of their positive and negative regulators. According to our findings, Api5 contributes to E2F1 transcriptional activation of cell cycle-associated genes by facilitating E2F1 recruitment onto its target promoters and thus E2F1 target gene transcription.
Collapse
Affiliation(s)
| | - Céline Basset
- INSERM UMR 1037, Cancer Research Center of Toulouse (CRCT), Cancer Department, Toulouse, France
| | - Tania Arcondéguy
- INSERM UMR 1037, Cancer Research Center of Toulouse (CRCT), Cancer Department, Toulouse, France
| | - Christian Touriol
- INSERM UMR 1037, Cancer Research Center of Toulouse (CRCT), Cancer Department, Toulouse, France
| | - Guillaume Perez
- INSERM UMR 1037, Cancer Research Center of Toulouse (CRCT), Cancer Department, Toulouse, France
| | - Hervé Prats
- INSERM UMR 1037, Cancer Research Center of Toulouse (CRCT), Cancer Department, Toulouse, France
| | - Eric Lacazette
- INSERM UMR 1037, Cancer Research Center of Toulouse (CRCT), Cancer Department, Toulouse, France
- * E-mail:
| |
Collapse
|
14
|
Neisch AL, Formstecher E, Fehon RG. Conundrum, an ARHGAP18 orthologue, regulates RhoA and proliferation through interactions with Moesin. Mol Biol Cell 2013; 24:1420-33. [PMID: 23468526 PMCID: PMC3639053 DOI: 10.1091/mbc.e12-11-0800] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
RhoA, a small GTPase, regulates epithelial integrity and morphogenesis by controlling filamentous actin assembly and actomyosin contractility. Another important cytoskeletal regulator, Moesin (Moe), an ezrin, radixin, and moesin (ERM) protein, has the ability to bind to and organize cortical F-actin, as well as the ability to regulate RhoA activity. ERM proteins have previously been shown to interact with both RhoGEF (guanine nucleotide exchange factors) and RhoGAP (GTPase activating proteins), proteins that control the activation state of RhoA, but the functions of these interactions remain unclear. We demonstrate that Moe interacts with an unusual RhoGAP, Conundrum (Conu), and recruits it to the cell cortex to negatively regulate RhoA activity. In addition, we show that cortically localized Conu can promote cell proliferation and that this function requires RhoGAP activity. Surprisingly, Conu's ability to promote growth also appears dependent on increased Rac activity. Our results reveal a molecular mechanism by which ERM proteins control RhoA activity and suggest a novel linkage between the small GTPases RhoA and Rac in growth control.
Collapse
Affiliation(s)
- Amanda L Neisch
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637, USA
| | | | | |
Collapse
|
15
|
Herr A, Longworth M, Ji JY, Korenjak M, Macalpine DM, Dyson NJ. Identification of E2F target genes that are rate limiting for dE2F1-dependent cell proliferation. Dev Dyn 2012; 241:1695-707. [PMID: 22972499 DOI: 10.1002/dvdy.23857] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/15/2012] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Microarray studies have shown that the E2F transcription factor influences the expression of many genes but it is unclear how many of these targets are important for E2F-mediated control of cell proliferation. RESULTS We assembled a collection of mutant alleles of 44 dE2F1-dependent genes and tested whether these could modify visible phenotypes caused by the tissue-specific depletion of dE2F1. More than half of the mutant alleles dominantly enhanced de2f1-dsRNA phenotypes suggesting that the in vivo functions of dE2F1 can be limited by the reduction in the level of expression of many different targets. Unexpectedly, several mutant alleles suppressed de2f1-dsRNA phenotypes. One of the strongest of these suppressors was Orc5. Depletion of ORC5 increased proliferation in cells with reduced dE2F1 and specifically elevated the expression of dE2F1-regulated genes. Importantly, these effects were independent of dE2F1 protein levels, suggesting that reducing the level of ORC5 did not interfere with the general targeting of dE2F1. CONCLUSIONS We propose that the interaction between ORC5 and dE2F1 may reflect a feedback mechanism between replication initiation proteins and dE2F1 that ensures that proliferating cells maintain a robust level of replication proteins for the next cell cycle.
Collapse
Affiliation(s)
- Anabel Herr
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Laboratory of Molecular Oncology, Charlestown, MA 02129, USA
| | | | | | | | | | | |
Collapse
|
16
|
Rovani MK, Brachmann CB, Ramsay G, Katzen AL. The dREAM/Myb-MuvB complex and Grim are key regulators of the programmed death of neural precursor cells at the Drosophila posterior wing margin. Dev Biol 2012; 372:88-102. [PMID: 22960039 DOI: 10.1016/j.ydbio.2012.08.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Revised: 07/23/2012] [Accepted: 08/14/2012] [Indexed: 10/27/2022]
Abstract
Successful development of a multicellular organism depends on the finely tuned orchestration of cell proliferation, differentiation and apoptosis from embryogenesis through adulthood. The MYB-gene family encodes sequence-specific DNA-binding transcription factors that have been implicated in the regulation of both normal and neoplastic growth. The Drosophila Myb protein, DMyb (and vertebrate B-Myb protein), has been shown to be part of the dREAM/MMB complex, a large multi-subunit complex, which in addition to four Myb-interacting proteins including Mip130, contains repressive E2F and pRB proteins. This complex has been implicated in the regulation of DNA replication within the context of chorion gene amplification and transcriptional regulation of a wide array of genes. Detailed phenotypic analysis of mutations in the Drosophila myb gene, Dm myb, has revealed a previously undiscovered function for the dREAM/MMB complex in regulating programmed cell death (PCD). In cooperation with the pro-apoptotic protein Grim and dREAM/MMB, DMyb promotes the PCD of specified sensory organ precursor daughter cells in at least two different settings in the peripheral nervous system: the pIIIb precursor of the neuron and sheath cells in the posterior wing margin and the glial cell in the thoracic microchaete lineage. Unlike previously analyzed settings, in which the main role of DMyb has been to antagonize the activities of other dREAM/MMB complex members, it appears to be the critical effector in promoting PCD. The finding that Dm myb and grim are both involved in regulating PCD in two distinct settings suggests that these two genes may often work together to mediate PCD.
Collapse
Affiliation(s)
- Margritte K Rovani
- Department of Biochemistry and Molecular Genetics University of Illinois at Chicago, 900 South Ashland Avenue, Chicago, IL 60607-7170, USA
| | | | | | | |
Collapse
|
17
|
Nicolay BN, Dyson NJ. It's all in the timing: too much E2F is a bad thing. PLoS Genet 2012; 8:e1002909. [PMID: 22916039 PMCID: PMC3420940 DOI: 10.1371/journal.pgen.1002909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Affiliation(s)
- Brandon N. Nicolay
- Massachusetts General Hospital Cancer Research Center, Charlestown, Massachusetts, United States of America
| | - Nicholas J. Dyson
- Massachusetts General Hospital Cancer Research Center, Charlestown, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
18
|
Davidson JM, Duronio RJ. S phase-coupled E2f1 destruction ensures homeostasis in proliferating tissues. PLoS Genet 2012; 8:e1002831. [PMID: 22916021 PMCID: PMC3420931 DOI: 10.1371/journal.pgen.1002831] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Accepted: 05/29/2012] [Indexed: 12/23/2022] Open
Abstract
Precise control of cell cycle regulators is critical for normal development and tissue homeostasis. E2F transcription factors are activated during G1 to drive the G1-S transition and are then inhibited during S phase by a variety of mechanisms. Here, we genetically manipulate the single Drosophila activator E2F (E2f1) to explore the developmental requirement for S phase–coupled E2F down-regulation. Expression of an E2f1 mutant that is not destroyed during S phase drives cell cycle progression and causes apoptosis. Interestingly, this apoptosis is not exclusively the result of inappropriate cell cycle progression, because a stable E2f1 mutant that cannot function as a transcription factor or drive cell cycle progression also triggers apoptosis. This observation suggests that the inappropriate presence of E2f1 protein during S phase can trigger apoptosis by mechanisms that are independent of E2F acting directly at target genes. The ability of S phase-stabilized E2f1 to trigger apoptosis requires an interaction between E2f1 and the Drosophila pRb homolog, Rbf1, and involves induction of the pro-apoptotic gene, hid. Simultaneously blocking E2f1 destruction during S phase and inhibiting the induction of apoptosis results in tissue overgrowth and lethality. We propose that inappropriate accumulation of E2f1 protein during S phase triggers the elimination of potentially hyperplastic cells via apoptosis in order to ensure normal development of rapidly proliferating tissues. Rapidly growing tissues provide an excellent opportunity to study the careful balance between cell proliferation and apoptosis needed for normal organ structure and function in developing organisms. We present evidence that a transcription factor critical for regulating progression of the Drosophila melanogaster cell cycle, E2f1, serves also as an indicator of normal tissue development. E2f1 activation during G1 phase of the cell cycle triggers entry into S phase. E2f1 activity is then rapidly inhibited during S phase by a mechanism that couples E2f1 proteolysis directly to DNA synthesis. Expression during larval development of an S phase-stabilized form of E2f1 results in apoptosis in rapidly proliferating adult wing precursor cells, even when this stabilized E2f1 protein is mutated such that it cannot induce transcription or cell cycle progression. Preventing the ability of S phase-stabilized E2f1 to induce apoptosis results in massive tissue overgrowth. We propose that aberrant E2f1 accumulation during S phase triggers apoptosis in order to remove potentially hyper-proliferative cells and to maintain homeostasis during tissue growth.
Collapse
Affiliation(s)
- Jean M. Davidson
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Robert J. Duronio
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Program in Molecular Biology and Biotechnology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
19
|
Kagey JD, Brown JA, Moberg KH. Regulation of Yorkie activity in Drosophila imaginal discs by the Hedgehog receptor gene patched. Mech Dev 2012; 129:339-49. [PMID: 22705500 DOI: 10.1016/j.mod.2012.05.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Revised: 05/06/2012] [Accepted: 05/10/2012] [Indexed: 12/19/2022]
Abstract
The Hedgehog (Hh) pathway was first defined by its role in segment polarity in the Drosophila melanogaster embryonic epidermis and has since been linked to many aspects of vertebrate development and disease. In humans, mutation of the Patched1 (PTCH1) gene, which encodes an inhibitor of Hh signaling, leads to tumors of the skin and pediatric brain. Despite the high level of conservation between the vertebrate and invertebrate Hh pathways, studies in Drosophila have yet to find direct evidence that ptc limits organ size. Here we report identification of Drosophila ptc in a screen for mutations that require a synergistic apoptotic block in order to drive overgrowth. Developing imaginal discs containing clones of ptc mutant cells immortalized by the concurrent loss of the Apaf-1-related killer (Ark) gene are overgrown due, in large part, to the overgrowth of wild type portions of these discs. This phenotype correlates with overexpression of the morphogen Dpp in ptc,Ark double-mutant cells, leading to elevated phosphorylation of the Dpp pathway effector Mad (p-Mad) in cells surrounding ptc,Ark mutant clones. p-Mad functions with the Hippo pathway oncoprotein Yorkie (Yki) to induce expression of the pro-growth/anti-apoptotic microRNA bantam. Accordingly, Yki activity is elevated among wild type cells surrounding ptc,Ark clones and alleles of bantam and yki dominantly suppress the enlarged-disc phenotype produced by loss of ptc. These data suggest that ptc can regulate Yki in a non-cell autonomous manner and reveal an intercellular link between the Hh and Hippo pathways that may contribute to growth-regulatory properties of the Hh pathway in development and disease.
Collapse
Affiliation(s)
- Jacob D Kagey
- Department of Biology, University of Detroit Mercy, Detroit, MI, USA.
| | | | | |
Collapse
|
20
|
Smetana O, Široký J, Houlné G, Opatrný Z, Chabouté ME. Non-apoptotic programmed cell death with paraptotic-like features in bleomycin-treated plant cells is suppressed by inhibition of ATM/ATR pathways or NtE2F overexpression. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:2631-44. [PMID: 22268149 DOI: 10.1093/jxb/err439] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
In plants, different forms of programmed cell death (PCD) have been identified, but they only partially correspond to those described for animals, which is most probably due to structural differences between animal and plant cells. Here, the results show that in tobacco BY-2 cells, bleomycin (BLM), an inducer of double-strand breaks (DSBs), triggers a novel type of non-apoptotic PCD with paraptotic-like features. Analysis of numerous PCD markers revealed an extensive vacuolization, vacuolar rupture, and chromatin condensation, but no apoptotic DNA fragmentation, fragmentation of the nuclei, or sensitivity to caspase inhibitors. BLM-induced PCD was cell cycle regulated, occurring predominantly upon G(2)/M cell cycle checkpoint activation. In addition, this paraptotic-like PCD was at least partially inhibited by caffeine, a known inhibitor of DNA damage sensor kinases ATM and ATR. Interestingly, overexpression of one NtE2F transcriptional factor, whose homologues play a dual role in animal apoptosis and DNA repair, reduced PCD induction and modulated G(2)/M checkpoint activation in BY-2 cells. These observations provide a solid ground for further investigations into the paraptotic-like PCD in plants, which might represent an ancestral non-apoptotic form of PCD conserved among animals, protists, and plants.
Collapse
Affiliation(s)
- Ondřej Smetana
- Department of Plant Experimental Biology, Faculty of Sciences, Charles University, Prague 12844, Czech Republic
| | | | | | | | | |
Collapse
|
21
|
Zielke N, Kim KJ, Tran V, Shibutani ST, Bravo MJ, Nagarajan S, van Straaten M, Woods B, von Dassow G, Rottig C, Lehner CF, Grewal SS, Duronio RJ, Edgar BA. Control of Drosophila endocycles by E2F and CRL4(CDT2). Nature 2011; 480:123-7. [PMID: 22037307 PMCID: PMC3330263 DOI: 10.1038/nature10579] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2010] [Accepted: 09/21/2011] [Indexed: 12/20/2022]
Abstract
Endocycles are variant cell cycles comprised of DNA Synthesis (S)- and Gap (G)- phases but lacking mitosis1,2. Such cycles facilitate post-mitotic growth in many invertebrate and plant cells, and are so ubiquitous that they may account for up to half the world’s biomass3,4. DNA replication in endocycling Drosophila cells is triggered by Cyclin E/Cyclin Dependent Kinase 2 (CycE/Cdk2), but this kinase must be inactivated during each G-phase to allow the assembly of pre-Replication Complexes (preRCs) for the next S-phase5,6. How CycE/Cdk2 is periodically silenced to allow re-replication has not been established. Here, using genetic tests in parallel with computational modeling, we show that Drosophila’s endocycles are driven by a molecular oscillator in which the E2F1 transcription factor promotes CycE expression and S-phase initiation, S-phase then activates the CRL4Cdt2 ubiquitin ligase, and this in turn mediates the destruction of E2F17. We propose that it is the transient loss of E2F1 during S-phases that creates the window of low Cdk activity required for preRC formation. In support of this model over-expressed E2F1 accelerated endocycling, whereas a stabilized variant of E2F1 blocked endocycling by de-regulating target genes including CycE, as well as Cdk1 and mitotic Cyclins. Moreover, we find that altering cell growth by changing nutrition or TOR signaling impacts E2F1 translation, thereby making endocycle progression growth-dependent. Many of the regulatory interactions essential to this novel cell cycle oscillator are conserved in animals and plants1,2,8, suggesting that elements of this mechanism act in most growth-dependent cell cycles.
Collapse
Affiliation(s)
- Norman Zielke
- German Cancer Research Center (DKFZ)-Zentrum für Molekulare Biologie der Universität Heidelberg Alliance, Im Neuenheimer Feld 282, 69120 Heidelberg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Abstract
Eukaryotic cell cycle transitions are driven by E3 ubiquitin ligases that catalyze the ubiquitylation and destruction of specific protein targets. For example, the anaphase-promoting complex/cyclosome (APC/C) promotes the exit from mitosis via destruction of securin and mitotic cyclins, whereas CRL1(Skp2) allows entry into S phase by targeting the destruction of the cyclin-dependent kinase (CDK) inhibitor p27. Recently, an E3 ubiquitin ligase called CRL4(Cdt2) has been characterized, which couples proteolysis to DNA synthesis via an unusual mechanism that involves display of substrate degrons on the DNA polymerase processivity factor PCNA. Through its destruction of Cdt1, p21, and Set8, CRL4(Cdt2) has emerged as a master regulator that prevents rereplication in S phase. In addition, it also targets other factors such as E2F and DNA polymerase η. In this review, we discuss our current understanding of the molecular mechanism of substrate recognition by CRL4(Cdt2) and how this E3 ligase helps to maintain genome integrity.
Collapse
Affiliation(s)
- Courtney G Havens
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
23
|
Truscott M, Islam ABMMK, López-Bigas N, Frolov MV. mir-11 limits the proapoptotic function of its host gene, dE2f1. Genes Dev 2011; 25:1820-34. [PMID: 21856777 DOI: 10.1101/gad.16947411] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The E2F family of transcription factors regulates the expression of both genes associated with cell proliferation and genes that regulate cell death. The net outcome is dependent on cellular context and tissue environment. The mir-11 gene is located in the last intron of the Drosophila E2F1 homolog gene dE2f1, and its expression parallels that of dE2f1. Here, we investigated the role of miR-11 and found that miR-11 specifically modulated the proapoptotic function of its host gene, dE2f1. A mir-11 mutant was highly sensitive to dE2F1-dependent, DNA damage-induced apoptosis. Consistently, coexpression of miR-11 in transgenic animals suppressed dE2F1-induced apoptosis in multiple tissues, while exerting no effect on dE2F1-driven cell proliferation. Importantly, miR-11 repressed the expression of the proapoptotic genes reaper (rpr) and head involution defective (hid), which are directly regulated by dE2F1 upon DNA damage. In addition to rpr and hid, we identified a novel set of cell death genes that was also directly regulated by dE2F1 and miR-11. Thus, our data support a model in which the coexpression of miR-11 limits the proapoptotic function of its host gene, dE2f1, upon DNA damage by directly modulating a dE2F1-dependent apoptotic transcriptional program.
Collapse
Affiliation(s)
- Mary Truscott
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, Illinois 60607, USA
| | | | | | | |
Collapse
|
24
|
Gilbert MM, Tipping M, Veraksa A, Moberg KH. A screen for conditional growth suppressor genes identifies the Drosophila homolog of HD-PTP as a regulator of the oncoprotein Yorkie. Dev Cell 2011; 20:700-12. [PMID: 21571226 DOI: 10.1016/j.devcel.2011.04.012] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Revised: 02/28/2011] [Accepted: 04/26/2011] [Indexed: 12/19/2022]
Abstract
Mammalian cancers depend on "multiple hits," some of which promote growth and some of which block apoptosis. We screened for mutations that require a synergistic block in apoptosis to promote tissue overgrowth and identified myopic (mop), the Drosophila homolog of the candidate tumor-suppressor and endosomal regulator His-domain protein tyrosine phosphatase (HD-PTP). We find that Myopic regulates the Salvador/Warts/Hippo (SWH) tumor suppressor pathway: Myopic PPxY motifs bind conserved residues in the WW domains of the transcriptional coactivator Yorkie, and Myopic colocalizes with Yorkie at endosomes. Myopic controls Yorkie endosomal association and protein levels, ultimately influencing expression of some Yorkie target genes. However, the antiapoptotic gene diap1 is not affected, which may explain the conditional nature of the myopic growth phenotype. These data establish Myopic as a Yorkie regulator and implicate Myopic-dependent association of Yorkie with endosomal compartments as a regulatory step in nuclear outputs of the SWH pathway.
Collapse
Affiliation(s)
- M Melissa Gilbert
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA.
| | | | | | | |
Collapse
|
25
|
Davidson JM, Duronio RJ. Using Drosophila S2 cells to measure S phase-coupled protein destruction via flow cytometry. Methods Mol Biol 2011; 782:205-219. [PMID: 21870294 DOI: 10.1007/978-1-61779-273-1_15] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Cell proliferation depends on the timely synthesis and destruction of proteins at specific phases of the cell cycle. Recently it was discovered that the destruction of several key cell cycle regulatory proteins during S phase is coupled directly to DNA replication. These proteins harbor a motif called a PIP degron that mediates binding to chromatin bound PCNA at replication forks and recruits the CRL4(Cdt2) E3 ubiquitin ligase. These interactions comprise an elegant mechanism for coupling DNA replication with ubiquitylation and subsequent proteolysis by the 26S proteasome. Here we describe a flow cytometry-based method using Drosophila S2 cells that recapitulates S phase-specific protein proteolysis. Because of the high degree of evolutionary conservation of the PIP degron and CRL4(Cdt2) and the ease of culturing and inhibiting gene function by RNAi in S2 cells, our flow cytometric method should serve as a general tool for determining whether any eukaryotic protein is subject to replication-coupled protein destruction.
Collapse
Affiliation(s)
- Jean M Davidson
- Department of Biology, University of North Carolina, Chapel Hill, NC, USA.
| | | |
Collapse
|
26
|
Maqbool SB, Mehrotra S, Kolpakas A, Durden C, Zhang B, Zhong H, Calvi BR. Dampened activity of E2F1-DP and Myb-MuvB transcription factors in Drosophila endocycling cells. J Cell Sci 2010; 123:4095-106. [PMID: 21045111 DOI: 10.1242/jcs.064519] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The endocycle is a variant cell cycle comprised of alternating gap (G) and DNA synthesis (S) phases (endoreplication) without mitosis (M), which results in DNA polyploidy and large cell size. Endocycles occur widely in nature, but much remains to be learned about the regulation of this modified cell cycle. Here, we compared gene expression profiles of mitotic cycling larval brain and disc cells with the endocycling cells of fat body and salivary gland of the Drosophila larva. The results indicated that many genes that are positively regulated by the heterodimeric E2F1-DP or Myb-MuvB complex transcription factors are expressed at lower levels in endocycling cells. Many of these target genes have functions in M phase, suggesting that dampened E2F1 and Myb activity promote endocycles. Many other E2F1 target genes that are required for DNA replication were also repressed in endocycling cells, an unexpected result given that these cells must duplicate up to thousands of genome copies during each S phase. For some EF2-regulated genes, the lower level of mRNA in endocycling cells resulted in lower protein concentration, whereas for other genes it did not, suggesting a contribution of post-transcriptional regulation. Both knockdown and overexpression of E2F1-DP and Myb-MuvB impaired endocycles, indicating that transcriptional activation and repression must be balanced. Our data suggest that dampened transcriptional activation by E2F1-DP and Myb-MuvB is important to repress mitosis and coordinate the endocycle transcriptional and protein stability oscillators.
Collapse
|
27
|
Pathogenic LRRK2 negatively regulates microRNA-mediated translational repression. Nature 2010; 466:637-41. [PMID: 20671708 DOI: 10.1038/nature09191] [Citation(s) in RCA: 312] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2008] [Accepted: 05/20/2010] [Indexed: 02/08/2023]
Abstract
Gain-of-function mutations in leucine-rich repeat kinase 2 (LRRK2) cause familial as well as sporadic Parkinson's disease characterized by age-dependent degeneration of dopaminergic neurons. The molecular mechanism of LRRK2 action is not known. Here we show that LRRK2 interacts with the microRNA (miRNA) pathway to regulate protein synthesis. Drosophila e2f1 and dp messenger RNAs are translationally repressed by let-7 and miR-184*, respectively. Pathogenic LRRK2 antagonizes these miRNAs, leading to the overproduction of E2F1/DP, previously implicated in cell cycle and survival control and shown here to be critical for LRRK2 pathogenesis. Genetic deletion of let-7, antagomir-mediated blockage of let-7 and miR-184* action, transgenic expression of dp target protector, or replacement of endogenous dp with a dp transgene non-responsive to let-7 each had toxic effects similar to those of pathogenic LRRK2. Conversely, increasing the level of let-7 or miR-184* attenuated pathogenic LRRK2 effects. LRRK2 associated with Drosophila Argonaute-1 (dAgo1) or human Argonaute-2 (hAgo2) of the RNA-induced silencing complex (RISC). In aged fly brain, dAgo1 protein level was negatively regulated by LRRK2. Further, pathogenic LRRK2 promoted the association of phospho-4E-BP1 with hAgo2. Our results implicate deregulated synthesis of E2F1/DP caused by the miRNA pathway impairment as a key event in LRRK2 pathogenesis and suggest novel miRNA-based therapeutic strategies.
Collapse
|
28
|
Wichmann A, Uyetake L, Su TT. E2F1 and E2F2 have opposite effects on radiation-induced p53-independent apoptosis in Drosophila. Dev Biol 2010; 346:80-9. [PMID: 20659447 DOI: 10.1016/j.ydbio.2010.07.023] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2010] [Revised: 07/15/2010] [Accepted: 07/17/2010] [Indexed: 12/15/2022]
Abstract
The ability of ionizing radiation (IR) to induce apoptosis independent of p53 is crucial for successful therapy of cancers bearing p53 mutations. p53-independent apoptosis, however, remains poorly understood relative to p53-dependent apoptosis. IR induces both p53-dependent and p53-independent apoptoses in Drosophila melanogaster, making studies of both modes of cell death possible in a genetically tractable model. Previous studies have found that Drosophila E2F proteins are generally pro-death or neutral with regard to p53-dependent apoptosis. We report here that dE2F1 promotes IR-induced p53-independent apoptosis in larval imaginal discs. Using transcriptional reporters, we provide evidence that, when p53 is mutated, dE2F1 becomes necessary for the transcriptional induction of the pro-apoptotic gene hid after irradiation. In contrast, the second E2F homolog, dE2F2, as well as the net E2F activity, which can be depleted by mutating the common cofactor, dDp, is inhibitory for p53-independent apoptosis. We conclude that p53-dependent and p53-independent apoptoses show differential reliance on E2F activity in Drosophila.
Collapse
Affiliation(s)
- Anita Wichmann
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO 80209-0347, USA
| | | | | |
Collapse
|
29
|
Nicolay BN, Bayarmagnai B, Moon NS, Benevolenskaya EV, Frolov MV. Combined inactivation of pRB and hippo pathways induces dedifferentiation in the Drosophila retina. PLoS Genet 2010; 6:e1000918. [PMID: 20421993 PMCID: PMC2858677 DOI: 10.1371/journal.pgen.1000918] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2009] [Accepted: 03/22/2010] [Indexed: 01/23/2023] Open
Abstract
Functional inactivation of the Retinoblastoma (pRB) pathway is an early and obligatory event in tumorigenesis. The importance of pRB is usually explained by its ability to promote cell cycle exit. Here, we demonstrate that, independently of cell cycle exit control, in cooperation with the Hippo tumor suppressor pathway, pRB functions to maintain the terminally differentiated state. We show that mutations in the Hippo signaling pathway, wts or hpo, trigger widespread dedifferentiation of rbf mutant cells in the Drosophila eye. Initially, rbf wts or rbf hpo double mutant cells are morphologically indistinguishable from their wild-type counterparts as they properly differentiate into photoreceptors, form axonal projections, and express late neuronal markers. However, the double mutant cells cannot maintain their neuronal identity, dedifferentiate, and thus become uncommitted eye specific cells. Surprisingly, this dedifferentiation is fully independent of cell cycle exit defects and occurs even when inappropriate proliferation is fully blocked by a de2f1 mutation. Thus, our results reveal the novel involvement of the pRB pathway during the maintenance of a differentiated state and suggest that terminally differentiated Rb mutant cells are intrinsically prone to dedifferentiation, can be converted to progenitor cells, and thus contribute to cancer advancement.
Collapse
Affiliation(s)
- Brandon N. Nicolay
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Battuya Bayarmagnai
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Nam Sung Moon
- Department of Biology, McGill University, Montréal, Québec, Canada
| | - Elizaveta V. Benevolenskaya
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Maxim V. Frolov
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
30
|
Abstract
The retinoblastoma gene, Rb, was originally identified as the tumor suppressor gene mutated in a rare childhood cancer called retinoblastoma (reviewed in [1]). Subsequent studies showed that Rb functions in a pathway that is often functionally inactivated in a large majority of human cancers. Interestingly, recent studies showed that in certain types of cancers, Rb function is actually required for cancer development. The intimate link between the Rb pathway and cancer development suggests that the status of Rb activity can potentially be used to develop targeted therapy. However, a prerequisite will be to understand the role of Rb and its interaction with other signaling pathways in cancer development. In this review, we will discuss the roles of Rb in proliferation, apoptosis and differentiation by reviewing the recent findings in both mammalian systems and different model organisms. In addition, we will discuss strategies that can be employed that specifically target cancer cells based on the status of the Rb pathway.
Collapse
Affiliation(s)
- W Du
- Ben May Department for Cancer Research, The University of Chicago, 929 E. 57th Street, Chicago, IL 60637, USA.
| | | |
Collapse
|
31
|
Nicholson SC, Gilbert MM, Nicolay BN, Frolov MV, Moberg KH. The archipelago tumor suppressor gene limits rb/e2f-regulated apoptosis in developing Drosophila tissues. Curr Biol 2009; 19:1503-10. [PMID: 19733076 DOI: 10.1016/j.cub.2009.07.068] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2009] [Revised: 07/25/2009] [Accepted: 07/28/2009] [Indexed: 10/20/2022]
Abstract
BACKGROUND The Drosophila archipelago gene (ago) encodes the specificity component of a ubiquitin ligase that targets the cyclin E and dMyc proteins for degradation. Its human ortholog, Fbw7, is commonly lost in cancers, suggesting that failure to degrade ago/Fbw7 targets drives excess tissue growth. RESULTS We find that ago loss induces hyperplasia of some organs but paradoxically reduces the size of the adult eye. This reflects a requirement for ago to restrict apoptotic activity of the rbf1/de2f1 pathway adjacent to the eye-specific morphogenetic furrow (MF): ago mutant cells display elevated de2f1 activity, express the prodeath dE2f1 targets hid and rpr, and undergo high rates of apoptosis. These phenotypes are dependent on rbf1, de2f1, hid, and the rbf1/de2f1 regulators cyclin E and dacapo but are independent of dp53. A transactivation-deficient de2f1 allele blocks MF-associated apoptosis of ago mutant cells but does not retard their clonal overgrowth, indicating that intact de2f1 function is required for the death but not overproliferation of ago cells. Epidermal growth factor receptor (EGFR) and wingless (wg) alleles also modify the ago apoptotic phenotype, indicating that these pathways may modulate the underlying sensitivity of ago mutant cells to apoptotic signals. CONCLUSIONS These data show that ago loss requires a collaborating block in cell death to efficiently drive tissue overgrowth and that this conditional phenotype reflects a role for ago in restricting apoptotic output of the rbf1/de2f1 pathway. Moreover, the susceptibility of ago mutant cells to succumb to this apoptotic program appears to depend on local variations in extracellular signaling that could thus determine tissue-specific fates of ago mutant cells.
Collapse
Affiliation(s)
- Sarah C Nicholson
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | | | | | | |
Collapse
|
32
|
Abstract
The growth suppressive function of the retinoblastoma (pRB) tumor suppressor family is largely attributed to its ability to negatively regulate the family of E2F transcriptional factors and, as a result, to repress E2F-dependent transcription. Deregulation of the pRB pathway is thought to be an obligatory event in most types of cancers. The large number of mammalian E2F proteins is one of the major obstacles that complicate their genetic analysis. In Drosophila, the E2F family consists of only two members. They are classified as an activator (dE2F1) and a repressor (dE2F2). It has been previously shown that proliferation of de2f1 mutant cells is severely reduced due to unchecked activity of the repressor dE2F2 in these cells. We report here a mosaic screen utilizing the de2f1 mutant phenotype to identify suppressors that overcome the dE2F2/RBF-dependent proliferation block. We have isolated l(3)mbt and B52, which are known to be required for dE2F2 function, as well as genes that were not previously linked to the E2F/pRB pathway such as Doa, gfzf, and CG31133. Inactivation of gfzf, Doa, or CG31133 does not relieve repression by dE2F2. We have shown that gfzf and CG31133 potentiate E2F-dependent activation and synergize with inactivation of RBF, suggesting that they may act in parallel to dE2F. Thus, our results demonstrate the efficacy of the described screening strategy for studying regulation of the dE2F/RBF pathway in vivo.
Collapse
|
33
|
Seo CH, Kim JR, Kim MS, Cho KH. Hub genes with positive feedbacks function as master switches in developmental gene regulatory networks. ACTA ACUST UNITED AC 2009; 25:1898-904. [PMID: 19439566 DOI: 10.1093/bioinformatics/btp316] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
MOTIVATION Spatio-temporal regulation of gene expression is an indispensable characteristic in the development processes of all animals. 'Master switches', a central set of regulatory genes whose states (on/off or activated/deactivated) determine specific developmental fate or cell-fate specification, play a pivotal role for whole developmental processes. In this study on genome-wide integrative network analysis the underlying design principles of developmental gene regulatory networks are examined. RESULTS We have found an intriguing design principle of developmental networks: hub nodes, genes with high connectivity, equipped with positive feedback loops are prone to function as master switches. This raises the important question of why the positive feedback loops are frequently found in these contexts. The master switches with positive feedback make the developmental signals more decisive and robust such that the overall developmental processes become more stable. This finding provides a new evolutionary insight: developmental networks might have been gradually evolved such that the master switches generate digital-like bistable signals by adopting neighboring positive feedback loops. We therefore propose that the combined presence of positive feedback loops and hub genes in regulatory networks can be used to predict plausible master switches. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Chang H Seo
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Republic of Korea.
| | | | | | | |
Collapse
|
34
|
Aberrant E2F activation by polyglutamine expansion of androgen receptor in SBMA neurotoxicity. Proc Natl Acad Sci U S A 2009; 106:3818-22. [PMID: 19237573 DOI: 10.1073/pnas.0809819106] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Spinal and bulbar muscular atrophy (SBMA) is a neurodegenerative disorder caused by a polyglutamine repeat (polyQ) expansion within the human androgen receptor (AR). Unlike other neurodegenerative diseases caused by abnormal polyQ expansion, the onset of SBMA depends on androgen binding to mutant human polyQ-AR proteins. This is also observed in Drosophila eyes ectopically expressing the polyQ-AR mutants. We have genetically screened mediators of androgen-induced neurodegeneration caused by polyQ-AR mutants in Drosophila eyes. We identified Rbf (Retinoblastoma-family protein), the Drosophila homologue of human Rb (Retinoblastoma protein), as a neuroprotective factor. Androgen-dependent association of Rbf or Rb with AR was remarkably potentiated by aberrant polyQ expansion. Such potentiated Rb association appeared to attenuate recruitment of histone deacetyltransferase 1 (HDAC1), a corepressor of E2F function. Either overexpression of Rbf or E2F deficiency in fly eyes reduced the neurotoxicity of the polyQ-AR mutants. Induction of E2F function by polyQ-AR-bound androgen was suppressed by Rb in human neuroblastoma cells. We conclude that abnormal expansion of polyQ may potentiate innate androgen-dependent association of AR with Rb. This appears to lead to androgen-dependent onset of SBMA through aberrant E2F transactivation caused by suppressed histone deacetylation.
Collapse
|
35
|
Jin Z, Kirilly D, Weng C, Kawase E, Song X, Smith S, Schwartz J, Xie T. Differentiation-defective stem cells outcompete normal stem cells for niche occupancy in the Drosophila ovary. Cell Stem Cell 2009; 2:39-49. [PMID: 18371420 DOI: 10.1016/j.stem.2007.10.021] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2006] [Revised: 03/26/2007] [Accepted: 10/30/2007] [Indexed: 10/22/2022]
Abstract
Rapid progress has recently been made regarding how the niche controls stem cell function, but little is yet known about how stem cells in the same niche interact with one another. In this study, we show that differentiation-defective Drosophila ovarian germline stem cells (GSCs) can outcompete normal ones for niche occupancy in a cadherin-dependent manner. The differentiation-defective bam or bgcn mutant GSCs invade the niche space of neighboring wild-type GSCs and gradually push them out of the niche by upregulating E-cadherin expression. Furthermore, the bam/bgcn-mediated GSC competition requires E-cadherin and normal GSC division, but not the self-renewal-promoting BMP niche signal, while different E-cadherin levels can sufficiently stimulate GSC competition. Therefore, we propose that GSCs have a competitive relationship for niche occupancy, which may serve as a quality control mechanism to ensure that accidentally differentiated stem cells are rapidly removed from the niche and replaced by functional ones.
Collapse
Affiliation(s)
- Zhigang Jin
- Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, MO 64110, USA
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Abstract
In a paper in this issue of Developmental Cell, Shibutani et al. (2008) uncover the mechanism that underlies tightly regulated S-phase degradation of Drosophila E2F1 during development. They show that dE2F1 is degraded by the Cul4(Cdt2) ubiquitin ligase in a manner that resembles the DNA replication-dependent turnover of Cdt1.
Collapse
|
37
|
Shibutani ST, de la Cruz AFA, Tran V, Turbyfill WJ, Reis T, Edgar BA, Duronio RJ. Intrinsic negative cell cycle regulation provided by PIP box- and Cul4Cdt2-mediated destruction of E2f1 during S phase. Dev Cell 2009; 15:890-900. [PMID: 19081076 DOI: 10.1016/j.devcel.2008.10.003] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2008] [Revised: 09/09/2008] [Accepted: 10/06/2008] [Indexed: 12/22/2022]
Abstract
E2F transcription factors are key regulators of cell proliferation that are inhibited by pRb family tumor suppressors. pRb-independent modes of E2F inhibition have also been described, but their contribution to animal development and tumor suppression is unclear. Here, we show that S phase-specific destruction of Drosophila E2f1 provides a novel mechanism for cell cycle regulation. E2f1 destruction is mediated by a PCNA-interacting-protein (PIP) motif in E2f1 and the Cul4(Cdt2) E3 ubiquitin ligase and requires the Dp dimerization partner but not direct Cdk phosphorylation or Rbf1 binding. E2f1 lacking a functional PIP motif accumulates inappropriately during S phase and is more potent than wild-type E2f1 at accelerating cell cycle progression and inducing apoptosis. Thus, S phase-coupled destruction is a key negative regulator of E2f1 activity. We propose that pRb-independent inhibition of E2F during S phase is an evolutionarily conserved feature of the metazoan cell cycle that is necessary for development.
Collapse
Affiliation(s)
- Shusaku T Shibutani
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | | | | | | | | | | | | |
Collapse
|
38
|
Abstract
Proteins that are related to the retinoblastoma tumour suppressor pRB and the E2F transcription factor are conserved in many species of plants and animals. The mammalian orthologues of pRB and E2F are best known for their roles in cell proliferation, but it has become clear that they affect many biological processes. Here we describe the functions of pRB-related proteins and E2F proteins that have emerged from genetic and biochemical experiments in Caenorhabditis elegans and Drosophila melanogaster. The similarities that have been observed between worms, flies and mammals provide insight into the core activities of pRB and E2F proteins and show how a common regulatory module can control various biological functions in different organisms.
Collapse
|
39
|
Zielke N, Querings S, Rottig C, Lehner C, Sprenger F. The anaphase-promoting complex/cyclosome (APC/C) is required for rereplication control in endoreplication cycles. Genes Dev 2008; 22:1690-703. [PMID: 18559483 DOI: 10.1101/gad.469108] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Endoreplicating cells undergo multiple rounds of DNA replication leading to polyploidy or polyteny. Oscillation of Cyclin E (CycE)-dependent kinase activity is the main driving force in Drosophila endocycles. High levels of CycE-Cdk2 activity trigger S phase, while down-regulation of CycE-Cdk2 activity is crucial to allow licensing of replication origins. In mitotic cells relicensing in S phase is prevented by Geminin. Here we show that Geminin protein oscillates in endoreplicating salivary glands of Drosophila. Geminin levels are high in S phase, but drop once DNA replication has been completed. DNA licensing is coupled to mitosis through the action of the anaphase-promoting complex/cyclosome (APC/C). We demonstrate that, even though endoreplicating cells never enter mitosis, APC/C activity is required in endoreplicating cells to mediate Geminin oscillation. Down-regulation of APC/C activity results in stabilization of Geminin protein and blocks endocycle progression. Geminin is only abundant in cells with high CycE-Cdk2 activity, suggesting that APC/C-Fzr activity is periodically inhibited by CycE-Cdk2, to prevent relicensing in S-phase cells.
Collapse
Affiliation(s)
- Norman Zielke
- University of Cologne, Institute for Genetics, 50674 Köln, Germany
| | | | | | | | | |
Collapse
|
40
|
E2F and p53 induce apoptosis independently during Drosophila development but intersect in the context of DNA damage. PLoS Genet 2008; 4:e1000153. [PMID: 18688282 PMCID: PMC2491587 DOI: 10.1371/journal.pgen.1000153] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2008] [Accepted: 07/08/2008] [Indexed: 01/25/2023] Open
Abstract
In mammalian cells, RB/E2F and p53 are intimately connected, and crosstalk between these pathways is critical for the induction of cell cycle arrest or cell death in response to cellular stresses. Here we have investigated the genetic interactions between RBF/E2F and p53 pathways during Drosophila development. Unexpectedly, we find that the pro-apoptotic activities of E2F and p53 are independent of one another when examined in the context of Drosophila development: apoptosis induced by the deregulation of dE2F1, or by the overexpression of dE2F1, is unaffected by the elimination of dp53; conversely, dp53-induced phenotypes are unaffected by the elimination of dE2F activity. However, dE2F and dp53 converge in the context of a DNA damage response. Both dE2F1/dDP and dp53 are required for DNA damage-induced cell death, and the analysis of rbf1 mutant eye discs indicates that dE2F1/dDP and dp53 cooperatively promote cell death in irradiated discs. In this context, the further deregulation in the expression of pro-apoptotic genes generates an additional sensitivity to apoptosis that requires both dE2F/dDP and dp53 activity. This sensitivity differs from DNA damage-induced apoptosis in wild-type discs (and from dE2F/dDP-induced apoptosis in un-irradiated rbf1 mutant eye discs) by being dependent on both hid and reaper. These results show that pro-apoptotic activities of dE2F1 and dp53 are surprisingly separable: dp53 is required for dE2F-dependent apoptosis in the response to DNA damage, but it is not required for dE2F-dependent apoptosis caused simply by the inactivation of rbf1.
Collapse
|
41
|
Buttitta LA, Katzaroff AJ, Perez CL, de la Cruz A, Edgar BA. A double-assurance mechanism controls cell cycle exit upon terminal differentiation in Drosophila. Dev Cell 2007; 12:631-43. [PMID: 17419999 DOI: 10.1016/j.devcel.2007.02.020] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2006] [Revised: 02/13/2007] [Accepted: 02/27/2007] [Indexed: 10/23/2022]
Abstract
Terminal differentiation is often coupled with permanent exit from the cell cycle, yet it is unclear how cell proliferation is blocked in differentiated tissues. We examined the process of cell cycle exit in Drosophila wings and eyes and discovered that cell cycle exit can be prevented or even reversed in terminally differentiating cells by the simultaneous activation of E2F1 and either Cyclin E/Cdk2 or Cyclin D/Cdk4. Enforcing both E2F and Cyclin/Cdk activities is required to bypass exit because feedback between E2F and Cyclin E/Cdk2 is inhibited after cells differentiate, ensuring that cell cycle exit is robust. In some differentiating cell types (e.g., neurons), known inhibitors including the retinoblastoma homolog Rbf and the p27 homolog Dacapo contribute to parallel repression of E2F and Cyclin E/Cdk2. In other cell types, however (e.g., wing epithelial cells), unknown mechanisms inhibit E2F and Cyclin/Cdk activity in parallel to enforce permanent cell cycle exit upon terminal differentiation.
Collapse
Affiliation(s)
- Laura A Buttitta
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | | | | | | | | |
Collapse
|
42
|
Morris EJ, Michaud WA, Ji JY, Moon NS, Rocco JW, Dyson NJ. Functional identification of Api5 as a suppressor of E2F-dependent apoptosis in vivo. PLoS Genet 2006; 2:e196. [PMID: 17112319 PMCID: PMC1636698 DOI: 10.1371/journal.pgen.0020196] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2006] [Accepted: 10/03/2006] [Indexed: 11/24/2022] Open
Abstract
Retinoblastoma protein and E2-promoter binding factor (E2F) family members are important regulators of G1-S phase progression. Deregulated E2F also sensitizes cells to apoptosis, but this aspect of E2F function is poorly understood. Studies of E2F-induced apoptosis have mostly been carried out in tissue culture cells, and the analysis of the factors that are important for this process has been restricted to the testing of a few candidate genes. Using Drosophila as a model system, we have generated tools that allow genetic modifiers of E2F-dependent apoptosis to be identified in vivo and developed assays that allow effects on E2F-induced apoptosis to be studied in cultured cells. Genetic interactions show that dE2F1-dependent apoptosis in vivo involves dArk/Apaf1 apoptosome-dependent activation of both initiator and effector caspases and is sensitive to levels of Drosophila inhibitor of apoptosis-1 (dIAP1). Using these approaches, we report the surprising finding that apoptosis inhibitor-5/antiapoptosis clone-11 (Api5/Aac11) is a critical determinant of dE2F1-induced apoptosis in vivo and in vitro. This functional interaction occurs in multiple tissues, is specific to E2F-induced apoptosis, and is conserved from flies to humans. Interestingly, Api5/Aac11 acts downstream of E2F and suppresses E2F-dependent apoptosis without generally blocking E2F-dependent transcription. Api5/Aac11 expression is often upregulated in tumor cells, particularly in metastatic cells. We find that depletion of Api5 is tumor cell lethal. The strong genetic interaction between E2F and Api5/Aac11 suggests that elevated levels of Api5 may be selected during tumorigenesis to allow cells with deregulated E2F activity to survive under suboptimal conditions. Therefore, inhibition of Api5 function might offer a possible mechanism for antitumor exploitation. The retinoblastoma protein (pRB) was the first human tumor suppressor to be described, and it works by limiting the activity of the E2F transcription factor. The pRB pathway is inactivated in most forms of cancer, and, accordingly, most tumor cells have deregulated E2F. Uncontrolled E2F drives cell proliferation, but it also sensitizes cells to die (apoptosis). E2F-induced apoptosis is not well understood, but it affects the development of cancer and, potentially, could be exploited for cancer treatment. To date, however, there have been very few studies of E2F-induced apoptosis in animal models. The authors describe a series of genetic tools that allow systematic studies of E2F-induced apoptosis in Drosophila. As validation, this approach identified some known regulators of E2F-dependent apoptosis and also identified Api5, a little-studied gene that had not previously been linked to E2F, as a potent suppressor of E2F-induced cell death. The effects of Api5 on E2F occur in several different tissues and are conserved from flies to humans. This last point is significant since Api5 is upregulated in cancer cells. The discovery of the E2F–Api5 interaction demonstrates that important modulators of E2F-induced apoptosis are waiting to be discovered and that they can be found using Drosophila.
Collapse
Affiliation(s)
- Erick J Morris
- Massachusetts General Hospital Cancer Center, Laboratory of Molecular Oncology, Charlestown, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
| | - William A Michaud
- Massachusetts General Hospital Cancer Center, Laboratory of Molecular Oncology, Charlestown, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
- Division of Surgical Oncology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Massachusetts Eye and Ear Infirmary, Boston, Massachusetts, United States of America
| | - Jun-Yuan Ji
- Massachusetts General Hospital Cancer Center, Laboratory of Molecular Oncology, Charlestown, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
| | - Nam-Sung Moon
- Massachusetts General Hospital Cancer Center, Laboratory of Molecular Oncology, Charlestown, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
| | - James W Rocco
- Massachusetts General Hospital Cancer Center, Laboratory of Molecular Oncology, Charlestown, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
- Division of Surgical Oncology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Massachusetts Eye and Ear Infirmary, Boston, Massachusetts, United States of America
| | - Nicholas J Dyson
- Massachusetts General Hospital Cancer Center, Laboratory of Molecular Oncology, Charlestown, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
43
|
Shibutani S, Swanhart LM, Duronio RJ. Rbf1-independent termination of E2f1-target gene expression during early Drosophila embryogenesis. Development 2006; 134:467-78. [PMID: 17185321 DOI: 10.1242/dev.02738] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The initiation and maintenance of G1 cell cycle arrest is a key feature of animal development. In the Drosophila ectoderm, G1 arrest first appears during the seventeenth embryonic cell cycle. The initiation of G1(17) arrest requires the developmentally-induced expression of Dacapo, a p27-like Cyclin E-Cdk2 inhibitor. The maintenance of G1(17) arrest requires Rbf1-dependent repression of E2f1-regulated replication factor genes, which are expressed continuously during cycles 1-16 when S phase immediately follows mitosis. The mechanisms that trigger Rbf1 repressor function and mediate G1(17) maintenance are unknown. Here we show that the initial downregulation of expression of the E2f1-target gene RnrS, which occurs during cycles 15 and 16 prior to entry into G1(17), does not require Rbf1 or p27(Dap). This suggests a mechanism for Rbf1-independent control of E2f1 during early development. We show that E2f1 protein is destroyed in a cell cycle-dependent manner during S phase of cycles 15 and 16. E2f1 is destroyed during early S phase, and requires ongoing DNA replication. E2f1 protein reaccumulates in epidermal cells arrested in G1(17), and in these cells the induction of p27(Dap) activates Rbf1 to repress E2f1-target genes to maintain a stable G1 arrest.
Collapse
Affiliation(s)
- Shusaku Shibutani
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | | | | |
Collapse
|
44
|
Parker J. Control of Compartment Size by an EGF Ligand from Neighboring Cells. Curr Biol 2006; 16:2058-65. [PMID: 17055987 DOI: 10.1016/j.cub.2006.08.092] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2005] [Revised: 08/24/2006] [Accepted: 08/24/2006] [Indexed: 11/25/2022]
Abstract
Insect bodies are subdivided into anterior (A) and posterior (P) compartments: cohesive fields of distinct cell lineage and cell affinity . Like organs in many animal species, compartments can develop to normal sizes despite considerable variation in cell division . This implies that overall compartment dimensions are subject to genetic control, but the mechanisms are unknown. Here, studying Drosophila's embryonic segments, I show that P compartment dimensions depend on epidermal growth factor receptor (EGFR) signaling. I suggest the primary activating ligand is Spitz, emanating from neighboring A compartment cells. Spi/EGFR activity stimulates P compartment cell enlargement and survival, but evidence is presented that Spitz is secreted in limited amounts, so that increasing the number of cells within the P compartment causes the per-cell Spitz level to drop. This leads to compensatory apoptosis and cell-size reductions that preserve compartment dimensions. Conversely, I propose that lowering P compartment cell numbers enhances per-cell Spitz availability; this increases cell survival and cell size, again safeguarding compartment size. The results argue that the gauging of P compartment size is due, at least in part, to cells surviving and growing according to Spi availability. These data offer mechanistic insight into how diffusible molecules control organ size.
Collapse
Affiliation(s)
- Joseph Parker
- Division of Cell Biology, Medical Research Council Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, United Kingdom.
| |
Collapse
|
45
|
Abstract
The E2F family of heterodimeric transcription factors controls the expression of genes required in G1 for cell cycle progression. The retinoblastoma (Rb) family of pocket proteins which, upon binding to E2F, inhibit this complex from initiating transcription. Upon mitogen stimulation, this repression is relieved by hyperphosphorylation of Rb by the cyclin D Cdk4/6 complex. Initiation of the cell cycle in yeast is similar. The heterodimeric transcription factor SBF controls most G1-specific transcription. Its activation is dependent upon the removal of Whi5; a functional homolog of Rb. Similar to Rb, disassociation of Whi5 from SBF is controlled by G1 cyclin/Cdk-dependent phosphorylation. Although Rb and Whi5 play similar roles in regulating G1 gene expression, they exhibit no sequence homology. This review will discuss the difference and similarities between how these proteins play similar roles in controlling G1 progression.
Collapse
Affiliation(s)
- K Cooper
- Department of Molecular Biology, UMDNJ-SOM, Stratford, NJ 08084,, USA.
| |
Collapse
|
46
|
Abstract
The retinoblastoma gene Rb was the first tumor suppressor gene cloned, and it is well known as a negative regulator of the cell cycle through its ability to bind the transcription factor E2F and repress transcription of genes required for S phase. Although over 100 other proteins have been reported to interact with Rb, in most cases these interactions are much less well characterized. Therefore, this review will primarily focus on Rb and E2F interactions. In addition to cell cycle regulation, studies of Rb and E2F proteins in animal models have revealed important roles for these proteins in apoptosis and differentiation. Recent screens of Rb/E2F target genes have identified new targets in all these areas. In addition, the mechanisms determining how different subsets of target genes are regulated under different conditions have only begun to be addressed and offer exciting possibilities for future research.
Collapse
Affiliation(s)
- W Du
- Ben May Institute for Cancer Research and Center for Molecular Oncology, University of Chicago, Chicago, IL 60637, USA.
| | | |
Collapse
|
47
|
Moon NS, Di Stefano L, Dyson N. A gradient of epidermal growth factor receptor signaling determines the sensitivity of rbf1 mutant cells to E2F-dependent apoptosis. Mol Cell Biol 2006; 26:7601-15. [PMID: 16954388 PMCID: PMC1636876 DOI: 10.1128/mcb.00836-06] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The inactivation of retinoblastoma (Rb) family members sensitizes cells to apoptosis. This cell death affects the development of mutant animals and also provides a critical constraint to the malignant potential of Rb mutant tumor cells. The extent of apoptosis caused by the inactivation of Rb is highly cell type and tissue specific, but the underlying reasons for this variation are poorly understood. Here, we characterize a specific time and place during Drosophila melanogaster development where rbf1 mutant cells are exquisitely sensitive to apoptosis. During the third larval instar, many rbf1 mutant cells undergo E2F-dependent cell death in the morphogenetic furrow. Surprisingly, this pattern of apoptosis is not caused by inappropriate cell cycle progression but instead involves the action of Argos, a secreted protein that negatively regulates Drosophila epidermal growth factor receptor (EGFR [DER]) activity. Apoptosis of rbf1 mutant cells is suppressed by the activation of DER, ras, or raf or by the inactivation of argos, sprouty, or gap1, and inhibition of DER strongly enhances apoptosis in rbf1 mutant discs. We show that RBF1 and a DER/ras/raf signaling pathway cooperate in vivo to suppress E2F-dependent apoptosis and that the loss of RBF1 alters a normal program of cell death that is controlled by Argos and DER. These results demonstrate that a gradient of DER/ras/raf signaling that occurs naturally during development provides the contextual signals that determine when and where the inactivation of rbf1 results in dE2F1-dependent apoptosis.
Collapse
Affiliation(s)
- Nam-Sung Moon
- Massachusetts General Hospital Cancer Research Center, Harvard Medical School, Building 149, Charlestown, MA 02129, USA
| | | | | |
Collapse
|
48
|
Maitra S, Kulikauskas RM, Gavilan H, Fehon RG. The tumor suppressors Merlin and Expanded function cooperatively to modulate receptor endocytosis and signaling. Curr Biol 2006; 16:702-9. [PMID: 16581517 DOI: 10.1016/j.cub.2006.02.063] [Citation(s) in RCA: 175] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2005] [Revised: 01/31/2006] [Accepted: 02/15/2006] [Indexed: 11/23/2022]
Abstract
The precise coordination of signals that control proliferation is a key feature of growth regulation in developing tissues . While much has been learned about the basic components of signal transduction pathways, less is known about how receptor localization, compartmentalization, and trafficking affect signaling in developing tissues. Here we examine the mechanism by which the Drosophila Neurofibromatosis 2 (NF2) tumor suppressor ortholog Merlin (Mer) and the related tumor suppressor expanded (ex) regulate proliferation and differentiation in imaginal epithelia. Merlin and Expanded are members of the FERM (Four-point one, Ezrin, Radixin, Moesin) domain superfamily, which consists of membrane-associated cytoplasmic proteins that interact with transmembrane proteins and may function as adapters that link to protein complexes and/or the cytoskeleton . We demonstrate that Merlin and Expanded function to regulate the steady-state levels of signaling and adhesion receptors and that loss of these proteins can cause hyperactivation of associated signaling pathways. In addition, pulse-chase labeling of Notch in living tissues indicates that receptor levels are upregulated at the plasma membrane in Mer; ex double mutant cells due to a defect in receptor clearance from the cell surface. We propose that these proteins control proliferation by regulating the abundance, localization, and turnover of cell-surface receptors and that misregulation of these processes may be a key component of tumorigenesis.
Collapse
Affiliation(s)
- Sushmita Maitra
- Department of Molecular Genetics and Cell Biology, University of Chicago, Illinois 60637, USA
| | | | | | | |
Collapse
|
49
|
Reddy KL, Rovani MK, Wohlwill A, Katzen A, Storti RV. The Drosophila Par domain protein I gene, Pdp1, is a regulator of larval growth, mitosis and endoreplication. Dev Biol 2006; 289:100-14. [PMID: 16313897 DOI: 10.1016/j.ydbio.2005.10.042] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2005] [Revised: 09/30/2005] [Accepted: 10/17/2005] [Indexed: 12/17/2022]
Abstract
PDP1 is a basic leucine zipper (bZip) transcription factor that is expressed at high levels in the muscle, epidermis, gut and fat body of the developing Drosophila embryo. We have identified three mutant alleles of Pdp1, each having a similar phenotype. Here, we describe in detail the Pdp1 mutant allele, Pdp1(p205), which is null for both Pdp1 RNA and protein. Interestingly, homozygous Pdp1(p205) embryos develop normally, hatch and become viable larvae. Analyses of Pdp1 null mutant embryos reveal that the overall muscle pattern is normal as is the patterning of the gut and fat body. Pdp1(p205) larvae also appear to have normal muscle and gut function and respond to ecdysone. These larvae, however, are severely growth delayed and arrested. Furthermore, although Pdp1 null larvae live a normal life span, they do not form pupae and thus do not give rise to eclosed flies. The stunted growth of Pdp1(p205) larvae is accompanied by defects in mitosis and endoreplication similar to that associated with nutritional deprivation. The cellular defects resulting from the Pdp1(p205) mutation are not cell autonomous. Moreover, PDP1 expression is sensitive to nutritional conditions, suggesting a link between nutrition, PDP1 isotype expression and growth. These results indicate that Pdp1 has a critical role in coordinating growth and DNA replication.
Collapse
Affiliation(s)
- Karen L Reddy
- Department of Biochemistry and Molecular Genetics M/C 669, University of Illinois College of Medicine, Chicago, 60612, USA
| | | | | | | | | |
Collapse
|
50
|
Moon NS, Frolov MV, Kwon EJ, Di Stefano L, Dimova DK, Morris EJ, Taylor-Harding B, White K, Dyson NJ. Drosophila E2F1 has context-specific pro- and antiapoptotic properties during development. Dev Cell 2005; 9:463-75. [PMID: 16198289 DOI: 10.1016/j.devcel.2005.08.015] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2005] [Revised: 07/19/2005] [Accepted: 08/25/2005] [Indexed: 01/28/2023]
Abstract
E2F transcription factors are generally believed to be positive regulators of apoptosis. In this study, we show that dE2F1 and dDP are important for the normal pattern of DNA damage-induced apoptosis in Drosophila wing discs. Unexpectedly, the role that E2F plays varies depending on the position of the cells within the disc. In irradiated wild-type discs, intervein cells show a high level of DNA damage-induced apoptosis, while cells within the D/V boundary are protected. In irradiated discs lacking E2F regulation, intervein cells are largely protected, but apoptotic cells are found at the D/V boundary. The protective effect of E2F at the D/V boundary is due to a spatially restricted role in the repression of hid. These loss-of-function experiments demonstrate that E2F cannot be classified simply as a pro- or antiapoptotic factor. Instead, the overall role of E2F in the damage response varies greatly and depends on the cellular context.
Collapse
Affiliation(s)
- Nam-Sung Moon
- Massachusetts General Hospital Cancer Research Center, Charlestown, Massachusetts 02129, USA
| | | | | | | | | | | | | | | | | |
Collapse
|