1
|
Pham-Bui HA, Lee M. Germ granule-mediated mRNA storage and translational control. RNA Biol 2025; 22:1-11. [PMID: 39895378 PMCID: PMC11810088 DOI: 10.1080/15476286.2025.2462276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 12/24/2024] [Accepted: 01/28/2025] [Indexed: 02/04/2025] Open
Abstract
Germ cells depend on specialized post-transcriptional regulation for proper development and function, much of which is mediated by dynamic RNA granules. These membrane-less organelles form through the condensation of RNA and proteins, governed by multivalent biomolecular interactions. RNA granules compartmentalize cellular components, selectively enriching specific factors and modulating biochemical reactions. Over recent decades, various types of RNA granules have been identified in germ cells across species, with extensive studies uncovering their molecular roles and developmental significance. This review explores the mRNA regulatory mechanisms mediated by RNA granules in germ cells. We discuss the distinct spatial organization of specific granule components and the variations in material states of germ granules, which contribute to the regulation of mRNA storage and translation. Additionally, we highlight emerging research on how changes in these material states, during developmental stages, reflect the dynamic nature of germ granules and their critical role in development.
Collapse
Affiliation(s)
- Hoang-Anh Pham-Bui
- Soonchunhyang Institute of Medi-Bio Science, Soonchunhyang University, Cheonan-si, Korea
- Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan-si, Korea
| | - Mihye Lee
- Soonchunhyang Institute of Medi-Bio Science, Soonchunhyang University, Cheonan-si, Korea
- Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan-si, Korea
| |
Collapse
|
2
|
Siddiqui NU, Karaiskakis A, Goldman AL, Eagle WVI, Low TCH, Luo H, Smibert CA, Gavis ER, Lipshitz HD. Smaug regulates germ plasm assembly and primordial germ cell number in Drosophila embryos. SCIENCE ADVANCES 2024; 10:eadg7894. [PMID: 38608012 PMCID: PMC11014450 DOI: 10.1126/sciadv.adg7894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 03/12/2024] [Indexed: 04/14/2024]
Abstract
During Drosophila oogenesis, the Oskar (OSK) RNA binding protein (RBP) determines the amount of germ plasm that assembles at the posterior pole of the oocyte. Here, we identify mechanisms that subsequently regulate germ plasm assembly in the early embryo. We show that the Smaug (SMG) RBP is transported into the germ plasm of the early embryo where it accumulates in the germ granules. SMG binds to and represses translation of the osk messenger RNA (mRNA) as well as the bruno 1 (bru1) mRNA, which encodes an RBP that we show promotes germ plasm production. Loss of SMG or mutation of SMG's binding sites in the osk or bru1 mRNA results in excess translation of these transcripts in the germ plasm, accumulation of excess germ plasm, and budding of excess primordial germ cells (PGCs). Therefore, SMG triggers a posttranscriptional regulatory pathway that attenuates the amount of germ plasm in embryos to modulate the number of PGCs.
Collapse
Affiliation(s)
- Najeeb U. Siddiqui
- Department of Molecular Genetics, University of Toronto, 661 University Avenue, Toronto, ON M5G 1M1, Canada
- Program in Developmental and Stem Cell Biology, Research Institute, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Angelo Karaiskakis
- Department of Molecular Genetics, University of Toronto, 661 University Avenue, Toronto, ON M5G 1M1, Canada
| | - Aaron L. Goldman
- Department of Molecular Genetics, University of Toronto, 661 University Avenue, Toronto, ON M5G 1M1, Canada
- Program in Developmental and Stem Cell Biology, Research Institute, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Whitby V. I. Eagle
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Timothy C. H. Low
- Department of Molecular Genetics, University of Toronto, 661 University Avenue, Toronto, ON M5G 1M1, Canada
| | - Hua Luo
- Department of Molecular Genetics, University of Toronto, 661 University Avenue, Toronto, ON M5G 1M1, Canada
| | - Craig A. Smibert
- Department of Molecular Genetics, University of Toronto, 661 University Avenue, Toronto, ON M5G 1M1, Canada
- Department of Biochemistry, University of Toronto, 661 University Avenue, Toronto, ON M5G 1M1, Canada
| | - Elizabeth R. Gavis
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Howard D. Lipshitz
- Department of Molecular Genetics, University of Toronto, 661 University Avenue, Toronto, ON M5G 1M1, Canada
| |
Collapse
|
3
|
Nikonova E, DeCata J, Canela M, Barz C, Esser A, Bouterwek J, Roy A, Gensler H, Heß M, Straub T, Forne I, Spletter ML. Bruno 1/CELF regulates splicing and cytoskeleton dynamics to ensure correct sarcomere assembly in Drosophila flight muscles. PLoS Biol 2024; 22:e3002575. [PMID: 38683844 PMCID: PMC11081514 DOI: 10.1371/journal.pbio.3002575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 05/09/2024] [Accepted: 03/04/2024] [Indexed: 05/02/2024] Open
Abstract
Muscles undergo developmental transitions in gene expression and alternative splicing that are necessary to refine sarcomere structure and contractility. CUG-BP and ETR-3-like (CELF) family RNA-binding proteins are important regulators of RNA processing during myogenesis that are misregulated in diseases such as Myotonic Dystrophy Type I (DM1). Here, we report a conserved function for Bruno 1 (Bru1, Arrest), a CELF1/2 family homolog in Drosophila, during early muscle myogenesis. Loss of Bru1 in flight muscles results in disorganization of the actin cytoskeleton leading to aberrant myofiber compaction and defects in pre-myofibril formation. Temporally restricted rescue and RNAi knockdown demonstrate that early cytoskeletal defects interfere with subsequent steps in sarcomere growth and maturation. Early defects are distinct from a later requirement for bru1 to regulate sarcomere assembly dynamics during myofiber maturation. We identify an imbalance in growth in sarcomere length and width during later stages of development as the mechanism driving abnormal radial growth, myofibril fusion, and the formation of hollow myofibrils in bru1 mutant muscle. Molecularly, we characterize a genome-wide transition from immature to mature sarcomere gene isoform expression in flight muscle development that is blocked in bru1 mutants. We further demonstrate that temporally restricted Bru1 rescue can partially alleviate hypercontraction in late pupal and adult stages, but it cannot restore myofiber function or correct structural deficits. Our results reveal the conserved nature of CELF function in regulating cytoskeletal dynamics in muscle development and demonstrate that defective RNA processing due to misexpression of CELF proteins causes wide-reaching structural defects and progressive malfunction of affected muscles that cannot be rescued by late-stage gene replacement.
Collapse
Affiliation(s)
- Elena Nikonova
- Biomedical Center, Department of Physiological Chemistry, Ludwig-Maximilians-Universität München, München, Germany
| | - Jenna DeCata
- School of Science and Engineering, Division of Biological and Biomedical Systems, Kansas City, Missouri, United States of America
| | - Marc Canela
- Faculty of Biology, Universitat de Barcelona, Barcelona, Spain
| | - Christiane Barz
- Muscle Dynamics Group, Max Planck Institute of Biochemistry, München, Germany
| | - Alexandra Esser
- Biomedical Center, Department of Physiological Chemistry, Ludwig-Maximilians-Universität München, München, Germany
| | - Jessica Bouterwek
- Biomedical Center, Department of Physiological Chemistry, Ludwig-Maximilians-Universität München, München, Germany
| | - Akanksha Roy
- Biomedical Center, Department of Physiological Chemistry, Ludwig-Maximilians-Universität München, München, Germany
| | - Heidemarie Gensler
- Department of Systematic Zoology, Biocenter, Faculty of Biology, Ludwig-Maximilians-Universität München, München, Germany
| | - Martin Heß
- Department of Systematic Zoology, Biocenter, Faculty of Biology, Ludwig-Maximilians-Universität München, München, Germany
| | - Tobias Straub
- Biomedical Center, Bioinformatics Core Unit, Ludwig-Maximilians-Universität München, München, Germany
| | - Ignasi Forne
- Biomedical Center, Protein Analysis Unit, Ludwig-Maximilians-Universität München, München, Germany
| | - Maria L. Spletter
- Biomedical Center, Department of Physiological Chemistry, Ludwig-Maximilians-Universität München, München, Germany
- School of Science and Engineering, Division of Biological and Biomedical Systems, Kansas City, Missouri, United States of America
| |
Collapse
|
4
|
Siddiqui NU, Karaiskakis A, Goldman AL, Eagle WV, Smibert CA, Gavis ER, Lipshitz HD. Smaug regulates germ plasm synthesis and primordial germ cell number in Drosophila embryos by repressing the oskar and bruno 1 mRNAs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.27.530189. [PMID: 36909513 PMCID: PMC10002672 DOI: 10.1101/2023.02.27.530189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
During Drosophila oogenesis, the Oskar (OSK) RNA-binding protein (RBP) determines the amount of germ plasm that assembles at the posterior pole of the oocyte. Here we identify the mechanisms that regulate the osk mRNA in the early embryo. We show that the Smaug (SMG) RBP is transported into the germ plasm of the early embryo where it accumulates in the germ granules. SMG binds to and represses translation of the osk mRNA itself as well as the bruno 1 (bru1) mRNA, which encodes an RBP that we show promotes germ plasm production. Loss of SMG or mutation of SMG's binding sites in the osk or bru1 mRNAs results in ectopic translation of these transcripts in the germ plasm and excess PGCs. SMG therefore triggers a post-transcriptional regulatory pathway that attenuates germ plasm synthesis in embryos, thus modulating the number of PGCs.
Collapse
Affiliation(s)
- Najeeb U. Siddiqui
- Department of Molecular Genetics, University of Toronto, 661 University Avenue, Toronto, Ontario, Canada M5G 1M1
- Program in Developmental & Stem Cell Biology, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada M5G 0A4
| | - Angelo Karaiskakis
- Department of Molecular Genetics, University of Toronto, 661 University Avenue, Toronto, Ontario, Canada M5G 1M1
| | - Aaron L. Goldman
- Department of Molecular Genetics, University of Toronto, 661 University Avenue, Toronto, Ontario, Canada M5G 1M1
- Program in Developmental & Stem Cell Biology, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada M5G 0A4
| | - Whitby V.I. Eagle
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA
| | - Craig A. Smibert
- Department of Molecular Genetics, University of Toronto, 661 University Avenue, Toronto, Ontario, Canada M5G 1M1
- Department of Biochemistry, University of Toronto, 661 University Avenue, Toronto, Ontario, Canada M5G 1M1
| | - Elizabeth R. Gavis
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA
| | - Howard D. Lipshitz
- Department of Molecular Genetics, University of Toronto, 661 University Avenue, Toronto, Ontario, Canada M5G 1M1
| |
Collapse
|
5
|
Bayer LV, Milano S, Formel SK, Kaur H, Ravichandran R, Cambeiro JA, Slinko L, Catrina IE, Bratu DP. Cup is essential for oskar mRNA translational repression during early Drosophila oogenesis. RNA Biol 2023; 20:573-587. [PMID: 37553798 PMCID: PMC10413924 DOI: 10.1080/15476286.2023.2242650] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 06/27/2023] [Accepted: 07/20/2023] [Indexed: 08/10/2023] Open
Abstract
Study of the timing and location for mRNA translation across model systems has begun to shed light on molecular events fundamental to such processes as intercellular communication, morphogenesis, and body pattern formation. In D. melanogaster, the posterior mRNA determinant, oskar, is transcribed maternally but translated only when properly localized at the oocyte's posterior cortex. Two effector proteins, Bruno1 and Cup, mediate steps of oskar mRNA regulation. The current model in the field identifies Bruno1 as necessary for Cup's recruitment to oskar mRNA and indispensable for oskar's translational repression. We now report that this Bruno1-Cup interaction leads to precise oskar mRNA regulation during early oogenesis and, importantly, the two proteins mutually influence each other's mRNA expression and protein distribution in the egg chamber. We show that these factors stably associate with oskar mRNA in vivo. Cup associates with oskar mRNA without Bruno1, while surprisingly Bruno1's stable association with oskar mRNA depends on Cup. We demonstrate that the essential factor for oskar mRNA repression in early oogenesis is Cup, not Bruno1. Furthermore, we find that Cup is a key P-body component that maintains functional P-body morphology during oogenesis and is necessary for oskar mRNA's association with P-bodies. Therefore, Cup drives the translational repression and stability of oskar mRNA. These experimental results point to a regulatory feedback loop between Bruno 1 and Cup in early oogenesis that appears crucial for oskar mRNA to reach the posterior pole and its expression in the egg chamber for accurate embryo development.
Collapse
Affiliation(s)
- Livia V. Bayer
- Department of Biological Sciences, Hunter College, City University of New York, New York, NY, USA
- Program in Molecular, Cellular, and Developmental Biology, the Graduate Center, City University of New York, New York, NY, USA
| | - Samantha Milano
- Department of Biological Sciences, Hunter College, City University of New York, New York, NY, USA
- Program in Molecular, Cellular, and Developmental Biology, the Graduate Center, City University of New York, New York, NY, USA
| | - Stephen K. Formel
- Department of Biological Sciences, Hunter College, City University of New York, New York, NY, USA
| | - Harpreet Kaur
- Department of Biological Sciences, Hunter College, City University of New York, New York, NY, USA
| | - Rishi Ravichandran
- Department of Biological Sciences, Hunter College, City University of New York, New York, NY, USA
| | - Juan A. Cambeiro
- Department of Biological Sciences, Hunter College, City University of New York, New York, NY, USA
| | - Lizaveta Slinko
- Department of Biological Sciences, Hunter College, City University of New York, New York, NY, USA
| | - Irina E. Catrina
- Department of Chemistry and Biochemistry, Yeshiva University, New York, NY, USA
| | - Diana P. Bratu
- Department of Biological Sciences, Hunter College, City University of New York, New York, NY, USA
- Program in Molecular, Cellular, and Developmental Biology, the Graduate Center, City University of New York, New York, NY, USA
| |
Collapse
|
6
|
Chiappetta A, Liao J, Tian S, Trcek T. Structural and functional organization of germ plasm condensates. Biochem J 2022; 479:2477-2495. [PMID: 36534469 PMCID: PMC10722471 DOI: 10.1042/bcj20210815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/08/2022] [Accepted: 11/11/2022] [Indexed: 12/23/2022]
Abstract
Reproductive success of metazoans relies on germ cells. These cells develop early during embryogenesis, divide and undergo meiosis in the adult to make sperm and oocytes. Unlike somatic cells, germ cells are immortal and transfer their genetic material to new generations. They are also totipotent, as they differentiate into different somatic cell types. The maintenance of immortality and totipotency of germ cells depends on extensive post-transcriptional and post-translational regulation coupled with epigenetic remodeling, processes that begin with the onset of embryogenesis [1, 2]. At the heart of this regulation lie germ granules, membraneless ribonucleoprotein condensates that are specific to the germline cytoplasm called the germ plasm. They are a hallmark of all germ cells and contain several proteins and RNAs that are conserved across species. Interestingly, germ granules are often structured and tend to change through development. In this review, we describe how the structure of germ granules becomes established and discuss possible functional outcomes these structures have during development.
Collapse
|
7
|
Tirta YK, Adachi S, Perez CAG, Adhitama N, Nong QD, Natsume T, Kato Y, Watanabe H. CELF1 represses Doublesex1 expression via its 5' UTR in the crustacean Daphnia magna. PLoS One 2022; 17:e0275526. [PMID: 36240182 PMCID: PMC9565731 DOI: 10.1371/journal.pone.0275526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 09/19/2022] [Indexed: 11/18/2022] Open
Abstract
In sex determination of the crustacean Daphnia magna, male-specific expression of DM-domain transcription factor Doublesex1 (Dsx1) orchestrates the male developmental program triggered by environmental stimuli. We previously identified the CELF1 ortholog as a candidate of proteins associated with the 5' UTR of the Dsx1α isoform. Here we report the CELF1-dependent suppression of Dsx1 expression in D. magna. During embryogenesis, CELF1 expression was not sexually dimorphic. Silencing of CELF1 led to the activation of Dsx1 expression both in female and male embryos. Overexpression of CELF1 in male embryos resulted in a reduction of Dsx1 expression. By these manipulations of CELF1 expression, the Dsx1 transcript level was not significantly changed. To investigate whether the CELF1 controls Dsx1 expression via its 5' UTR, we injected the GFP reporter mRNA having intact Dsx1α 5' UTR or mutated one lacking the GU-rich element (GRE) that is known as a binding site of the CELF1 ortholog. We found that deletion of the GRE significantly increased the reporter gene expression. These results indicate that CELF1 suppresses Dsx1 expression both in females and males, possibly at the post-transcriptional level. We speculate that CELF1 may avoid unintended Dsx1 expression and generation of sexual ambiguity by setting a threshold of Dsx1 expression.
Collapse
Affiliation(s)
| | - Shungo Adachi
- Cellular and Molecular Biotechnology Research Institute (CMB), National Institute of Advanced Industrial Science and Technology (AIST), Tokyo, Japan
| | | | - Nikko Adhitama
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita, Japan
| | - Quang Dang Nong
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita, Japan
| | - Toru Natsume
- Cellular and Molecular Biotechnology Research Institute (CMB), National Institute of Advanced Industrial Science and Technology (AIST), Tokyo, Japan
| | - Yasuhiko Kato
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita, Japan
- Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka Univeristy, Suita, Japan
- * E-mail: (HW); (YK)
| | - Hajime Watanabe
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita, Japan
- Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka Univeristy, Suita, Japan
- * E-mail: (HW); (YK)
| |
Collapse
|
8
|
Bose M, Lampe M, Mahamid J, Ephrussi A. Liquid-to-solid phase transition of oskar ribonucleoprotein granules is essential for their function in Drosophila embryonic development. Cell 2022; 185:1308-1324.e23. [PMID: 35325593 PMCID: PMC9042795 DOI: 10.1016/j.cell.2022.02.022] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 11/24/2021] [Accepted: 02/18/2022] [Indexed: 01/05/2023]
Abstract
Asymmetric localization of oskar ribonucleoprotein (RNP) granules to the oocyte posterior is crucial for abdominal patterning and germline formation in the Drosophila embryo. We show that oskar RNP granules in the oocyte are condensates with solid-like physical properties. Using purified oskar RNA and scaffold proteins Bruno and Hrp48, we confirm in vitro that oskar granules undergo a liquid-to-solid phase transition. Whereas the liquid phase allows RNA incorporation, the solid phase precludes incorporation of additional RNA while allowing RNA-dependent partitioning of client proteins. Genetic modification of scaffold granule proteins or tethering the intrinsically disordered region of human fused in sarcoma (FUS) to oskar mRNA allowed modulation of granule material properties in vivo. The resulting liquid-like properties impaired oskar localization and translation with severe consequences on embryonic development. Our study reflects how physiological phase transitions shape RNA-protein condensates to regulate the localization and expression of a maternal RNA that instructs germline formation.
Collapse
Affiliation(s)
- Mainak Bose
- Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany
| | - Marko Lampe
- Advanced Light Microscopy Facility, European Molecular Biology Laboratory, Heidelberg 69117, Germany
| | - Julia Mahamid
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany.
| | - Anne Ephrussi
- Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany.
| |
Collapse
|
9
|
Kenny A, Morgan MB, Mohr S, Macdonald PM. Knock down analysis reveals critical phases for specific oskar noncoding RNA functions during Drosophila oogenesis. G3-GENES GENOMES GENETICS 2021; 11:6377782. [PMID: 34586387 PMCID: PMC8849117 DOI: 10.1093/g3journal/jkab340] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 09/17/2021] [Indexed: 12/02/2022]
Abstract
The oskar transcript, acting as a noncoding RNA, contributes to a diverse set of pathways in the Drosophila ovary, including karyosome formation, positioning of the microtubule organizing center (MTOC), integrity of certain ribonucleoprotein particles, control of nurse cell divisions, restriction of several proteins to the germline, and progression through oogenesis. How oskar mRNA acts to perform these functions remains unclear. Here, we use a knock down approach to identify the critical phases when oskar is required for three of these functions. The existing transgenic shRNA for removal of oskar mRNA in the germline targets a sequence overlapping a regulatory site bound by Bruno1 protein to confer translational repression, and was ineffective during oogenesis. Novel transgenic shRNAs targeting other sites were effective at strongly reducing oskar mRNA levels and reproducing phenotypes associated with the absence of the mRNA. Using GAL4 drivers active at different developmental stages of oogenesis, we found that early loss of oskar mRNA reproduced defects in karyosome formation and positioning of the MTOC, but not arrest of oogenesis. Loss of oskar mRNA at later stages was required to prevent progression through oogenesis. The noncoding function of oskar mRNA is thus required for more than a single event.
Collapse
Affiliation(s)
- Andrew Kenny
- Department of Molecular Biosciences The University of Texas at Austin Austin, TX 78712 United States of America
| | - Miles B Morgan
- Department of Molecular Biosciences The University of Texas at Austin Austin, TX 78712 United States of America
| | - Sabine Mohr
- Department of Molecular Biosciences The University of Texas at Austin Austin, TX 78712 United States of America
| | - Paul M Macdonald
- Department of Molecular Biosciences The University of Texas at Austin Austin, TX 78712 United States of America
| |
Collapse
|
10
|
Kao SY, Nikonova E, Chaabane S, Sabani A, Martitz A, Wittner A, Heemken J, Straub T, Spletter ML. A Candidate RNAi Screen Reveals Diverse RNA-Binding Protein Phenotypes in Drosophila Flight Muscle. Cells 2021; 10:2505. [PMID: 34685485 PMCID: PMC8534295 DOI: 10.3390/cells10102505] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/14/2021] [Accepted: 09/18/2021] [Indexed: 12/30/2022] Open
Abstract
The proper regulation of RNA processing is critical for muscle development and the fine-tuning of contractile ability among muscle fiber-types. RNA binding proteins (RBPs) regulate the diverse steps in RNA processing, including alternative splicing, which generates fiber-type specific isoforms of structural proteins that confer contractile sarcomeres with distinct biomechanical properties. Alternative splicing is disrupted in muscle diseases such as myotonic dystrophy and dilated cardiomyopathy and is altered after intense exercise as well as with aging. It is therefore important to understand splicing and RBP function, but currently, only a small fraction of the hundreds of annotated RBPs expressed in muscle have been characterized. Here, we demonstrate the utility of Drosophila as a genetic model system to investigate basic developmental mechanisms of RBP function in myogenesis. We find that RBPs exhibit dynamic temporal and fiber-type specific expression patterns in mRNA-Seq data and display muscle-specific phenotypes. We performed knockdown with 105 RNAi hairpins targeting 35 RBPs and report associated lethality, flight, myofiber and sarcomere defects, including flight muscle phenotypes for Doa, Rm62, mub, mbl, sbr, and clu. Knockdown phenotypes of spliceosome components, as highlighted by phenotypes for A-complex components SF1 and Hrb87F (hnRNPA1), revealed level- and temporal-dependent myofibril defects. We further show that splicing mediated by SF1 and Hrb87F is necessary for Z-disc stability and proper myofibril development, and strong knockdown of either gene results in impaired localization of kettin to the Z-disc. Our results expand the number of RBPs with a described phenotype in muscle and underscore the diversity in myofibril and transcriptomic phenotypes associated with splicing defects. Drosophila is thus a powerful model to gain disease-relevant insight into cellular and molecular phenotypes observed when expression levels of splicing factors, spliceosome components and splicing dynamics are altered.
Collapse
Affiliation(s)
- Shao-Yen Kao
- Biomedical Center, Department of Physiological Chemistry, Ludwig-Maximilians-Universität München, Großhaderner Str. 9, 82152 Martinsried-Planegg, Germany; (S.-Y.K.); (E.N.); (S.C.); (A.W.); (J.H.)
| | - Elena Nikonova
- Biomedical Center, Department of Physiological Chemistry, Ludwig-Maximilians-Universität München, Großhaderner Str. 9, 82152 Martinsried-Planegg, Germany; (S.-Y.K.); (E.N.); (S.C.); (A.W.); (J.H.)
| | - Sabrina Chaabane
- Biomedical Center, Department of Physiological Chemistry, Ludwig-Maximilians-Universität München, Großhaderner Str. 9, 82152 Martinsried-Planegg, Germany; (S.-Y.K.); (E.N.); (S.C.); (A.W.); (J.H.)
| | - Albiona Sabani
- Department of Biology, University of Wisconsin at Madison, 1117 W. Johnson St., Madison, WI 53706, USA;
| | - Alexandra Martitz
- Molecular Nutrition Medicine, Else Kröner-Fresenius Center, Technical University of Munich, 85354 Freising, Germany;
| | - Anja Wittner
- Biomedical Center, Department of Physiological Chemistry, Ludwig-Maximilians-Universität München, Großhaderner Str. 9, 82152 Martinsried-Planegg, Germany; (S.-Y.K.); (E.N.); (S.C.); (A.W.); (J.H.)
| | - Jakob Heemken
- Biomedical Center, Department of Physiological Chemistry, Ludwig-Maximilians-Universität München, Großhaderner Str. 9, 82152 Martinsried-Planegg, Germany; (S.-Y.K.); (E.N.); (S.C.); (A.W.); (J.H.)
| | - Tobias Straub
- Biomedical Center, Bioinformatics Core Facility, Ludwig-Maximilians-Universität München, Großhaderner Str. 9, 82152 Martinsried-Planegg, Germany;
| | - Maria L. Spletter
- Biomedical Center, Department of Physiological Chemistry, Ludwig-Maximilians-Universität München, Großhaderner Str. 9, 82152 Martinsried-Planegg, Germany; (S.-Y.K.); (E.N.); (S.C.); (A.W.); (J.H.)
| |
Collapse
|
11
|
Kaya-Çopur A, Marchiano F, Hein MY, Alpern D, Russeil J, Luis NM, Mann M, Deplancke B, Habermann BH, Schnorrer F. The Hippo pathway controls myofibril assembly and muscle fiber growth by regulating sarcomeric gene expression. eLife 2021; 10:e63726. [PMID: 33404503 PMCID: PMC7815313 DOI: 10.7554/elife.63726] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 01/05/2021] [Indexed: 12/30/2022] Open
Abstract
Skeletal muscles are composed of gigantic cells called muscle fibers, packed with force-producing myofibrils. During development, the size of individual muscle fibers must dramatically enlarge to match with skeletal growth. How muscle growth is coordinated with growth of the contractile apparatus is not understood. Here, we use the large Drosophila flight muscles to mechanistically decipher how muscle fiber growth is controlled. We find that regulated activity of core members of the Hippo pathway is required to support flight muscle growth. Interestingly, we identify Dlg5 and Slmap as regulators of the STRIPAK phosphatase, which negatively regulates Hippo to enable post-mitotic muscle growth. Mechanistically, we show that the Hippo pathway controls timing and levels of sarcomeric gene expression during development and thus regulates the key components that physically mediate muscle growth. Since Dlg5, STRIPAK and the Hippo pathway are conserved a similar mechanism may contribute to muscle or cardiomyocyte growth in humans.
Collapse
Affiliation(s)
- Aynur Kaya-Çopur
- Aix Marseille University, CNRS, IBDM, Turing Center for Living SystemsMarseilleFrance
- Max Planck Institute of BiochemistryMartinsriedGermany
| | - Fabio Marchiano
- Aix Marseille University, CNRS, IBDM, Turing Center for Living SystemsMarseilleFrance
| | - Marco Y Hein
- Max Planck Institute of BiochemistryMartinsriedGermany
| | - Daniel Alpern
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
| | - Julie Russeil
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
| | - Nuno Miguel Luis
- Aix Marseille University, CNRS, IBDM, Turing Center for Living SystemsMarseilleFrance
| | - Matthias Mann
- Max Planck Institute of BiochemistryMartinsriedGermany
| | - Bart Deplancke
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
| | - Bianca H Habermann
- Aix Marseille University, CNRS, IBDM, Turing Center for Living SystemsMarseilleFrance
| | - Frank Schnorrer
- Aix Marseille University, CNRS, IBDM, Turing Center for Living SystemsMarseilleFrance
- Max Planck Institute of BiochemistryMartinsriedGermany
| |
Collapse
|
12
|
Lasko P. Patterning the Drosophila embryo: A paradigm for RNA-based developmental genetic regulation. WILEY INTERDISCIPLINARY REVIEWS-RNA 2020; 11:e1610. [PMID: 32543002 PMCID: PMC7583483 DOI: 10.1002/wrna.1610] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 05/13/2020] [Accepted: 05/17/2020] [Indexed: 12/16/2022]
Abstract
Embryonic anterior–posterior patterning is established in Drosophila melanogaster by maternally expressed genes. The mRNAs of several of these genes accumulate at either the anterior or posterior pole of the oocyte via a number of mechanisms. Many of these mRNAs are also under elaborate translational regulation. Asymmetric RNA localization coupled with spatially restricted translation ensures that their proteins are restricted to the position necessary for the developmental process that they drive. Bicoid (Bcd), the anterior determinant, and Oskar (Osk), the determinant for primordial germ cells and posterior patterning, have been studied particularly closely. In early embryos an anterior–posterior gradient of Bcd is established, activating transcription of different sets of zygotic genes depending on local Bcd concentration. At the posterior pole, Osk seeds formation of polar granules, ribonucleoprotein complexes that accumulate further mRNAs and proteins involved in posterior patterning and germ cell specification. After fertilization, polar granules associate with posterior nuclei and mature into nuclear germ granules. Osk accumulates in these granules, and either by itself or as part of the granules, stimulates germ cell division. This article is categorized under:RNA Export and Localization > RNA Localization Translation > Translation Regulation RNA in Disease and Development > RNA in Development
Collapse
Affiliation(s)
- Paul Lasko
- Department of Biology, McGill University, Montréal, Québec, Canada.,Department of Human Genetics, Radboudumc, Nijmegen, Netherlands
| |
Collapse
|
13
|
Hinnant TD, Merkle JA, Ables ET. Coordinating Proliferation, Polarity, and Cell Fate in the Drosophila Female Germline. Front Cell Dev Biol 2020; 8:19. [PMID: 32117961 PMCID: PMC7010594 DOI: 10.3389/fcell.2020.00019] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 01/10/2020] [Indexed: 01/05/2023] Open
Abstract
Gametes are highly specialized cell types produced by a complex differentiation process. Production of viable oocytes requires a series of precise and coordinated molecular events. Early in their development, germ cells are an interconnected group of mitotically dividing cells. Key regulatory events lead to the specification of mature oocytes and initiate a switch to the meiotic cell cycle program. Though the chromosomal events of meiosis have been extensively studied, it is unclear how other aspects of oocyte specification are temporally coordinated. The fruit fly, Drosophila melanogaster, has long been at the forefront as a model system for genetics and cell biology research. The adult Drosophila ovary continuously produces germ cells throughout the organism’s lifetime, and many of the cellular processes that occur to establish oocyte fate are conserved with mammalian gamete development. Here, we review recent discoveries from Drosophila that advance our understanding of how early germ cells balance mitotic exit with meiotic initiation. We discuss cell cycle control and establishment of cell polarity as major themes in oocyte specification. We also highlight a germline-specific organelle, the fusome, as integral to the coordination of cell division, cell polarity, and cell fate in ovarian germ cells. Finally, we discuss how the molecular controls of the cell cycle might be integrated with cell polarity and cell fate to maintain oocyte production.
Collapse
Affiliation(s)
- Taylor D Hinnant
- Department of Biology, East Carolina University, Greenville, NC, United States
| | - Julie A Merkle
- Department of Biology, University of Evansville, Evansville, IN, United States
| | - Elizabeth T Ables
- Department of Biology, East Carolina University, Greenville, NC, United States
| |
Collapse
|
14
|
Dold A, Han H, Liu N, Hildebrandt A, Brüggemann M, Rücklé C, Hänel H, Busch A, Beli P, Zarnack K, König J, Roignant JY, Lasko P. Makorin 1 controls embryonic patterning by alleviating Bruno1-mediated repression of oskar translation. PLoS Genet 2020; 16:e1008581. [PMID: 31978041 PMCID: PMC7001992 DOI: 10.1371/journal.pgen.1008581] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 02/05/2020] [Accepted: 12/20/2019] [Indexed: 11/18/2022] Open
Abstract
Makorins are evolutionary conserved proteins that contain C3H-type zinc finger modules and a RING E3 ubiquitin ligase domain. In Drosophila, maternal Makorin 1 (Mkrn1) has been linked to embryonic patterning but the mechanism remained unsolved. Here, we show that Mkrn1 is essential for axis specification and pole plasm assembly by translational activation of oskar (osk). We demonstrate that Mkrn1 interacts with poly(A) binding protein (pAbp) and binds specifically to osk 3’ UTR in a region adjacent to A-rich sequences. Using Drosophila S2R+ cultured cells we show that this binding site overlaps with a Bruno1 (Bru1) responsive element (BREs) that regulates osk translation. We observe increased association of the translational repressor Bru1 with osk mRNA upon depletion of Mkrn1, indicating that both proteins compete for osk binding. Consistently, reducing Bru1 dosage partially rescues viability and Osk protein level in ovaries from Mkrn1 females. We conclude that Mkrn1 controls embryonic patterning and germ cell formation by specifically activating osk translation, most likely by competing with Bru1 to bind to osk 3’ UTR. To ensure accurate development of the Drosophila embryo, proteins and mRNAs are positioned at specific sites within the embryo. Many of these factors are produced and localized during the development of the egg in the mother. One protein essential for this process that has been heavily studied is Oskar (Osk), which is positioned at the posterior pole. During the localization of osk mRNA, its translation is repressed by the RNA-binding protein Bruno1 (Bru1), ensuring that Osk protein is not present outside of the posterior where it is harmful. At the posterior pole, osk mRNA is activated through mechanisms that are not yet understood. In this work, we show that the conserved protein Makorin 1 (Mkrn1) is a novel factor involved in the translational activation of osk. Mkrn1 binds specifically to osk mRNA, overlapping with a binding site of Bru1, thus alleviating the association of Bru1 with osk. Moreover, Mkrn1 is stabilized by poly(A) binding protein (pAbp), a translational activator that binds osk mRNA in close proximity to one Mkrn1 binding site. Our work thus helps to answer a long-standing question in the field, providing insight about the function of Mkrn1 and more generally into embryonic patterning in animals.
Collapse
Affiliation(s)
- Annabelle Dold
- RNA Epigenetics, Institute of Molecular Biology, Mainz, Germany
| | - Hong Han
- Department of Biology, McGill University, Montréal, Québec, Canada
| | - Niankun Liu
- Department of Biology, McGill University, Montréal, Québec, Canada
| | - Andrea Hildebrandt
- Chromatin Biology and Proteomics, Institute of Molecular Biology, Mainz, Germany.,Genomic Views of Splicing Regulation, Institute of Molecular Biology, Mainz, Germany
| | - Mirko Brüggemann
- Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Frankfurt, Germany
| | - Cornelia Rücklé
- Genomic Views of Splicing Regulation, Institute of Molecular Biology, Mainz, Germany.,Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Frankfurt, Germany
| | - Heike Hänel
- Genomic Views of Splicing Regulation, Institute of Molecular Biology, Mainz, Germany
| | - Anke Busch
- Bioinformatics Core Facility, Institute of Molecular Biology, Mainz, Germany
| | - Petra Beli
- Chromatin Biology and Proteomics, Institute of Molecular Biology, Mainz, Germany
| | - Kathi Zarnack
- Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Frankfurt, Germany
| | - Julian König
- Genomic Views of Splicing Regulation, Institute of Molecular Biology, Mainz, Germany
| | - Jean-Yves Roignant
- RNA Epigenetics, Institute of Molecular Biology, Mainz, Germany.,Center for Integrative Genomics, Génopode Building, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Paul Lasko
- Department of Biology, McGill University, Montréal, Québec, Canada.,Department of Human Genetics, Radboud University Medical Center, Nijmegen, Netherlands
| |
Collapse
|
15
|
Flora P, Wong-Deyrup SW, Martin ET, Palumbo RJ, Nasrallah M, Oligney A, Blatt P, Patel D, Fuchs G, Rangan P. Sequential Regulation of Maternal mRNAs through a Conserved cis-Acting Element in Their 3' UTRs. Cell Rep 2019; 25:3828-3843.e9. [PMID: 30590052 PMCID: PMC6328254 DOI: 10.1016/j.celrep.2018.12.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 10/28/2018] [Accepted: 11/30/2018] [Indexed: 12/31/2022] Open
Abstract
Maternal mRNAs synthesized during oogenesis initiate the development of future generations. Some maternal mRNAs are either somatic or germline determinants and must be translationally repressed until embryogenesis. However, the translational repressors themselves are temporally regulated. We used polar granule component (pgc), a Drosophila maternal mRNA, to ask how maternal transcripts are repressed while the regulatory landscape is shifting. pgc, a germline determinant, is translationally regulated throughout oogenesis. We find that different conserved RNA-binding proteins bind a 10-nt sequence in the 3′ UTR of pgc mRNA to continuously repress translation at different stages of oogenesis. Pumilio binds to this sequence in undifferentiated and early-differentiating oocytes to block Pgc translation. After differentiation, Bruno levels increase, allowing Bruno to bind the same sequence and take over translational repression of pgc mRNA. We have identified a class of maternal mRNAs that are regulated similarly, including zelda, the activator of the zygotic genome. Flora et al. show that pgc, a germline determinant, is translationally regulated throughout oogenesis. Different conserved RBPs bind a 10-nt sequence in the 3′ UTR to continuously repress translation throughout oogenesis. This mode of regulation applies to a class of maternal mRNAs, including zelda, the activator of the zygotic genome.
Collapse
Affiliation(s)
- Pooja Flora
- Department of Biological Sciences/RNA Institute, University at Albany SUNY, Albany, NY 12222, USA
| | - Siu Wah Wong-Deyrup
- Department of Biological Sciences/RNA Institute, University at Albany SUNY, Albany, NY 12222, USA
| | - Elliot Todd Martin
- Department of Biological Sciences/RNA Institute, University at Albany SUNY, Albany, NY 12222, USA
| | - Ryan J Palumbo
- Department of Biological Sciences/RNA Institute, University at Albany SUNY, Albany, NY 12222, USA
| | - Mohamad Nasrallah
- Department of Biological Sciences/RNA Institute, University at Albany SUNY, Albany, NY 12222, USA
| | - Andrew Oligney
- Department of Biological Sciences/RNA Institute, University at Albany SUNY, Albany, NY 12222, USA
| | - Patrick Blatt
- Department of Biological Sciences/RNA Institute, University at Albany SUNY, Albany, NY 12222, USA
| | - Dhruv Patel
- Department of Biological Sciences/RNA Institute, University at Albany SUNY, Albany, NY 12222, USA
| | - Gabriele Fuchs
- Department of Biological Sciences/RNA Institute, University at Albany SUNY, Albany, NY 12222, USA
| | - Prashanth Rangan
- Department of Biological Sciences/RNA Institute, University at Albany SUNY, Albany, NY 12222, USA.
| |
Collapse
|
16
|
Blatt P, Martin ET, Breznak SM, Rangan P. Post-transcriptional gene regulation regulates germline stem cell to oocyte transition during Drosophila oogenesis. Curr Top Dev Biol 2019; 140:3-34. [PMID: 32591078 DOI: 10.1016/bs.ctdb.2019.10.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
During oogenesis, several developmental processes must be traversed to ensure effective completion of gametogenesis including, stem cell maintenance and asymmetric division, differentiation, mitosis and meiosis, and production of maternally contributed mRNAs, making the germline a salient model for understanding how cell fate transitions are mediated. Due to silencing of the genome during meiotic divisions, there is little instructive transcription, barring a few examples, to mediate these critical transitions. In Drosophila, several layers of post-transcriptional regulation ensure that the mRNAs required for these processes are expressed in a timely manner and as needed during germline differentiation. These layers of regulation include alternative splicing, RNA modification, ribosome production, and translational repression. Many of the molecules and pathways involved in these regulatory activities are conserved from Drosophila to humans making the Drosophila germline an elegant model for studying the role of post-transcriptional regulation during stem cell differentiation and meiosis.
Collapse
Affiliation(s)
- Patrick Blatt
- Department of Biological Sciences/RNA Institute, University at Albany SUNY, Albany, NY, United States; University at Albany SUNY, Albany, NY, United States
| | - Elliot T Martin
- Department of Biological Sciences/RNA Institute, University at Albany SUNY, Albany, NY, United States; University at Albany SUNY, Albany, NY, United States
| | - Shane M Breznak
- Department of Biological Sciences/RNA Institute, University at Albany SUNY, Albany, NY, United States; University at Albany SUNY, Albany, NY, United States
| | - Prashanth Rangan
- Department of Biological Sciences/RNA Institute, University at Albany SUNY, Albany, NY, United States; University at Albany SUNY, Albany, NY, United States.
| |
Collapse
|
17
|
Regulation of Translationally Repressed mRNAs in Zebrafish and Mouse Oocytes. Results Probl Cell Differ 2019; 63:297-324. [PMID: 28779323 DOI: 10.1007/978-3-319-60855-6_13] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
From the beginning of oogenesis, oocytes accumulate tens of thousands of mRNAs for promoting oocyte growth and development. A large number of these mRNAs are translationally repressed and localized within the oocyte cytoplasm. Translational activation of these dormant mRNAs at specific sites and timings plays central roles in driving progression of the meiotic cell cycle, axis formation, mitotic cleavages, transcriptional initiation, and morphogenesis. Regulation of the localization and temporal translation of these mRNAs has been shown to rely on cis-acting elements in the mRNAs and trans-acting factors recognizing and binding to the elements. Recently, using model vertebrate zebrafish, localization itself and formation of physiological structures such as RNA granules have been shown to coordinate the accurate timings of translational activation of dormant mRNAs. This subcellular regulation of mRNAs is also utilized in other animals including mouse. In this chapter, we review fundamental roles of temporal regulation of mRNA translation in oogenesis and early development and then focus on the mechanisms of mRNA regulation in the oocyte cytoplasm by which the activation of dormant mRNAs at specific timings is achieved.
Collapse
|
18
|
Teixeira FK, Lehmann R. Translational Control during Developmental Transitions. Cold Spring Harb Perspect Biol 2019; 11:cshperspect.a032987. [PMID: 30082467 DOI: 10.1101/cshperspect.a032987] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The many steps of gene expression, from the transcription of a gene to the production of its protein product, are well understood. Yet, transcriptional regulation has been the focal point for the study of gene expression during development. However, quantitative studies reveal that messenger RNA (mRNA) levels are not necessarily good predictors of the respective proteins' levels in a cell. This discrepancy is, at least in part, the result of developmentally regulated, translational mechanisms that control the spatiotemporal regulation of gene expression. In this review, we focus on translational regulatory mechanisms mediating global transitions in gene expression: the shift from the maternal to the embryonic developmental program in the early embryo and the switch from the self-renewal of stem cells to differentiation in the adult.
Collapse
Affiliation(s)
| | - Ruth Lehmann
- Howard Hughes Medical Institute (HHMI) and Kimmel Center for Biology and Medicine of the Skirball Institute, Department of Cell Biology, New York University School of Medicine, New York, New York 10016
| |
Collapse
|
19
|
Kina H, Yoshitani T, Hanyu-Nakamura K, Nakamura A. Rapid and efficient generation of GFP-knocked-in Drosophila by the CRISPR-Cas9-mediated genome editing. Dev Growth Differ 2019; 61:265-275. [PMID: 31037730 DOI: 10.1111/dgd.12607] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 03/20/2019] [Accepted: 03/21/2019] [Indexed: 11/30/2022]
Abstract
The CRISPR-Cas9 technology has been a powerful means to manipulate the genome in a wide range of organisms. A series of GFP knocked-in (GFPKI ) Drosophila strains have been generated through CRISPR-Cas9-induced double strand breaks coupled with homology-directed repairs in the presence of donor plasmids. They visualized specific cell types or intracellular structures in both fixed and live specimen. We provide a rapid and efficient strategy to identify KI lines. This method requires neither co-integration of a selection marker nor prior establishment of sgRNA-expressing transgenic lines. The injection of the mixture of a sgRNA/Cas9 expression plasmid and a donor plasmid into cleavage stage embryos efficiently generated multiple independent KI lines. A PCR-based selection allows to identify KI fly lines at the F1 generation (approximately 4 weeks after injection). These GFPKI strains have been deposited in the Kyoto Drosophila stock center, and made freely available to researchers at non-profit organizations. Thus, they will be useful resources for Drosophila research.
Collapse
Affiliation(s)
- Hirono Kina
- Department of Germline Development, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan.,School of Pharmacy, Kumamoto University, Kumamoto, Japan
| | - Takashi Yoshitani
- Department of Germline Development, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan.,School of Pharmacy, Kumamoto University, Kumamoto, Japan
| | - Kazuko Hanyu-Nakamura
- Department of Germline Development, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
| | - Akira Nakamura
- Department of Germline Development, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan.,School of Pharmacy, Kumamoto University, Kumamoto, Japan.,Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
20
|
Kelleher ES, Jaweria J, Akoma U, Ortega L, Tang W. QTL mapping of natural variation reveals that the developmental regulator bruno reduces tolerance to P-element transposition in the Drosophila female germline. PLoS Biol 2018; 16:e2006040. [PMID: 30376574 PMCID: PMC6207299 DOI: 10.1371/journal.pbio.2006040] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 09/26/2018] [Indexed: 12/15/2022] Open
Abstract
Transposable elements (TEs) are obligate genetic parasites that propagate in host genomes by replicating in germline nuclei, thereby ensuring transmission to offspring. This selfish replication not only produces deleterious mutations—in extreme cases, TE mobilization induces genotoxic stress that prohibits the production of viable gametes. Host genomes could reduce these fitness effects in two ways: resistance and tolerance. Resistance to TE propagation is enacted by germline-specific small-RNA-mediated silencing pathways, such as the Piwi-interacting RNA (piRNA) pathway, and is studied extensively. However, it remains entirely unknown whether host genomes may also evolve tolerance by desensitizing gametogenesis to the harmful effects of TEs. In part, the absence of research on tolerance reflects a lack of opportunity, as small-RNA-mediated silencing evolves rapidly after a new TE invades, thereby masking existing variation in tolerance. We have exploited the recent historical invasion of the Drosophila melanogaster genome by P-element DNA transposons in order to study tolerance of TE activity. In the absence of piRNA-mediated silencing, the genotoxic stress imposed by P-elements disrupts oogenesis and, in extreme cases, leads to atrophied ovaries that completely lack germline cells. By performing quantitative trait locus (QTL) mapping on a panel of recombinant inbred lines (RILs) that lack piRNA-mediated silencing of P-elements, we uncovered multiple QTL that are associated with differences in tolerance of oogenesis to P-element transposition. We localized the most significant QTL to a small 230-kb euchromatic region, with the logarithm of the odds (LOD) peak occurring in the bruno locus, which codes for a critical and well-studied developmental regulator of oogenesis. Genetic, cytological, and expression analyses suggest that bruno dosage modulates germline stem cell (GSC) loss in the presence of P-element activity. Our observations reveal segregating variation in TE tolerance for the first time, and implicate gametogenic regulators as a source of tolerant variants in natural populations. Transposable elements (TEs), or “jumping genes,” are mobile fragments of selfish DNA that leave deleterious mutations and DNA damage in their wake as they spread through host genomes. Their harmful effects are known to select for resistance by the host, in which the propagation of TEs is regulated and reduced. Here, we study for the first time whether host cells might also exhibit tolerance to TEs, by reducing their harmful effects without directly controlling their movement. By taking advantage of a panel of wild-type Drosophila melanogaster that lack resistance to P-element DNA transposons, we identified a small region of the genome that influences tolerance of P-element activity. We further demonstrate that a gene within that region, bruno, strongly influences the negative effects of P-element mobilization on the fly. When bruno dosage is reduced, the fertility of females carrying mobile P-elements is enhanced. The bruno locus encodes a protein with no known role in TE regulation but multiple well-characterized functions in oogenesis. We propose that bruno function reduces tolerance of the developing oocyte to DNA damage that is caused by P-elements.
Collapse
Affiliation(s)
- Erin S. Kelleher
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, United State of America
- * E-mail:
| | - Jaweria Jaweria
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, United State of America
| | - Uchechukwu Akoma
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, United State of America
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Lily Ortega
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, United State of America
| | - Wenpei Tang
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, United State of America
| |
Collapse
|
21
|
Subcellular Specialization and Organelle Behavior in Germ Cells. Genetics 2018; 208:19-51. [PMID: 29301947 DOI: 10.1534/genetics.117.300184] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2016] [Accepted: 08/17/2017] [Indexed: 11/18/2022] Open
Abstract
Gametes, eggs and sperm, are the highly specialized cell types on which the development of new life solely depends. Although all cells share essential organelles, such as the ER (endoplasmic reticulum), Golgi, mitochondria, and centrosomes, germ cells display unique regulation and behavior of organelles during gametogenesis. These germ cell-specific functions of organelles serve critical roles in successful gamete production. In this chapter, I will review the behaviors and roles of organelles during germ cell differentiation.
Collapse
|
22
|
Zhang MN, Tang QY, Li RM, Song MG. MicroRNA-141-3p/200a-3p target and may be involved in post-transcriptional repression of RNA decapping enzyme Dcp2 during renal development. Biosci Biotechnol Biochem 2018; 82:1724-1732. [PMID: 29912646 DOI: 10.1080/09168451.2018.1486176] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The RNA decapping enzyme Dcp2 is a crucial enzyme involved in the process of RNA turnover, which can post-transcriptionally regulate gene expression. Dcp2 has been found to be highly expressed in embryonic, but not adult, kidneys. Here we showed that Dcp2 mRNA was expressed, but Dcp2 proteins were absent, in mouse kidneys after postnatal day 10 (P10). In kidneys of adult Dcp2-IRES-EGFP knock-in mice, Dcp2 was undetectable but EGFP was expressed, indicating that Dcp2 mRNA was not completely silenced in adult kidneys. Using luciferase reporter assays, we found that miR-141-3p/200a-3p directly targeted the 3' UTR of Dcp2 mRNA. Overexpression of miR-141-3p and miR-200a-3p downregulated endogenous Dcp2 protein expression. Furthermore, miR-141-3p and miR-200a-3p expression was low in embryonic kidneys but increased dramatically after P10 and was negatively correlated with Dcp2 protein expression during renal development. These results suggest miR-141-3p/200a-3p may be involved in post-transcriptional repression of Dcp2 expression during renal development. ABBREVIATIONS IRES: internal ribosome entry site; EGFP: enhanced green fluorescent protein; UTR: untranslated region.
Collapse
Affiliation(s)
- Ming-Nan Zhang
- a Biomedical Research Center, Zhongshan Hospital , Fudan University , Shanghai , China.,b Shanghai Key Laboratory of Organ Transplantation , Shanghai , China
| | - Qun-Ye Tang
- b Shanghai Key Laboratory of Organ Transplantation , Shanghai , China.,c Department of Urology , Zhongshan Hospital, Fudan University , Shanghai , China
| | - Rui-Min Li
- a Biomedical Research Center, Zhongshan Hospital , Fudan University , Shanghai , China.,b Shanghai Key Laboratory of Organ Transplantation , Shanghai , China
| | - Man-Gen Song
- a Biomedical Research Center, Zhongshan Hospital , Fudan University , Shanghai , China.,b Shanghai Key Laboratory of Organ Transplantation , Shanghai , China
| |
Collapse
|
23
|
Bao R, Dia SE, Issa HA, Alhusein D, Friedrich M. Comparative Evidence of an Exceptional Impact of Gene Duplication on the Developmental Evolution of Drosophila and the Higher Diptera. Front Ecol Evol 2018. [DOI: 10.3389/fevo.2018.00063] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
24
|
Control of Pem protein level by localized maternal factors for transcriptional regulation in the germline of the ascidian, Halocynthia roretzi. PLoS One 2018; 13:e0196500. [PMID: 29709000 PMCID: PMC5927453 DOI: 10.1371/journal.pone.0196500] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 04/13/2018] [Indexed: 12/04/2022] Open
Abstract
Localized maternal mRNAs play important roles in embryogenesis, e.g. the establishment of embryonic axes and the developmental cell fate specification, in various animal species. In ascidians, a group of maternal mRNAs, called postplasmic/PEM RNAs, is localized to a subcellular structure, called the Centrosome-Attracting Body (CAB), which contains the ascidian germ plasm, and is inherited by the germline cells during embryogenesis. Posterior end mark (Pem), a postplasmic/PEM RNAs member, represses somatic gene expression in the germline during cleavage stages by inhibition of RNA polymerase II activity. However, the functions of other postplasmic/ PEM RNAs members in germline formation are largely unknown. In this study, we analyzed the functions of two postplasmic/PEM RNAs, Popk-1 and Zf-1, in transcriptional regulation in the germline cells. We show that Popk-1 contributes to transcriptional quiescence by controlling the size of the CAB and amount of Pem protein translated at the CAB. Our studies also indicated that zygotic expression of a germline gene starts around the onset of gastrulation and that the decrease of Pem protein is necessary and sufficient for the zygotic germline gene expression. Finally, further studies showed that the decrease of the Pem protein level is facilitated by Zf-1. Taken together, we propose that postplasmic/PEM RNAs such as Popk-1 and Zf-1 control the protein level of the transcriptional repressor Pem and regulate its transcriptional state in the ascidian germline.
Collapse
|
25
|
Ryu YH, Kenny A, Gim Y, Snee M, Macdonald PM. Multiple cis-acting signals, some weak by necessity, collectively direct robust transport of oskar mRNA to the oocyte. J Cell Sci 2017; 130:3060-3071. [PMID: 28760927 DOI: 10.1242/jcs.202069] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 07/24/2017] [Indexed: 10/19/2022] Open
Abstract
Localization of mRNAs can involve multiple steps, each with its own cis-acting localization signals and transport factors. How is the transition between different steps orchestrated? We show that the initial step in localization of Drosophila oskar mRNA - transport from nurse cells to the oocyte - relies on multiple cis-acting signals. Some of these are binding sites for the translational control factor Bruno, suggesting that Bruno plays an additional role in mRNA transport. Although transport of oskar mRNA is essential and robust, the localization activity of individual transport signals is weak. Notably, increasing the strength of individual transport signals, or adding a strong transport signal, disrupts the later stages of oskar mRNA localization. We propose that the oskar transport signals are weak by necessity; their weakness facilitates transfer of the oskar mRNA from the oocyte transport machinery to the machinery for posterior localization.
Collapse
Affiliation(s)
- Young Hee Ryu
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712, USA
| | - Andrew Kenny
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712, USA
| | - Youme Gim
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712, USA
| | - Mark Snee
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712, USA
| | - Paul M Macdonald
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
26
|
Dehghani M, Lasko P. Multiple Functions of the DEAD-Box Helicase Vasa in Drosophila Oogenesis. Results Probl Cell Differ 2017; 63:127-147. [PMID: 28779316 DOI: 10.1007/978-3-319-60855-6_6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
The DEAD-box helicase Vasa (Vas) has been most extensively studied in the fruit fly, Drosophila melanogaster, and numerous roles for it in germline development have been discovered. Here, we summarize the present state of knowledge about processes during oogenesis that involve Vas, as well as functions of Vas as a maternal determinant of embryonic spatial patterning and germ cell specification. We review literature that implicates Vas in Piwi-interacting RNA (piRNA) biogenesis in germline cells and in regulating mitosis in germline stem cells (GSCs). We describe the functions of Vas in translational activation of two mRNAs, gurken (grk) and mei-P26, which encode proteins that are important regulators of developmental processes, as Grk specifies both the dorsal-ventral and the anterior-posterior axis of the embryo and Mei-P26 promotes GSC differentiation. The role of Vas in assembly of polar granules, ribonucleoprotein particles that accumulate in the posterior pole plasm of the oocyte and are essential for germ cell specification and posterior embryonic patterning, is also described.
Collapse
Affiliation(s)
- Mehrnoush Dehghani
- Department of Biology, McGill University, 3649 Promenade Sir William Osler, Montréal, Québec, Canada, H3G 0B1
| | - Paul Lasko
- Department of Biology, McGill University, 3649 Promenade Sir William Osler, Montréal, Québec, Canada, H3G 0B1.
| |
Collapse
|
27
|
Cup regulates oskar mRNA stability during oogenesis. Dev Biol 2017; 421:77-85. [DOI: 10.1016/j.ydbio.2016.06.040] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 06/22/2016] [Accepted: 06/27/2016] [Indexed: 11/17/2022]
|
28
|
Abstract
Localized mRNA translation is a widespread mechanism for targeting protein synthesis, important for cell fate, motility and pathogenesis. In Drosophila, the spatiotemporal control of gurken/TGF-α mRNA translation is required for establishing the embryonic body axes. A number of recent studies have highlighted key aspects of the mechanism of gurken mRNA translational control at the dorsoanterior corner of the mid-stage oocyte. Orb/CPEB and Wispy/GLD-2 are required for polyadenylation of gurken mRNA, but unlocalized gurken mRNA in the oocyte is not fully polyadenylated. 1 At the dorsoanterior corner, Orb and gurken mRNA have been shown to be enriched at the edge of Processing bodies, where translation occurs. 2 Over-expression of Orb in the adjacent nurse cells, where gurken mRNA is transcribed, is sufficient to cause mis-expression of Gurken protein. 3 In orb mutant egg chambers, reducing the activity of CK2, a Serine/Threonine protein kinase, enhances the ventralized phenotype, consistent with perturbation of gurken translation. 4 Here we show that sites phosphorylated by CK2 overlap with active Orb and with Gurken protein expression. Together with our new findings we consolidate the literature into a working model for gurken mRNA translational control and review the role of kinases, cell cycle factors and polyadenylation machinery highlighting a multitude of conserved factors and mechanisms in the Drosophila egg chamber.
Collapse
Affiliation(s)
| | - Timothy T Weil
- a Department of Zoology , University of Cambridge , Cambridge , UK
| |
Collapse
|
29
|
Dehghani M, Lasko P. C-terminal residues specific to Vasa among DEAD-box helicases are required for its functions in piRNA biogenesis and embryonic patterning. Dev Genes Evol 2016; 226:401-412. [PMID: 27572922 DOI: 10.1007/s00427-016-0560-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 08/09/2016] [Indexed: 10/21/2022]
Abstract
The DEAD-box RNA helicase Vasa (Vas, also known as DDX4) is required for germ cell development. In Drosophila, analysis of hypomorphic mutations has implicated maternally expressed Vas in germ cell formation and posterior embryonic patterning. vas-null females, which rarely complete oogenesis, exhibit defects in mitotic progression of germline stem cells, Piwi-interacting RNA (piRNA)-mediated transposon silencing, and translation of Gurken (Grk), an EGFR ligand. The carboxy-terminal region of Vas orthologs throughout the animal kingdom consists of several acidic residues as well as an invariant tryptophan in the penultimate or ultimate position (Trp660 in Drosophila melanogaster). Using CRISPR/Cas9 gene editing, we made a substitution mutant in this residue. Replacing Trp660 by Glu (W660E) abolishes the ability of Vas to support germ cell formation and embryonic patterning and greatly reduces Vas activity in piRNA biogenesis, as measured by transposon silencing, and in activating Grk translation. A conservative substitution (W660F) has much milder phenotypic consequences. In addition, females expressing only a form of Vas in which the seven C-terminal amino acids were replaced with the corresponding residues from Belle (Bel, also known as DDX3) show defects in perinuclear nuage assembly and transposon silencing. Oogenesis in females expressing only the chimeric Vas arrests early; however, in a vas 1 background, in which early expression of endogenous Vas supports oogenesis, the chimeric protein supports posterior patterning and germ cell specification. These results indicate that the unique C-terminus of Vas is essential for its function in piRNA biogenesis and that the conserved Trp660 residue has an important functional role.
Collapse
Affiliation(s)
- Mehrnoush Dehghani
- Department of Biology, McGill University, 3649 Promenade Sir William Osler, Montréal, Québec, H3G 0B1, Canada
| | - Paul Lasko
- Department of Biology, McGill University, 3649 Promenade Sir William Osler, Montréal, Québec, H3G 0B1, Canada.
| |
Collapse
|
30
|
Macdonald PM, Kanke M, Kenny A. Community effects in regulation of translation. eLife 2016; 5:e10965. [PMID: 27104756 PMCID: PMC4846370 DOI: 10.7554/elife.10965] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 03/18/2016] [Indexed: 12/27/2022] Open
Abstract
Certain forms of translational regulation, and translation itself, rely on long-range interactions between proteins bound to the different ends of mRNAs. A widespread assumption is that such interactions occur only in cis, between the two ends of a single transcript. However, certain translational regulatory defects of the Drosophila oskar (osk) mRNA can be rescued in trans. We proposed that inter-transcript interactions, promoted by assembly of the mRNAs in particles, allow regulatory elements to act in trans. Here we confirm predictions of that model and show that disruption of PTB-dependent particle assembly inhibits rescue in trans. Communication between transcripts is not limited to different osk mRNAs, as regulation imposed by cis-acting elements embedded in the osk mRNA spreads to gurken mRNA. We conclude that community effects exist in translational regulation. DOI:http://dx.doi.org/10.7554/eLife.10965.001 Genes encode the instructions needed to make proteins and other molecules. To make a protein, the DNA within a gene is copied to produce molecules of messenger ribonucleic acid (mRNA) that are then used as templates to build proteins via a process called translation. This process – which involves protein machines called ribosomes binding to the start of the mRNA – is tightly regulated to control the amounts of particular proteins in cells. For example, in fruit fly ovaries, a protein called Bruno both represses and activates the translation of a gene known as oskar. To achieve this, Bruno binds to regions near the end of the oskar RNA known as Bruno response elements. It is not clear how Bruno acts to control translation. However, because ribosomes begin translation near the start of the mRNA, while Bruno is bound to regions near the end of the mRNA, there must be long-range interactions between the two ends of the mRNA. It is generally assumed that such long-range interactions only occur between proteins that are bound to the same mRNA molecule. However, in 2010, researchers observed that Bruno response elements within one oskar mRNA could influence the translation of other oskar mRNAs. This is known as “regulation in trans”. Here, Macdonald et al. – including some of the researchers from the earlier work – investigated this observation in more detail in fruit flies. In cells, multiple mRNA molecules and their associated proteins can assemble into particles. Macdonald et al. proposed that the close proximity of many mRNA molecules in these particles could allow trans regulation to take place. Indeed, the experiments found that blocking the assembly of oskar mRNA into particles inhibited trans regulation as expected. Macdonald et al. also asked if trans regulation can occur between mRNAs that encode different proteins. The experiments show that oskar mRNA could block the translation of an mRNA produced by the gurken gene, even when oskar mRNA was not being translated. More work is needed to find out how widely trans regulation is used to control translation. DOI:http://dx.doi.org/10.7554/eLife.10965.002
Collapse
Affiliation(s)
- Paul M Macdonald
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, United States.,Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, United States
| | - Matt Kanke
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, United States.,Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, United States
| | - Andrew Kenny
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, United States.,Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, United States
| |
Collapse
|
31
|
Barr J, Yakovlev KV, Shidlovskii Y, Schedl P. Establishing and maintaining cell polarity with mRNA localization in Drosophila. Bioessays 2016; 38:244-53. [PMID: 26773560 DOI: 10.1002/bies.201500088] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
How cell polarity is established and maintained is an important question in diverse biological contexts. Molecular mechanisms used to localize polarity proteins to distinct domains are likely context-dependent and provide a feedback loop in order to maintain polarity. One such mechanism is the localized translation of mRNAs encoding polarity proteins, which will be the focus of this review and may play a more important role in the establishment and maintenance of polarity than is currently known. Localized translation of mRNAs encoding polarity proteins can be used to establish polarity in response to an external signal, and to maintain polarity by local production of polarity determinants. The importance of this mechanism is illustrated by recent findings, including orb2-dependent localized translation of aPKC mRNA at the apical end of elongating spermatid tails in the Drosophila testis, and the apical localization of stardust A mRNA in Drosophila follicle and embryonic epithelia.
Collapse
Affiliation(s)
- Justinn Barr
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Konstantin V Yakovlev
- Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology RAS, Moscow, Russia.,A.V. Zhirmunsky Institute of Marine Biology, FEB RAS Laboratory of Cytotechnology, Vladivostok, Russia
| | - Yulii Shidlovskii
- Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology RAS, Moscow, Russia
| | - Paul Schedl
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA.,Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology RAS, Moscow, Russia
| |
Collapse
|
32
|
Germ plasm localisation of the HELICc of Vasa in Drosophila: analysis of domain sufficiency and amino acids critical for localisation. Sci Rep 2015; 5:14703. [PMID: 26419889 PMCID: PMC4588571 DOI: 10.1038/srep14703] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 09/07/2015] [Indexed: 11/23/2022] Open
Abstract
Formation of the germ plasm drives germline specification in Drosophila and some other insects such as aphids. Identification of the DEAD-box protein Vasa (Vas) as a conserved germline marker in flies and aphids suggests that they share common components for assembling the germ plasm. However, to which extent the assembly order is conserved and the correlation between functions and sequences of Vas remain unclear. Ectopic expression of the pea aphid Vas (ApVas1) in Drosophila did not drive its localisation to the germ plasm, but ApVas1 with a replaced C-terminal domain (HELICc) of Drosophila Vas (DmVas) became germ-plasm restricted. We found that HELICc itself, through the interaction with Oskar (Osk), was sufficient for germ-plasm localisation. Similarly, HELICc of the grasshopper Vas could be recruited to the germ plasm in Drosophila. Nonetheless, germ-plasm localisation was not seen in the Drosophila oocytes expressing HELICcs of Vas orthologues from aphids, crickets, and mice. We further identified that glutamine (Gln) 527 within HELICc of DmVas was critical for localisation, and its corresponding residue could also be detected in grasshopper Vas yet missing in the other three species. This suggests that Gln527 is a direct target of Osk or critical to the maintenance of HELICc conformation.
Collapse
|
33
|
Yartseva V, Giraldez AJ. The Maternal-to-Zygotic Transition During Vertebrate Development: A Model for Reprogramming. Curr Top Dev Biol 2015; 113:191-232. [PMID: 26358874 DOI: 10.1016/bs.ctdb.2015.07.020] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Cellular transitions occur at all stages of organismal life from conception to adult regeneration. Changing cellular state involves three main features: activating gene expression necessary to install the new cellular state, modifying the chromatin status to stabilize the new gene expression program, and removing existing gene products to clear out the previous cellular program. The maternal-to-zygotic transition (MZT) is one of the most profound changes in the life of an organism. It involves gene expression remodeling at all levels, including the active clearance of the maternal oocyte program to adopt the embryonic totipotency. In this chapter, we provide an overview of molecular mechanisms driving maternal mRNA clearance during the MZT, describe the developmental consequences of losing components of this gene regulation, and illustrate how remodeling of gene expression during the MZT is common to other cellular transitions with parallels to cellular reprogramming.
Collapse
Affiliation(s)
- Valeria Yartseva
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, USA.
| | - Antonio J Giraldez
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, USA; Yale Stem Cell Center, Yale University School of Medicine, New Haven, Connecticut, USA.
| |
Collapse
|
34
|
Kanke M, Jambor H, Reich J, Marches B, Gstir R, Ryu YH, Ephrussi A, Macdonald PM. oskar RNA plays multiple noncoding roles to support oogenesis and maintain integrity of the germline/soma distinction. RNA (NEW YORK, N.Y.) 2015; 21:1096-109. [PMID: 25862242 PMCID: PMC4436663 DOI: 10.1261/rna.048298.114] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 02/12/2015] [Indexed: 05/05/2023]
Abstract
The Drosophila oskar (osk) mRNA is unusual in that it has both coding and noncoding functions. As an mRNA, osk encodes a protein required for embryonic patterning and germ cell formation. Independent of that function, the absence of osk mRNA disrupts formation of the karyosome and blocks progression through oogenesis. Here we show that loss of osk mRNA also affects the distribution of regulatory proteins, relaxing their association with large RNPs within the germline, and allowing them to accumulate in the somatic follicle cells. This and other noncoding functions of the osk mRNA are mediated by multiple sequence elements with distinct roles. One role, provided by numerous binding sites in two distinct regions of the osk 3' UTR, is to sequester the translational regulator Bruno (Bru), which itself controls translation of osk mRNA. This defines a novel regulatory circuit, with Bru restricting the activity of osk, and osk in turn restricting the activity of Bru. Other functional elements, which do not bind Bru and are positioned close to the 3' end of the RNA, act in the oocyte and are essential. Despite the different roles played by the different types of elements contributing to RNA function, mutation of any leads to accumulation of the germline regulatory factors in the follicle cells.
Collapse
Affiliation(s)
- Matt Kanke
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Helena Jambor
- Developmental Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - John Reich
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Brittany Marches
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Ronald Gstir
- Developmental Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Young Hee Ryu
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Anne Ephrussi
- Developmental Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Paul M Macdonald
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas 78712, USA
| |
Collapse
|
35
|
Kim G, Pai CI, Sato K, Person MD, Nakamura A, Macdonald PM. Region-specific activation of oskar mRNA translation by inhibition of Bruno-mediated repression. PLoS Genet 2015; 11:e1004992. [PMID: 25723530 PMCID: PMC4344327 DOI: 10.1371/journal.pgen.1004992] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 01/07/2015] [Indexed: 11/18/2022] Open
Abstract
A complex program of translational repression, mRNA localization, and translational activation ensures that Oskar (Osk) protein accumulates only at the posterior pole of the Drosophila oocyte. Inappropriate expression of Osk disrupts embryonic axial patterning, and is lethal. A key factor in translational repression is Bruno (Bru), which binds to regulatory elements in the osk mRNA 3' UTR. After posterior localization of osk mRNA, repression by Bru must be alleviated. Here we describe an in vivo assay system to monitor the spatial pattern of Bru-dependent repression, separate from the full complexity of osk regulation. This assay reveals a form of translational activation-region-specific activation-which acts regionally in the oocyte, is not mechanistically coupled to mRNA localization, and functions by inhibiting repression by Bru. We also show that Bru dimerizes and identify mutations that disrupt this interaction to test its role in vivo. Loss of dimerization does not disrupt repression, as might have been expected from an existing model for the mechanism of repression. However, loss of dimerization does impair regional activation of translation, suggesting that dimerization may constrain, not promote, repression. Our work provides new insight into the question of how localized mRNAs become translationally active, showing that repression of osk mRNA is locally inactivated by a mechanism acting independent of mRNA localization.
Collapse
Affiliation(s)
- Goheun Kim
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas, United States of America
| | - Chin-I Pai
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas, United States of America
| | - Keiji Sato
- Laboratory for Germline Development, RIKEN Center for Developmental Biology, Kobe, Hyogo, Japan
| | - Maria D. Person
- Proteomics Facility, Institute for Cellular and Molecular Biology and College of Pharmacy, The University of Texas at Austin, Austin, Texas, United States of America
| | - Akira Nakamura
- Department of Germline Development, Division of Organogenesis, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
| | - Paul M. Macdonald
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas, United States of America
- * E-mail:
| |
Collapse
|
36
|
Spletter ML, Barz C, Yeroslaviz A, Schönbauer C, Ferreira IRS, Sarov M, Gerlach D, Stark A, Habermann BH, Schnorrer F. The RNA-binding protein Arrest (Bruno) regulates alternative splicing to enable myofibril maturation in Drosophila flight muscle. EMBO Rep 2014; 16:178-91. [PMID: 25532219 PMCID: PMC4328745 DOI: 10.15252/embr.201439791] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In Drosophila, fibrillar flight muscles (IFMs) enable flight, while tubular muscles mediate other body movements. Here, we use RNA-sequencing and isoform-specific reporters to show that spalt major (salm) determines fibrillar muscle physiology by regulating transcription and alternative splicing of a large set of sarcomeric proteins. We identify the RNA-binding protein Arrest (Aret, Bruno) as downstream of salm. Aret shuttles between the cytoplasm and nuclei and is essential for myofibril maturation and sarcomere growth of IFMs. Molecularly, Aret regulates IFM-specific splicing of various salm-dependent sarcomeric targets, including Stretchin and wupA (TnI), and thus maintains muscle fiber integrity. As Aret and its sarcomeric targets are evolutionarily conserved, similar principles may regulate mammalian muscle morphogenesis.
Collapse
Affiliation(s)
| | | | | | | | | | - Mihail Sarov
- Max Planck Institute of Cell Biology and Genetics, Dresden, Germany
| | - Daniel Gerlach
- Research Institute of Molecular Pathology (IMP) Vienna Biocenter (VBC), Vienna, Austria
| | - Alexander Stark
- Research Institute of Molecular Pathology (IMP) Vienna Biocenter (VBC), Vienna, Austria
| | | | | |
Collapse
|
37
|
Oas ST, Bryantsev AL, Cripps RM. Arrest is a regulator of fiber-specific alternative splicing in the indirect flight muscles of Drosophila. ACTA ACUST UNITED AC 2014; 206:895-908. [PMID: 25246617 PMCID: PMC4178973 DOI: 10.1083/jcb.201405058] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The RNA-binding protein Arrest occupies a novel intranuclear domain and directs flight muscle–specific patterns of alternative splicing in flies. Drosophila melanogaster flight muscles are distinct from other skeletal muscles, such as jump muscles, and express several uniquely spliced muscle-associated transcripts. We sought to identify factors mediating splicing differences between the flight and jump muscle fiber types. We found that the ribonucleic acid–binding protein Arrest (Aret) is expressed in flight muscles: in founder cells, Aret accumulates in a novel intranuclear compartment that we termed the Bruno body, and after the onset of muscle differentiation, Aret disperses in the nucleus. Down-regulation of the aret gene led to ultrastructural changes and functional impairment of flight muscles, and transcripts of structural genes expressed in the flight muscles became spliced in a manner characteristic of jump muscles. Aret also potently promoted flight muscle splicing patterns when ectopically expressed in jump muscles or tissue culture cells. Genetically, aret is located downstream of exd (extradenticle), hth (homothorax), and salm (spalt major), transcription factors that control fiber identity. Our observations provide insight into a transcriptional and splicing regulatory network for muscle fiber specification.
Collapse
Affiliation(s)
- Sandy T Oas
- Department of Biology, University of New Mexico, Albuquerque, NM 87131
| | - Anton L Bryantsev
- Department of Biology, University of New Mexico, Albuquerque, NM 87131
| | - Richard M Cripps
- Department of Biology, University of New Mexico, Albuquerque, NM 87131
| |
Collapse
|
38
|
Xin T, Xuan T, Tan J, Li M, Zhao G, Li M. The Drosophila putative histone acetyltransferase Enok maintains female germline stem cells through regulating Bruno and the niche. Dev Biol 2013; 384:1-12. [PMID: 24120347 DOI: 10.1016/j.ydbio.2013.10.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Revised: 09/29/2013] [Accepted: 10/02/2013] [Indexed: 12/16/2022]
Abstract
Maintenance of adult stem cells is largely dependent on the balance between their self-renewal and differentiation. The Drosophila ovarian germline stem cells (GSCs) provide a powerful in vivo system for studying stem cell fate regulation. It has been shown that maintaining the GSC population involves both genetic and epigenetic mechanisms. Although the role of epigenetic regulation in this process is evident, the underlying mechanisms remain to be further explored. In this study, we find that Enoki mushroom (Enok), a Drosophila putative MYST family histone acetyltransferase controls GSC maintenance in the ovary at multiple levels. Removal or knockdown of Enok in the germline causes a GSC maintenance defect. Further studies show that the cell-autonomous role of Enok in maintaining GSCs is not dependent on the BMP/Bam pathway. Interestingly, molecular studies reveal an ectopic expression of Bruno, an RNA binding protein, in the GSCs and their differentiating daughter cells elicited by the germline Enok deficiency. Misexpression of Bruno in GSCs and their immediate descendants results in a GSC loss that can be exacerbated by incorporating one copy of enok mutant allele. These data suggest a role for Bruno in Enok-controlled GSC maintenance. In addition, we observe that Enok is required for maintaining GSCs non-autonomously. Compromised expression of enok in the niche cells impairs the niche maintenance and BMP signal output, thereby causing defective GSC maintenance. This is the first demonstration that the niche size control requires an epigenetic mechanism. Taken together, studies in this paper provide new insights into the GSC fate regulation.
Collapse
Affiliation(s)
- Tianchi Xin
- MoE Key Laboratory of Developmental Genetics and Neuropsychiatric Diseases, Bio-X Institutes, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 200240 Shanghai, PR China
| | | | | | | | | | | |
Collapse
|
39
|
Ewen-Campen B, Jones TEM, Extavour CG. Evidence against a germ plasm in the milkweed bug Oncopeltus fasciatus, a hemimetabolous insect. Biol Open 2013; 2:556-68. [PMID: 23789106 PMCID: PMC3683158 DOI: 10.1242/bio.20134390] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Accepted: 03/01/2013] [Indexed: 01/23/2023] Open
Abstract
Primordial germ cell (PGC) formation in holometabolous insects like Drosophila melanogaster relies on maternally synthesised germ cell determinants that are asymmetrically localised to the oocyte posterior cortex. Embryonic nuclei that inherit this "germ plasm" acquire PGC fate. In contrast, historical studies of basally branching insects (Hemimetabola) suggest that a maternal requirement for germ line genes in PGC specification may be a derived character confined principally to Holometabola. However, there have been remarkably few investigations of germ line gene expression and function in hemimetabolous insects. Here we characterise PGC formation in the milkweed bug Oncopeltus fasciatus, a member of the sister group to Holometabola, thus providing an important evolutionary comparison to members of this clade. We examine the transcript distribution of orthologues of 19 Drosophila germ cell and/or germ plasm marker genes, and show that none of them localise asymmetrically within Oncopeltus oocytes or early embryos. Using multiple molecular and cytological criteria, we provide evidence that PGCs form after cellularisation at the site of gastrulation. Functional studies of vasa and tudor reveal that these genes are not required for germ cell formation, but that vasa is required in adult males for spermatogenesis. Taken together, our results provide evidence that Oncopeltus germ cells may form in the absence of germ plasm, consistent with the hypothesis that germ plasm is a derived strategy of germ cell specification in insects.
Collapse
Affiliation(s)
- Ben Ewen-Campen
- Department of Organismic and Evolutionary Biology, Harvard University , 16 Divinity Avenue, Cambridge, MA 02138 , USA
| | | | | |
Collapse
|
40
|
Lasko P. The DEAD-box helicase Vasa: evidence for a multiplicity of functions in RNA processes and developmental biology. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2013; 1829:810-6. [PMID: 23587717 DOI: 10.1016/j.bbagrm.2013.04.005] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2013] [Revised: 04/03/2013] [Accepted: 04/06/2013] [Indexed: 01/19/2023]
Abstract
DEAD-box helicases related to the Drosophila protein Vasa (also known as Ddx4) are found throughout the animal kingdom. They have been linked to numerous processes in gametogenesis, germ cell specification, and stem cell biology, and alterations in Vasa expression are associated with malignancy of tumor cells and with some human male infertility syndromes. Experimental results indicating how Vasa contributes to all these different cellular and developmental processes are discussed, using examples from planarians, Caenorhabditis elegans, Drosophila, sea urchin, zebrafish, Xenopus, mouse, and human. Molecular, cellular, and developmental functions of Vasa and its orthologs are reviewed in this article. Evidence linking Vasa to translational regulation, to biogenesis of small RNAs, and to chromosome condensation is examined. Finally, potential overlapping functions between Vasa and related DEAD-box helicases (Belle, or Ddx3, and DEADSouth, or Ddx25) are explored. This article is part of a Special Issue entitled: The biology of RNA helicases - Modulation for life.
Collapse
Affiliation(s)
- Paul Lasko
- Department of Biology, McGill University, Montréal, Québec, Canada.
| |
Collapse
|
41
|
Jones K, Wei C, Iakova P, Bugiardini E, Schneider-Gold C, Meola G, Woodgett J, Killian J, Timchenko NA, Timchenko LT. GSK3β mediates muscle pathology in myotonic dystrophy. J Clin Invest 2012; 122:4461-72. [PMID: 23160194 DOI: 10.1172/jci64081] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Accepted: 09/21/2012] [Indexed: 02/01/2023] Open
Abstract
Myotonic dystrophy type 1 (DM1) is a complex neuromuscular disease characterized by skeletal muscle wasting, weakness, and myotonia. DM1 is caused by the accumulation of CUG repeats, which alter the biological activities of RNA-binding proteins, including CUG-binding protein 1 (CUGBP1). CUGBP1 is an important skeletal muscle translational regulator that is activated by cyclin D3-dependent kinase 4 (CDK4). Here we show that mutant CUG repeats suppress Cdk4 signaling by increasing the stability and activity of glycogen synthase kinase 3β (GSK3β). Using a mouse model of DM1 (HSA(LR)), we found that CUG repeats in the 3' untranslated region (UTR) of human skeletal actin increase active GSK3β in skeletal muscle of mice, prior to the development of skeletal muscle weakness. Inhibition of GSK3β in both DM1 cell culture and mouse models corrected cyclin D3 levels and reduced muscle weakness and myotonia in DM1 mice. Our data predict that compounds normalizing GSK3β activity might be beneficial for improvement of muscle function in patients with DM1.
Collapse
Affiliation(s)
- Karlie Jones
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Kinkelin K, Veith K, Grünwald M, Bono F. Crystal structure of a minimal eIF4E-Cup complex reveals a general mechanism of eIF4E regulation in translational repression. RNA (NEW YORK, N.Y.) 2012; 18:1624-34. [PMID: 22832024 PMCID: PMC3425778 DOI: 10.1261/rna.033639.112] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Cup is an eIF4E-binding protein (4E-BP) that plays a central role in translational regulation of localized mRNAs during early Drosophila development. In particular, Cup is required for repressing translation of the maternally contributed oskar, nanos, and gurken mRNAs, all of which are essential for embryonic body axis determination. Here, we present the 2.8 Å resolution crystal structure of a minimal eIF4E-Cup assembly, consisting of the interacting regions of the two proteins. In the structure, two separate segments of Cup contact two orthogonal faces of eIF4E. The eIF4E-binding consensus motif of Cup (YXXXXLΦ) binds the convex side of eIF4E similarly to the consensus of other eIF4E-binding proteins, such as 4E-BPs and eIF4G. The second, noncanonical, eIF4E-binding site of Cup binds laterally and perpendicularly to the eIF4E β-sheet. Mutations of Cup at this binding site were shown to reduce binding to eIF4E and to promote the destabilization of the associated mRNA. Comparison with the binding mode of eIF4G to eIF4E suggests that Cup and eIF4G binding would be mutually exclusive at both binding sites. This shows how a common molecular surface of eIF4E might recognize different proteins acting at different times in the same pathway. The structure provides insight into the mechanism by which Cup disrupts eIF4E-eIF4G interaction and has broader implications for understanding the role of 4E-BPs in translational regulation.
Collapse
Affiliation(s)
- Kerstin Kinkelin
- Max-Planck-Institute for Developmental Biology, 71076 Tübingen, Germany
| | - Katharina Veith
- Max-Planck-Institute for Developmental Biology, 71076 Tübingen, Germany
| | - Marlene Grünwald
- Max-Planck-Institute for Developmental Biology, 71076 Tübingen, Germany
| | - Fulvia Bono
- Max-Planck-Institute for Developmental Biology, 71076 Tübingen, Germany
- Corresponding authorE-mail
| |
Collapse
|
43
|
Abstract
Translational regulation plays an essential role in many phases of the Drosophila life cycle. During embryogenesis, specification of the developing body pattern requires co-ordination of the translation of oskar, gurken and nanos mRNAs with their subcellular localization. In addition, dosage compensation is controlled by Sex-lethal-mediated translational regulation while dFMR1 (the Drosophila homologue of the fragile X mental retardation protein) controls translation of various mRNAs which function in the nervous system. Here we describe some of the mechanisms that are utilized to regulate these various processes. Our review highlights the complexity that can be involved with multiple factors employing different mechanisms to control the translation of a single mRNA.
Collapse
Affiliation(s)
- James E Wilhelm
- Department of Embryology, Carnegie Institution of Washington, Baltimore, MD 21210, USA
| | | |
Collapse
|
44
|
Schisa JA. New insights into the regulation of RNP granule assembly in oocytes. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2012; 295:233-89. [PMID: 22449492 DOI: 10.1016/b978-0-12-394306-4.00013-7] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In a variety of cell types in plants, animals, and fungi, ribonucleoprotein (RNP) complexes play critical roles in regulating RNA metabolism. These RNP granules include processing bodies and stress granules that are found broadly across cell types, as well as RNP granules unique to the germline, such as P granules, polar granules, sponge bodies, and germinal granules. This review focuses on RNP granules localized in oocytes of the major model systems, Caenorhabditis elegans, Drosophila, Xenopus, mouse, and zebrafish. The signature families of proteins within oocyte RNPs include Vasa and other RNA-binding proteins, decapping activators and enzymes, Argonaute family proteins, and translation initiation complex proteins. This review describes the many recent insights into the dynamics and functions of RNP granules, including their roles in mRNA degradation, mRNA localization, translational regulation, and fertility. The roles of the cytoskeleton and cell organelles in regulating RNP granule assembly are also discussed.
Collapse
Affiliation(s)
- Jennifer A Schisa
- Department of Biology, Central Michigan University, Mount Pleasant, Michigan, USA
| |
Collapse
|
45
|
Cup blocks the precocious activation of the orb autoregulatory loop. PLoS One 2011; 6:e28261. [PMID: 22164257 PMCID: PMC3229553 DOI: 10.1371/journal.pone.0028261] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Accepted: 11/04/2011] [Indexed: 12/04/2022] Open
Abstract
Translational regulation of localized mRNAs is essential for patterning and axes determination in many organisms. In the Drosophila ovary, the germline-specific Orb protein mediates the translational activation of a variety of mRNAs localized in the oocyte. One of the Orb target mRNAs is orb itself, and this autoregulatory activity ensures that Orb proteins specifically accumulate in the developing oocyte. Orb is an RNA-binding protein and is a member of the cytoplasmic polyadenylation element binding (CPEB) protein family. We report here that Cup forms a complex in vivo with Orb. We also show that cup negatively regulates orb and is required to block the precocious activation of the orb positive autoregulatory loop. In cup mutant ovaries, high levels of Orb accumulate in the nurse cells, leading to what appears to be a failure in oocyte specification as a number of oocyte markers inappropriately accumulate in nurse cells. In addition, while orb mRNA is mislocalized and destabilized, a longer poly(A) tail is maintained than in wild type ovaries. Analysis of Orb phosphoisoforms reveals that loss of cup leads to the accumulation of hyperphosphorylated Orb, suggesting that an important function of cup in orb-dependent mRNA localization pathways is to impede Orb activation.
Collapse
|
46
|
Kato Y, Nakamura A. Roles of cytoplasmic RNP granules in intracellular RNA localization and translational control in the Drosophila oocyte. Dev Growth Differ 2011; 54:19-31. [PMID: 22111938 DOI: 10.1111/j.1440-169x.2011.01314.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Intracellular mRNA localization and translation are ways to achieve asymmetric protein sorting in polarized cells, and they play fundamental roles in cell-fate decisions and body patterning during animal development. These processes are regulated by the interplay between cis-acting elements and trans-acting RNA-binding proteins that form and occur within a ribonucleoprotein (RNP) complex. Recent studies in the Drosophila oocyte have revealed that RNP complex assembly in the nucleus is critical for the regulation of cytoplasmic mRNA localization and translation. Furthermore, several trans-acting factors promote the reorganization of target mRNAs in the cytoplasm into higher-order RNP granules, which are often visible by light microscopy. Therefore, RNA localization and translation are likely to be coupled within these RNP granules. Notably, diverse cytoplasmic RNP granules observed in different cell types share conserved sets of proteins, suggesting they have fundamental and common cellular functions.
Collapse
Affiliation(s)
- Yasuko Kato
- Laboratory for Germline Development, RIKEN Center for Developmental Biology, Kobe, Hyogo 650-0047, Japan
| | | |
Collapse
|
47
|
Reveal B, Garcia C, Ellington A, Macdonald PM. Multiple RNA binding domains of Bruno confer recognition of diverse binding sites for translational repression. RNA Biol 2011; 8:1047-60. [PMID: 21955496 DOI: 10.4161/rna.8.6.17542] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Bruno protein binds to multiple sites - BREs - in the oskar mRNA 3' UTR, thereby controlling oskar mRNA translation. Bruno also binds and regulates other mRNAs, although the binding sites have not yet been defined. Bruno has three RRM type RNA binding motifs, two near the amino terminus and an extended RRM at the C terminus. Two domains of Bruno, the first two RRMs (RRM1+2), and the extended RRM (RRM3+) - can each bind with specificity to the oskar mRNA regulatory regions; these and Bruno were used for in vitro selections. Anti-RRM3+ aptamers include long, highly constrained motifs, including one corresponding to the previously identified BRE. Anti-RRM1+2 aptamers lack constrained motifs, but are biased towards classes of short and variable sequences. Bruno itself selects for several motifs, including some of those bound by RRM3+. We propose that the different RNA binding domains allow for combinatorial binding, with extended Bruno binding sites assembled from sequences bound by the individual domains. Examples of such sites were identified in known targets of Bruno, and shown to confer Bruno-dependent translational repression in vivo. Other proteins with multiple RRMs may employ combinatorial binding to achieve high levels of specificity and affinity.
Collapse
Affiliation(s)
- Brad Reveal
- Section of Molecular Cell and Developmental Biology, The University of Texas at Austin, Austin, TX, USA
| | | | | | | |
Collapse
|
48
|
Wong LC, Costa A, McLeod I, Sarkeshik A, Yates J, Kyin S, Perlman D, Schedl P. The functioning of the Drosophila CPEB protein Orb is regulated by phosphorylation and requires casein kinase 2 activity. PLoS One 2011; 6:e24355. [PMID: 21949709 PMCID: PMC3176278 DOI: 10.1371/journal.pone.0024355] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2011] [Accepted: 08/05/2011] [Indexed: 01/09/2023] Open
Abstract
The Orb CPEB protein regulates translation of localized mRNAs in Drosophila ovaries. While there are multiple hypo- and hyperphosphorylated Orb isoforms in wild type ovaries, most are missing in orbF303, which has an amino acid substitution in a buried region of the second RRM domain. Using a proteomics approach we identified a candidate Orb kinase, Casein Kinase 2 (CK2). In addition to being associated with Orb in vivo, we show that ck2 is required for orb functioning in gurken signaling and in the autoregulation of orb mRNA localization and translation. Supporting a role for ck2 in Orb phosphorylation, we find that the phosphorylation pattern is altered when ck2 activity is partially compromised. Finally, we show that the Orb hypophosphorylated isoforms are in slowly sedimenting complexes that contain the translational repressor Bruno, while the hyperphosphorylated isoforms assemble into large complexes that co-sediment with polysomes and contain the Wisp poly(A) polymerase.
Collapse
Affiliation(s)
- Li Chin Wong
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
| | - Alexandre Costa
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
| | - Ian McLeod
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Ali Sarkeshik
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California, United States of America
| | - John Yates
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Saw Kyin
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
| | - David Perlman
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
| | - Paul Schedl
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
- * E-mail:
| |
Collapse
|
49
|
Abstract
Translational control of specific mRNAs is a widespread mechanism of gene regulation, and it is especially important in pattern formation in the oocytes of organisms in which the embryonic axes are established maternally. Drosophila and Xenopus have been especially valuable in elucidating the relevant molecular mechanisms. Here, we comprehensively review what is known about translational control in these two systems, focusing on examples that illustrate key concepts that have emerged. We focus on protein-mediated translational control, rather than regulation mediated by small RNAs, as the former appears to be predominant in controlling these developmental events. Mechanisms that modulate the ability of the specific mRNAs to be recruited to the ribosome, that regulate polyadenylation of specific mRNAs, or that control the association of particular mRNAs into translationally inert ribonucleoprotein complexes will all be discussed.
Collapse
Affiliation(s)
- Joel D Richter
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01606, USA.
| | | |
Collapse
|
50
|
Dasgupta T, Ladd AN. The importance of CELF control: molecular and biological roles of the CUG-BP, Elav-like family of RNA-binding proteins. WILEY INTERDISCIPLINARY REVIEWS-RNA 2011; 3:104-21. [PMID: 22180311 DOI: 10.1002/wrna.107] [Citation(s) in RCA: 171] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
RNA processing is important for generating protein diversity and modulating levels of protein expression. The CUG-BP, Elav-like family (CELF) of RNA-binding proteins regulate several steps of RNA processing in the nucleus and cytoplasm, including pre-mRNA alternative splicing, C to U RNA editing, deadenylation, mRNA decay, and translation. In vivo, CELF proteins have been shown to play roles in gametogenesis and early embryonic development, heart and skeletal muscle function, and neurosynaptic transmission. Dysregulation of CELF-mediated programs has been implicated in the pathogenesis of human diseases affecting the heart, skeletal muscles, and nervous system.
Collapse
Affiliation(s)
- Twishasri Dasgupta
- Department of Cell Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | | |
Collapse
|