1
|
Kieft R, Cliffe L, Yan H, Schmitz RJ, Hajduk SL, Sabatini R. Mono-allelic epigenetic regulation of polycistronic transcription initiation by RNA polymerase II in Trypanosoma brucei. mBio 2025; 16:e0232824. [PMID: 39704500 PMCID: PMC11796357 DOI: 10.1128/mbio.02328-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 11/27/2024] [Indexed: 12/21/2024] Open
Abstract
Unique for a eukaryote, protein-coding genes in trypanosomes are arranged in polycistronic transcription units (PTUs). This genome arrangement has led to a model where Pol II transcription of PTUs is unregulated and changes in gene expression are entirely post-transcriptional. Trypanosoma brucei brucei is unable to infect humans because of its susceptibility to an innate immune complex, trypanosome lytic factor (TLF) in the circulation of humans. The initial step in TLF-mediated lysis of T.b.brucei requires high affinity haptoglobin/hemoglobin receptor (HpHbR) binding. Here, we demonstrate that by in vitro selection with TLF, resistance is obtained in a stepwise process correlating with loss of HpHbR expression at an allelic level. RNA-seq, Pol II ChIP, and run-on analysis indicate HpHbR silencing is at the transcriptional level, where loss of Pol II binding at the promoter region specifically shuts down transcription of the HpHbR-containing gene cluster and the adjacent opposing gene cluster. Reversible transcriptional silencing of the divergent PTUs correlates with DNA base J modification of the shared promoter region. Base J function in establishing transcriptional silencing, rather than maintenance, is suggested by the maintenance of PTU silencing following the inhibition of J-biosynthesis and subsequent loss of the modified DNA base. Therefore, we show that epigenetic mechanisms exist to regulate gene expression via Pol II transcription initiation of gene clusters in a mono-allelic fashion. These findings suggest epigenetic chromatin-based regulation of gene expression is deeply conserved among eukaryotes, including early divergent eukaryotes that rely on polycistronic transcription.IMPORTANCEThe single-cell parasite Trypanosoma brucei causes lethal diseases in both humans and livestock. T. brucei undergoes multiple developmental changes to adapt in different environments during its digenetic life cycle. With protein-coding genes organized as polycistronic transcription and apparent absence of promoter-mediated regulation of transcription initiation, it is believed that developmental gene regulation in trypanosomes is essentially post-transcriptional. In this study, we found reversible Pol II transcriptional silencing of two adjacent polycistronic gene arrays that correlate with the novel DNA base J modification of the shared promoter region. Our findings support epigenetic regulation of Pol II transcription initiation as a viable mechanism of gene expression control in T. brucei. This has implications for our understanding how trypanosomes utilize polycistronic genome organization to regulate gene expression during its life cycle.
Collapse
Affiliation(s)
- Rudo Kieft
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA
| | - Laura Cliffe
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA
| | - Haidong Yan
- Department of Genetics, University of Georgia, Athens, Georgia, USA
| | | | - Stephen L. Hajduk
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA
| | - Robert Sabatini
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
2
|
Kieft R, Cliffe L, Yan H, Schmitz RJ, Hajduk SL, Sabatini R. Mono-allelic epigenetic regulation of bi-directional silencing of RNA Polymerase II polycistronic transcription initiation in Trypanosoma brucei. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.21.600114. [PMID: 38948844 PMCID: PMC11213002 DOI: 10.1101/2024.06.21.600114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Unique for a eukaryote, protein-coding genes in trypanosomes are arranged in polycistronic units (PTUs). This genome arrangement has led to a model where Pol II transcription of PTUs is unregulated and that changes in gene expression are entirely post-transcriptional. Trypanosoma brucei brucei is unable to infect humans because of its susceptibility to an innate immune complex, trypanosome lytic factor (TLF) in the circulation of humans. The initial step in TLF mediated lysis of T.b.brucei requires high affinity haptoglobin/hemoglobin receptor (HpHbR) binding. Here we demonstrate that by in vitro selection with TLF, resistance is obtained in a stepwise process correlating with loss of HpHbR expression at an allelic level. RNA-seq, Pol II ChIP and run-on analysis indicate HpHbR silencing is at the transcriptional level, where loss of Pol II binding at the promoter region specifically shuts down transcription of the HpHbR containing gene cluster and the adjacent opposing gene cluster. Reversible transcriptional silencing of the divergent PTUs correlates with DNA base J modification of the shared promoter region. Therefore, we show that epigenetic mechanisms, including base J modification, are involved in regulating gene expression via Pol II transcription initiation of gene clusters in a mono-allelic fashion. These findings suggest epigenetic chromatin-based regulation of gene expression is deeply conserved among eukaryotes, including early divergent eukaryotes that rely on polycistronic transcription. IMPORTANCE The single-cell parasite Trypanosoma brucei causes lethal diseases in both humans and livestock. T. brucei undergoes multiple developmental changes to adapt in different environments during its digenetic life cycle. With protein-coding genes organized as polycistronic transcription and apparent absence of promoter-mediated regulation of transcription initiation, it is believed that developmental gene regulation in trypanosomes is essentially post-transcriptional. In this study, we found reversible Pol II transcriptional silencing of two adjacent polycistronic gene arrays that correlates with the novel DNA base J modification of the shared promoter region. Our findings support epigenetic regulation of Pol II transcription initiation as a viable mechanism of gene expression control in T. brucei . This has implications for our understanding how trypanosomes utilize polycistronic genome organization to regulate gene expression during its life cycle.
Collapse
|
3
|
Kieft R, Reynolds D, Sabatini R. Epigenetic regulation of TERRA transcription and metacyclogenesis by base J in Leishmania major. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.27.601056. [PMID: 38979290 PMCID: PMC11230386 DOI: 10.1101/2024.06.27.601056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
The hyper-modified DNA base J helps control termination of Pol II transcription at polycistronic transcription units (PTUs) in T. brucei and L. major , allowing epigenetic control of gene expression. The Telomere Repeat-containing RNA (TERRA) is synthesized in T. brucei by Pol I readthrough transcription of a telomeric PTU. While little is understood regarding TERRA synthesis and function, the hyper-modified DNA base J is highly enriched at telomeres in L. major promastigotes. We now show that TERRA is synthesized by Pol II in L. major and loss of base J leads to increased TERRA. For at least one site, the increased TERRA is by Pol II readthrough transcription from an adjacent PTU. Furthermore, Pol II readthrough defects and increased TERRA correlate with increased differentiation of promastigotes to the infectious metacyclic life stage and decreased cell viability. These results help explain the essential nature of base J in Leishmania and provide insight regarding epigenetic control of coding and non-coding RNA expression and parasite development during the life cycle of L. major .
Collapse
|
4
|
Marinov GK, Chen X, Swaffer MP, Xiang T, Grossman AR, Greenleaf WJ. Genome-wide distribution of 5-hydroxymethyluracil and chromatin accessibility in the Breviolum minutum genome. Genome Biol 2024; 25:115. [PMID: 38711126 PMCID: PMC11071213 DOI: 10.1186/s13059-024-03261-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 04/28/2024] [Indexed: 05/08/2024] Open
Abstract
BACKGROUND In dinoflagellates, a unique and extremely divergent genomic and nuclear organization has evolved. The highly unusual features of dinoflagellate nuclei and genomes include permanently condensed liquid crystalline chromosomes, primarily packaged by proteins other than histones, genes organized in very long unidirectional gene arrays, a general absence of transcriptional regulation, high abundance of the otherwise very rare DNA modification 5-hydroxymethyluracil (5-hmU), and many others. While most of these fascinating properties are originally identified in the 1970s and 1980s, they have not yet been investigated using modern genomic tools. RESULTS In this work, we address some of the outstanding questions regarding dinoflagellate genome organization by mapping the genome-wide distribution of 5-hmU (using both immunoprecipitation-based and basepair-resolution chemical mapping approaches) and of chromatin accessibility in the genome of the Symbiodiniaceae dinoflagellate Breviolum minutum. We find that the 5-hmU modification is preferentially enriched over certain classes of repetitive elements, often coincides with the boundaries between gene arrays, and is generally correlated with decreased chromatin accessibility, the latter otherwise being largely uniform along the genome. We discuss the potential roles of 5-hmU in the functional organization of dinoflagellate genomes and its relationship to the transcriptional landscape of gene arrays. CONCLUSIONS Our results provide the first window into the 5-hmU and chromatin accessibility landscapes in dinoflagellates.
Collapse
Affiliation(s)
- Georgi K Marinov
- Department of Genetics, Stanford University, Stanford, CA, 94305, USA.
| | - Xinyi Chen
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA
| | - Matthew P Swaffer
- Department of Biology, Stanford University, Stanford, CA, 94305, USA
| | - Tingting Xiang
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA, 94305, USA
| | - Arthur R Grossman
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA, 94305, USA
| | - William J Greenleaf
- Department of Genetics, Stanford University, Stanford, CA, 94305, USA.
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, CA, 94305, USA.
- Department of Applied Physics, Stanford University, Stanford, CA, 94305, USA.
- Chan Zuckerberg Biohub, San Francisco, CA, USA.
| |
Collapse
|
5
|
Marinov GK, Chen X, Swaffer MP, Xiang T, Grossman AR, Greenleaf WJ. Genome-wide distribution of 5-hydroxymethyluracil and chromatin accessibility in the Breviolum minutum genome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.18.558303. [PMID: 37781619 PMCID: PMC10541103 DOI: 10.1101/2023.09.18.558303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
In dinoflagellates, a unique and extremely divergent genomic and nuclear organization has evolved. The highly unusual features of dinoflagellate nuclei and genomes include permanently condensed liquid crystalline chromosomes, primarily packaged by proteins other than histones, genes organized in very long unidirectional gene arrays, a general absence of transcriptional regulation, high abundance of the otherwise very rare DNA modification 5-hydroxymethyluracil (5-hmU), and many others. While most of these fascinating properties were originally identified in the 1970s and 1980s, they have not yet been investigated using modern genomic tools. In this work, we address some of the outstanding questions regarding dinoflagellate genome organization by mapping the genome-wide distribution of 5-hmU (using both immunoprecipitation-based and basepair-resolution chemical mapping approaches) and of chromatin accessibility in the genome of the Symbiodiniaceae dinoflagellate Breviolum minutum. We find that the 5-hmU modification is preferentially enriched over certain classes of repetitive elements, often coincides with the boundaries between gene arrays, and is generally correlated with decreased chromatin accessibility, the latter otherwise being largely uniform along the genome. We discuss the potential roles of 5-hmU in the functional organization of dinoflagellate genomes and its relationship to the transcriptional landscape of gene arrays.
Collapse
Affiliation(s)
- Georgi K Marinov
- Department of Genetics, Stanford University, Stanford, California 94305, USA
| | - Xinyi Chen
- Department of Bioengineering, Stanford University, Stanford, California 94305, USA
| | | | - Tingting Xiang
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California 94305, USA
| | - Arthur R Grossman
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California 94305, USA
| | - William J Greenleaf
- Department of Genetics, Stanford University, Stanford, California 94305, USA
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, California 94305, USA
- Department of Applied Physics, Stanford University, Stanford, California 94305, USA
- Chan Zuckerberg Biohub, San Francisco, California, USA
| |
Collapse
|
6
|
de Vries I, Ammerlaan D, Heidebrecht T, Celie PH, Geerke DP, Joosten RP, Perrakis A. Distant sequence regions of JBP1 contribute to J-DNA binding. Life Sci Alliance 2023; 6:e202302150. [PMID: 37328191 PMCID: PMC10276184 DOI: 10.26508/lsa.202302150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/05/2023] [Accepted: 06/06/2023] [Indexed: 06/18/2023] Open
Abstract
Base-J (β-D-glucopyranosyloxymethyluracil) is a modified DNA nucleotide that replaces 1% of thymine in kinetoplastid flagellates. The biosynthesis and maintenance of base-J depends on the base-J-binding protein 1 (JBP1) that has a thymidine hydroxylase domain and a J-DNA-binding domain (JDBD). How the thymidine hydroxylase domain synergizes with the JDBD to hydroxylate thymine in specific genomic sites, maintaining base-J during semi-conservative DNA replication, remains unclear. Here, we present a crystal structure of the JDBD including a previously disordered DNA-contacting loop and use it as starting point for molecular dynamics simulations and computational docking studies to propose recognition models for JDBD binding to J-DNA. These models guided mutagenesis experiments, providing additional data for docking, which reveals a binding mode for JDBD onto J-DNA. This model, together with the crystallographic structure of the TET2 JBP1-homologue in complex with DNA and the AlphaFold model of full-length JBP1, allowed us to hypothesize that the flexible JBP1 N-terminus contributes to DNA-binding, which we confirmed experimentally. Α high-resolution JBP1:J-DNA complex, which must involve conformational changes, would however need to be determined experimentally to further understand this unique underlying molecular mechanism that ensures replication of epigenetic information.
Collapse
Affiliation(s)
- Ida de Vries
- Oncode Institute and Division of Biochemistry, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Danique Ammerlaan
- Oncode Institute and Division of Biochemistry, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Tatjana Heidebrecht
- Oncode Institute and Division of Biochemistry, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Patrick Hn Celie
- Oncode Institute and Division of Biochemistry, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Daan P Geerke
- Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute of Molecular and Life Sciences (AIMMS) and Amsterdam Center for Multiscale Modeling (ACMM), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Robbie P Joosten
- Oncode Institute and Division of Biochemistry, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Anastassis Perrakis
- Oncode Institute and Division of Biochemistry, Netherlands Cancer Institute, Amsterdam, The Netherlands
| |
Collapse
|
7
|
Barcons-Simon A, Carrington M, Siegel TN. Decoding the impact of nuclear organization on antigenic variation in parasites. Nat Microbiol 2023; 8:1408-1418. [PMID: 37524976 DOI: 10.1038/s41564-023-01424-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 06/13/2023] [Indexed: 08/02/2023]
Abstract
Antigenic variation as a strategy to evade the host adaptive immune response has evolved in divergent pathogens. Antigenic variation involves restricted, and often mutually exclusive, expression of dominant antigens and a periodic switch in antigen expression during infection. In eukaryotes, nuclear compartmentalization, including three-dimensional folding of the genome and physical separation of proteins in compartments or condensates, regulates mutually exclusive gene expression and chromosomal translocations. In this Review, we discuss the impact of nuclear organization on antigenic variation in the protozoan pathogens Trypanosoma brucei and Plasmodium falciparum. In particular, we highlight the relevance of nuclear organization in both mutually exclusive antigen expression and genome stability, which underlie antigenic variation.
Collapse
Affiliation(s)
- Anna Barcons-Simon
- Division of Experimental Parasitology, Faculty of Veterinary Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
- Biomedical Center, Division of Physiological Chemistry, Faculty of Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Mark Carrington
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - T Nicolai Siegel
- Division of Experimental Parasitology, Faculty of Veterinary Medicine, Ludwig-Maximilians-Universität München, Munich, Germany.
- Biomedical Center, Division of Physiological Chemistry, Faculty of Medicine, Ludwig-Maximilians-Universität München, Munich, Germany.
| |
Collapse
|
8
|
Gaona-López C, Vazquez-Jimenez LK, Gonzalez-Gonzalez A, Delgado-Maldonado T, Ortiz-Pérez E, Nogueda-Torres B, Moreno-Rodríguez A, Vázquez K, Saavedra E, Rivera G. Advances in Protozoan Epigenetic Targets and Their Inhibitors for the Development of New Potential Drugs. Pharmaceuticals (Basel) 2023; 16:ph16040543. [PMID: 37111300 PMCID: PMC10143871 DOI: 10.3390/ph16040543] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/29/2023] [Accepted: 03/31/2023] [Indexed: 04/29/2023] Open
Abstract
Protozoan parasite diseases cause significant mortality and morbidity worldwide. Factors such as climate change, extreme poverty, migration, and a lack of life opportunities lead to the propagation of diseases classified as tropical or non-endemic. Although there are several drugs to combat parasitic diseases, strains resistant to routinely used drugs have been reported. In addition, many first-line drugs have adverse effects ranging from mild to severe, including potential carcinogenic effects. Therefore, new lead compounds are needed to combat these parasites. Although little has been studied regarding the epigenetic mechanisms in lower eukaryotes, it is believed that epigenetics plays an essential role in vital aspects of the organism, from controlling the life cycle to the expression of genes involved in pathogenicity. Therefore, using epigenetic targets to combat these parasites is foreseen as an area with great potential for development. This review summarizes the main known epigenetic mechanisms and their potential as therapeutics for a group of medically important protozoal parasites. Different epigenetic mechanisms are discussed, highlighting those that can be used for drug repositioning, such as histone post-translational modifications (HPTMs). Exclusive parasite targets are also emphasized, including the base J and DNA 6 mA. These two categories have the greatest potential for developing drugs to treat or eradicate these diseases.
Collapse
Affiliation(s)
- Carlos Gaona-López
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa 88710, Mexico
| | - Lenci K Vazquez-Jimenez
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa 88710, Mexico
| | - Alonzo Gonzalez-Gonzalez
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa 88710, Mexico
| | - Timoteo Delgado-Maldonado
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa 88710, Mexico
| | - Eyrá Ortiz-Pérez
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa 88710, Mexico
| | - Benjamín Nogueda-Torres
- Departamento de Parasitología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11340, Mexico
| | - Adriana Moreno-Rodríguez
- Laboratorio de Estudios Epidemiológicos, Clínicos, Diseños Experimentales e Investigación, Facultad de Ciencias Químicas, Universidad Autónoma "Benito Juárez" de Oaxaca, Avenida Universidad S/N, Ex Hacienda Cinco Señores, Oaxaca 68120, Mexico
| | - Karina Vázquez
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Nuevo León, Francisco Villa 20, General Escobedo 66054, Mexico
| | - Emma Saavedra
- Departamento de Bioquímica, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico
| | - Gildardo Rivera
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa 88710, Mexico
| |
Collapse
|
9
|
Behind Base J: The Roles of JBP1 and JBP2 on Trypanosomatids. Pathogens 2023; 12:pathogens12030467. [PMID: 36986389 PMCID: PMC10057400 DOI: 10.3390/pathogens12030467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/08/2023] [Accepted: 03/08/2023] [Indexed: 03/18/2023] Open
Abstract
β-D-glucopyranosyloxymethiluracil (Base J) is a modified thymidine base found in kinetoplastids and some related organisms. Interestingly, Base J distribution into the genome can vary depending on the organism and its life stage. Base J is reported to be found mostly at telomeric repeats, on inactive variant surface glycoproteins (VSG’s) expression sites (e.g., T. brucei), in RNA polymerase II termination sites and sub-telomeric regions (e.g., Leishmania). This hypermodified nucleotide is synthesized in two steps with the participation of two distinct thymidine hydroxylases, J-binding protein 1 and 2 (JBP1 and JBP2, respectively) and a β-glucosyl transferase. A third J-binding protein, named JBP3, was recently identified as part of a multimeric complex. Although its structural similarities with JBP1, it seems not to be involved in J biosynthesis but to play roles in gene expression regulation in trypanosomatids. Over the years, with the characterization of JBP1 and JBP2 mutant lines, Base J functions have been targeted and shone a light on that matter, showing genus-specific features. This review aims to explore Base J’s reported participation as a regulator of RNA polymerase II transcription termination and to summarize the functional and structural characteristics and similarities of the remarkable JBP proteins in pathogenic trypanosomatids.
Collapse
|
10
|
Localization of Epigenetic Markers in Leishmania Chromatin. Pathogens 2022; 11:pathogens11080930. [PMID: 36015053 PMCID: PMC9413968 DOI: 10.3390/pathogens11080930] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/12/2022] [Accepted: 08/14/2022] [Indexed: 11/17/2022] Open
Abstract
Eukaryotes use histone variants and post-translation modifications (PTMs), as well as DNA base modifications, to regulate DNA replication/repair, chromosome condensation, and gene expression. Despite the unusual organization of their protein-coding genes into large polycistronic transcription units (PTUs), trypanosomatid parasites also employ a “histone code” to control these processes, but the details of this epigenetic code are poorly understood. Here, we present the results of experiments designed to elucidate the distribution of histone variants and PTMs over the chromatin landscape of Leishmania tarentolae. These experiments show that two histone variants (H2A.Z and H2B.V) and three histone H3 PTMs (H3K4me3, H3K16ac, and H3K76me3) are enriched at transcription start sites (TSSs); while a histone variant (H3.V) and the trypanosomatid-specific hyper-modified DNA base J are located at transcription termination sites (TTSs). Reduced nucleosome density was observed at all TTSs and TSSs for RNA genes transcribed by RNA polymerases I (RNAPI) or RNAPIII; as well as (to a lesser extent) at TSSs for the PTUs transcribed by RNAPII. Several PTMs (H3K4me3, H3K16ac H3K20me2 and H3K36me3) and base J were enriched at centromeres, while H3K50ac was specifically associated with the periphery of these centromeric sequences. These findings significantly expand our knowledge of the epigenetic markers associated with transcription, DNA replication and/or chromosome segregation in these early diverging eukaryotes and will hopefully lay the groundwork for future studies to elucidate how they control these fundamental processes.
Collapse
|
11
|
Luzak V. Nuclear Condensates: New Targets to Combat Parasite Immune Evasion? Front Cell Infect Microbiol 2022; 12:942200. [PMID: 35903200 PMCID: PMC9314548 DOI: 10.3389/fcimb.2022.942200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 06/13/2022] [Indexed: 11/13/2022] Open
Affiliation(s)
- Vanessa Luzak
- Department of Physiological Chemistry, Biomedical Center, Ludwig-Maximilians-Universität München, Munich, Germany
- Institute of Experimental Parasitology, Department of Veterinary Sciences, Ludwig-Maximilians-Universität München, Munich, Germany
- *Correspondence: Vanessa Luzak,
| |
Collapse
|
12
|
Chakrapani A, Ruiz‐Larrabeiti O, Pohl R, Svoboda M, Krásný L, Hocek M. Glucosylated 5‐Hydroxymethylpyrimidines as Epigenetic DNA Bases Regulating Transcription and Restriction Cleavage. Chemistry 2022; 28:e202200911. [DOI: 10.1002/chem.202200911] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Indexed: 12/13/2022]
Affiliation(s)
- Aswathi Chakrapani
- Institute of Organic Chemistry and Biochemistry Czech Academy of Sciences Flemingovo nam. 2 16610 Prague 6 Czech Republic
- Department of Organic Chemistry, Faculty of Science Charles University Hlavova 8 CZ-12843 Prague 2 Czech Republic
| | - Olatz Ruiz‐Larrabeiti
- Dept. of Microbial Genetics and Gene Expression Institute of Microbiology Czech Academy of Sciences 14220 Prague 4 Czech Republic
| | - Radek Pohl
- Institute of Organic Chemistry and Biochemistry Czech Academy of Sciences Flemingovo nam. 2 16610 Prague 6 Czech Republic
| | - Martin Svoboda
- Institute of Organic Chemistry and Biochemistry Czech Academy of Sciences Flemingovo nam. 2 16610 Prague 6 Czech Republic
| | - Libor Krásný
- Dept. of Microbial Genetics and Gene Expression Institute of Microbiology Czech Academy of Sciences 14220 Prague 4 Czech Republic
| | - Michal Hocek
- Institute of Organic Chemistry and Biochemistry Czech Academy of Sciences Flemingovo nam. 2 16610 Prague 6 Czech Republic
- Department of Organic Chemistry, Faculty of Science Charles University Hlavova 8 CZ-12843 Prague 2 Czech Republic
| |
Collapse
|
13
|
Florini F, Visone JE, Deitsch KW. Shared Mechanisms for Mutually Exclusive Expression and Antigenic Variation by Protozoan Parasites. Front Cell Dev Biol 2022; 10:852239. [PMID: 35350381 PMCID: PMC8957917 DOI: 10.3389/fcell.2022.852239] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 02/17/2022] [Indexed: 01/05/2023] Open
Abstract
Cellular decision-making at the level of gene expression is a key process in the development and evolution of every organism. Variations in gene expression can lead to phenotypic diversity and the development of subpopulations with adaptive advantages. A prime example is the mutually exclusive activation of a single gene from within a multicopy gene family. In mammals, this ranges from the activation of one of the two immunoglobulin (Ig) alleles to the choice in olfactory sensory neurons of a single odorant receptor (OR) gene from a family of more than 1,000. Similarly, in parasites like Trypanosoma brucei, Giardia lamblia or Plasmodium falciparum, the process of antigenic variation required to escape recognition by the host immune system involves the monoallelic expression of vsg, vsp or var genes, respectively. Despite the importance of this process, understanding how this choice is made remains an enigma. The development of powerful techniques such as single cell RNA-seq and Hi-C has provided new insights into the mechanisms these different systems employ to achieve monoallelic gene expression. Studies utilizing these techniques have shown how the complex interplay between nuclear architecture, physical interactions between chromosomes and different chromatin states lead to single allele expression. Additionally, in several instances it has been observed that high-level expression of a single gene is preceded by a transient state where multiple genes are expressed at a low level. In this review, we will describe and compare the different strategies that organisms have evolved to choose one gene from within a large family and how parasites employ this strategy to ensure survival within their hosts.
Collapse
Affiliation(s)
| | | | - Kirk W. Deitsch
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY, United States
| |
Collapse
|
14
|
Assis LHC, Andrade-Silva D, Shiburah ME, de Oliveira BCD, Paiva SC, Abuchery BE, Ferri YG, Fontes VS, de Oliveira LS, da Silva MS, Cano MIN. Cell Cycle, Telomeres, and Telomerase in Leishmania spp.: What Do We Know So Far? Cells 2021; 10:cells10113195. [PMID: 34831418 PMCID: PMC8621916 DOI: 10.3390/cells10113195] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 11/12/2021] [Accepted: 11/14/2021] [Indexed: 12/18/2022] Open
Abstract
Leishmaniases belong to the inglorious group of neglected tropical diseases, presenting different degrees of manifestations severity. It is caused by the transmission of more than 20 species of parasites of the Leishmania genus. Nevertheless, the disease remains on the priority list for developing new treatments, since it affects millions in a vast geographical area, especially low-income people. Molecular biology studies are pioneers in parasitic research with the aim of discovering potential targets for drug development. Among them are the telomeres, DNA–protein structures that play an important role in the long term in cell cycle/survival. Telomeres are the physical ends of eukaryotic chromosomes. Due to their multiple interactions with different proteins that confer a likewise complex dynamic, they have emerged as objects of interest in many medical studies, including studies on leishmaniases. This review aims to gather information and elucidate what we know about the phenomena behind Leishmania spp. telomere maintenance and how it impacts the parasite’s cell cycle.
Collapse
Affiliation(s)
- Luiz H. C. Assis
- Telomeres Laboratory, Department of Chemical and Biological Sciences, Biosciences Institute, São Paulo State University (UNESP), Botucatu 18618-689, Brazil; (L.H.C.A.); (D.A.-S.); (M.E.S.); (B.C.D.d.O.); (S.C.P.); (V.S.F.); (L.S.d.O.)
| | - Débora Andrade-Silva
- Telomeres Laboratory, Department of Chemical and Biological Sciences, Biosciences Institute, São Paulo State University (UNESP), Botucatu 18618-689, Brazil; (L.H.C.A.); (D.A.-S.); (M.E.S.); (B.C.D.d.O.); (S.C.P.); (V.S.F.); (L.S.d.O.)
| | - Mark E. Shiburah
- Telomeres Laboratory, Department of Chemical and Biological Sciences, Biosciences Institute, São Paulo State University (UNESP), Botucatu 18618-689, Brazil; (L.H.C.A.); (D.A.-S.); (M.E.S.); (B.C.D.d.O.); (S.C.P.); (V.S.F.); (L.S.d.O.)
| | - Beatriz C. D. de Oliveira
- Telomeres Laboratory, Department of Chemical and Biological Sciences, Biosciences Institute, São Paulo State University (UNESP), Botucatu 18618-689, Brazil; (L.H.C.A.); (D.A.-S.); (M.E.S.); (B.C.D.d.O.); (S.C.P.); (V.S.F.); (L.S.d.O.)
| | - Stephany C. Paiva
- Telomeres Laboratory, Department of Chemical and Biological Sciences, Biosciences Institute, São Paulo State University (UNESP), Botucatu 18618-689, Brazil; (L.H.C.A.); (D.A.-S.); (M.E.S.); (B.C.D.d.O.); (S.C.P.); (V.S.F.); (L.S.d.O.)
| | - Bryan E. Abuchery
- DNA Replication and Repair Laboratory (DRRL), Department of Chemical and Biological Sciences, Biosciences Institute, São Paulo State University (UNESP), Botucatu 18618-689, Brazil; (B.E.A.); (Y.G.F.)
| | - Yete G. Ferri
- DNA Replication and Repair Laboratory (DRRL), Department of Chemical and Biological Sciences, Biosciences Institute, São Paulo State University (UNESP), Botucatu 18618-689, Brazil; (B.E.A.); (Y.G.F.)
| | - Veronica S. Fontes
- Telomeres Laboratory, Department of Chemical and Biological Sciences, Biosciences Institute, São Paulo State University (UNESP), Botucatu 18618-689, Brazil; (L.H.C.A.); (D.A.-S.); (M.E.S.); (B.C.D.d.O.); (S.C.P.); (V.S.F.); (L.S.d.O.)
| | - Leilane S. de Oliveira
- Telomeres Laboratory, Department of Chemical and Biological Sciences, Biosciences Institute, São Paulo State University (UNESP), Botucatu 18618-689, Brazil; (L.H.C.A.); (D.A.-S.); (M.E.S.); (B.C.D.d.O.); (S.C.P.); (V.S.F.); (L.S.d.O.)
| | - Marcelo S. da Silva
- DNA Replication and Repair Laboratory (DRRL), Department of Chemical and Biological Sciences, Biosciences Institute, São Paulo State University (UNESP), Botucatu 18618-689, Brazil; (B.E.A.); (Y.G.F.)
- Correspondence: (M.S.d.S.); (M.I.N.C.)
| | - Maria Isabel N. Cano
- Telomeres Laboratory, Department of Chemical and Biological Sciences, Biosciences Institute, São Paulo State University (UNESP), Botucatu 18618-689, Brazil; (L.H.C.A.); (D.A.-S.); (M.E.S.); (B.C.D.d.O.); (S.C.P.); (V.S.F.); (L.S.d.O.)
- Correspondence: (M.S.d.S.); (M.I.N.C.)
| |
Collapse
|
15
|
Kim HS. Genetic Interaction Between Site-Specific Epigenetic Marks and Roles of H4v in Transcription Termination in Trypanosoma brucei. Front Cell Dev Biol 2021; 9:744878. [PMID: 34722526 PMCID: PMC8551723 DOI: 10.3389/fcell.2021.744878] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 09/15/2021] [Indexed: 11/13/2022] Open
Abstract
In Trypanosoma brucei, genes are assembled in polycistronic transcription units (PTUs). Boundaries of PTUs are designated transcription start sites and transcription termination sites (TTSs). Messenger RNAs are generated by trans-splicing and polyadenylation of precursor RNAs, and regulatory information in the 3' un-translated region (UTR), rather than promoter activity/sequence-specific transcription factors, controls mRNA levels. Given this peculiar genome structure, special strategies must be utilized to control transcription in T. brucei. TTSs are deposition sites for three non-essential chromatin factors-two of non-canonical histone variants (H3v and H4v) and a DNA modification (base J, which is a hydroxyl-glucosyl dT). This association generated the hypothesis that these three chromatin marks define a transcription termination site in T. brucei. Using a panel of null mutants lacking H3v, H4v, and base J, here I show that H4v is a major sign for transcription termination at TTSs. While having a secondary function at TTSs, H3v is important for monoallelic transcription of telomeric antigen genes. The simultaneous absence of both histone variants leads to proliferation and replication defects, which are exacerbated by the J absence, accompanied by accumulation of sub-G1 population. Thus, I propose that the coordinated actions of H3v, H4v, and J provide compensatory mechanisms for each other in chromatin organization, transcription, replication, and cell-cycle progression.
Collapse
Affiliation(s)
- Hee-Sook Kim
- Public Health Research Institute, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, United States
| |
Collapse
|
16
|
Li B, Zhao Y. Regulation of Antigenic Variation by Trypanosoma brucei Telomere Proteins Depends on Their Unique DNA Binding Activities. Pathogens 2021; 10:pathogens10080967. [PMID: 34451431 PMCID: PMC8402208 DOI: 10.3390/pathogens10080967] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 07/22/2021] [Accepted: 07/27/2021] [Indexed: 01/17/2023] Open
Abstract
Trypanosoma brucei causes human African trypanosomiasis and regularly switches its major surface antigen, Variant Surface Glycoprotein (VSG), to evade the host immune response. Such antigenic variation is a key pathogenesis mechanism that enables T. brucei to establish long-term infections. VSG is expressed exclusively from subtelomere loci in a strictly monoallelic manner, and DNA recombination is an important VSG switching pathway. The integrity of telomere and subtelomere structure, maintained by multiple telomere proteins, is essential for T. brucei viability and for regulating the monoallelic VSG expression and VSG switching. Here we will focus on T. brucei TRF and RAP1, two telomere proteins with unique nucleic acid binding activities, and summarize their functions in telomere integrity and stability, VSG switching, and monoallelic VSG expression. Targeting the unique features of TbTRF and TbRAP1′s nucleic acid binding activities to perturb the integrity of telomere structure and disrupt VSG monoallelic expression may serve as potential therapeutic strategy against T. brucei.
Collapse
Affiliation(s)
- Bibo Li
- Center for Gene Regulation in Health and Disease, Department of Biological, Geological, and Environmental Sciences, College of Sciences and Health Professions, Cleveland State University, 2121 Euclid Avenue, Cleveland, OH 44115, USA
- Case Comprehensive Cancer Center, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA
- Center for RNA Science and Therapeutics, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
- Correspondence: (B.L.); (Y.Z.)
| | - Yanxiang Zhao
- Shenzhen Research Institute, The Hong Kong Polytechnic University, Shenzhen, China
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
- Correspondence: (B.L.); (Y.Z.)
| |
Collapse
|
17
|
Abstract
Unlike most other eukaryotes, Leishmania and other trypanosomatid protozoa have largely eschewed transcriptional control of gene expression, relying instead on posttranscriptional regulation of mRNAs derived from polycistronic transcription units (PTUs). In these parasites, a novel modified nucleotide base (β-d-glucopyranosyloxymethyluracil) known as J plays a critical role in ensuring that transcription termination occurs only at the end of each PTU, rather than at the polyadenylation sites of individual genes. To further understand the biology of J-associated processes, we used tandem affinity purification (TAP) tagging and mass spectrometry to reveal proteins that interact with the glucosyltransferase performing the final step in J synthesis. These studies identified four proteins reminiscent of subunits in the PTW/PP1 complex that controls transcription termination in higher eukaryotes. Moreover, bioinformatic analyses identified the DNA-binding subunit of Leishmania PTW/PP1 as a novel J-binding protein (JBP3), which is also part of another complex containing proteins with domains suggestive of a role in chromatin modification/remodeling. Additionally, JBP3 associates (albeit transiently and/or indirectly) with the trypanosomatid equivalent of the PAF1 complex involved in the regulation of transcription in other eukaryotes. The downregulation of JBP3 expression levels in Leishmania resulted in a substantial increase in transcriptional readthrough at the 3′ end of most PTUs. We propose that JBP3 recruits one or more of these complexes to the J-containing regions at the end of PTUs, where they halt the progression of the RNA polymerase. This decoupling of transcription termination from the splicing of individual genes enables the parasites’ unique reliance on polycistronic transcription and posttranscriptional regulation of gene expression. IMPORTANCELeishmania parasites cause a variety of serious human diseases, with no effective vaccine and emerging resistance to current drug therapy. We have previously shown that a novel DNA base called J is critical for transcription termination at the ends of the polycistronic gene clusters that are a hallmark of Leishmania and related trypanosomatids. Here, we describe a new J-binding protein (JBP3) associated with three different protein complexes that are reminiscent of those involved in the control of transcription in other eukaryotes. However, the parasite complexes have been reprogrammed to regulate transcription and gene expression in trypanosomatids differently than in the mammalian hosts, providing new opportunities to develop novel chemotherapeutic treatments against these important pathogens.
Collapse
|
18
|
Morea EGO, Vasconcelos EJR, Alves CDS, Giorgio S, Myler PJ, Langoni H, Azzalin CM, Cano MIN. Exploring TERRA during Leishmania major developmental cycle and continuous in vitro passages. Int J Biol Macromol 2021; 174:573-586. [PMID: 33548324 DOI: 10.1016/j.ijbiomac.2021.01.192] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 01/25/2021] [Accepted: 01/28/2021] [Indexed: 12/22/2022]
Abstract
Telomeres from different eukaryotes, including trypanosomatids, are transcribed into TERRA noncoding RNAs, crucial in regulating chromatin deposition and telomere length. TERRA is transcribed from the C-rich subtelomeric strand towards the 3'-ends of the telomeric array. Using bioinformatics, we confirmed the presence of subtelomeric splice acceptor sites at all L. major chromosome ends. Splice leader sequences positioned 5' upstream of L. major chromosomes subtelomeres were then mapped using SL-RNA-Seq libraries constructed from three independent parasite life stages and helped confirm TERRA expression from several chromosomes ends. Northern blots and RT-qPCR validated the results showing that L. major TERRA is processed by trans-splicing and polyadenylation coupled reactions. The number of transcripts varied with the parasite's life stage and continuous passages, being more abundant in the infective forms. However, no putative subtelomeric promoters involved in TERRA's transcriptional regulation were detected. In contrast, the observed changes in parasite's telomere length during development, suggest that differences in telomeric base J levels may control TERRA transcription in L. major. Also, TERRA-R loops' detection, mainly in the infective forms, was suggestive of TERRA's involvement in telomere protection. Therefore, Leishmania TERRA shares conserved features with other eukaryotes and advances new telomere specific functions in a Public Health-impacting parasite.
Collapse
Affiliation(s)
- Edna Gicela Ortiz Morea
- Department of Chemical and Biological Sciences, Biosciences Institute, São Paulo State University, UNESP, Botucatu, São Paulo, Brazil
| | | | - Cristiane de Santis Alves
- Department of Chemical and Biological Sciences, Biosciences Institute, São Paulo State University, UNESP, Botucatu, São Paulo, Brazil
| | - Selma Giorgio
- Department of Animal Biology, Biology Institute, State University of Campinas, UNICAMP, Brazil
| | - Peter J Myler
- Department of Global Health and Department of Biomedical Informatics & Medical Education, University of Washington, Seattle, WA, United States of America
| | - Helio Langoni
- Department of Public Health, Veterinary Medical School, São Paulo State University, UNESP, Botucatu, São Paulo, Brazil
| | | | - Maria Isabel Nogueira Cano
- Department of Chemical and Biological Sciences, Biosciences Institute, São Paulo State University, UNESP, Botucatu, São Paulo, Brazil.
| |
Collapse
|
19
|
Leal AZ, Schwebs M, Briggs E, Weisert N, Reis H, Lemgruber L, Luko K, Wilkes J, Butter F, McCulloch R, Janzen CJ. Genome maintenance functions of a putative Trypanosoma brucei translesion DNA polymerase include telomere association and a role in antigenic variation. Nucleic Acids Res 2020; 48:9660-9680. [PMID: 32890403 PMCID: PMC7515707 DOI: 10.1093/nar/gkaa686] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 08/03/2020] [Accepted: 09/03/2020] [Indexed: 12/17/2022] Open
Abstract
Maintenance of genome integrity is critical to guarantee transfer of an intact genome from parent to offspring during cell division. DNA polymerases (Pols) provide roles in both replication of the genome and the repair of a wide range of lesions. Amongst replicative DNA Pols, translesion DNA Pols play a particular role: replication to bypass DNA damage. All cells express a range of translesion Pols, but little work has examined their function in parasites, including whether the enzymes might contribute to host-parasite interactions. Here, we describe a dual function of one putative translesion Pol in African trypanosomes, which we now name TbPolIE. Previously, we demonstrated that TbPolIE is associated with telomeric sequences and here we show that RNAi-mediated depletion of TbPolIE transcripts results in slowed growth, altered DNA content, changes in cell morphology, and increased sensitivity to DNA damaging agents. We also show that TbPolIE displays pronounced localization at the nuclear periphery, and that its depletion leads to chromosome segregation defects and increased levels of endogenous DNA damage. Finally, we demonstrate that TbPolIE depletion leads to deregulation of telomeric variant surface glycoprotein genes, linking the function of this putative translesion DNA polymerase to host immune evasion by antigenic variation.
Collapse
Affiliation(s)
- Andrea Zurita Leal
- The Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| | - Marie Schwebs
- Department of Cell & Developmental Biology, Biocenter, University of Würzburg, Würzburg, Germany
| | - Emma Briggs
- The Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| | - Nadine Weisert
- Department of Cell & Developmental Biology, Biocenter, University of Würzburg, Würzburg, Germany
| | - Helena Reis
- Department of Cell & Developmental Biology, Biocenter, University of Würzburg, Würzburg, Germany
| | - Leandro Lemgruber
- The Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| | - Katarina Luko
- Quantitative Proteomics, Institute of Molecular Biology (IMB), Mainz, Germany
| | - Jonathan Wilkes
- The Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| | - Falk Butter
- Quantitative Proteomics, Institute of Molecular Biology (IMB), Mainz, Germany
| | - Richard McCulloch
- The Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| | - Christian J Janzen
- Department of Cell & Developmental Biology, Biocenter, University of Würzburg, Würzburg, Germany
| |
Collapse
|
20
|
Kieft R, Zhang Y, Marand AP, Moran JD, Bridger R, Wells L, Schmitz RJ, Sabatini R. Identification of a novel base J binding protein complex involved in RNA polymerase II transcription termination in trypanosomes. PLoS Genet 2020; 16:e1008390. [PMID: 32084124 PMCID: PMC7055916 DOI: 10.1371/journal.pgen.1008390] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 03/04/2020] [Accepted: 01/08/2020] [Indexed: 11/18/2022] Open
Abstract
Base J, β-D-glucosyl-hydroxymethyluracil, is a modification of thymine DNA base involved in RNA Polymerase (Pol) II transcription termination in kinetoplastid protozoa. Little is understood regarding how specific thymine residues are targeted for J-modification or the mechanism of J regulated transcription termination. To identify proteins involved in J-synthesis, we expressed a tagged version of the J-glucosyltransferase (JGT) in Leishmania tarentolae, and identified four co-purified proteins by mass spectrometry: protein phosphatase (PP1), a homolog of Wdr82, a potential PP1 regulatory protein (PNUTS) and a protein containing a J-DNA binding domain (named JBP3). Gel shift studies indicate JBP3 is a J-DNA binding protein. Reciprocal tagging, co-IP and sucrose gradient analyses indicate PP1, JGT, JBP3, Wdr82 and PNUTS form a multimeric complex in kinetoplastids, similar to the mammalian PTW/PP1 complex involved in transcription termination via PP1 mediated dephosphorylation of Pol II. Using RNAi and analysis of Pol II termination by RNA-seq and RT-PCR, we demonstrate that ablation of PNUTS, JBP3 and Wdr82 lead to defects in Pol II termination at the 3'-end of polycistronic gene arrays in Trypanosoma brucei. Mutants also contain increased antisense RNA levels upstream of transcription start sites, suggesting an additional role of the complex in regulating termination of bi-directional transcription. In addition, PNUTS loss causes derepression of silent Variant Surface Glycoprotein genes involved in host immune evasion. Our results suggest a novel mechanistic link between base J and Pol II polycistronic transcription termination in kinetoplastids.
Collapse
Affiliation(s)
- Rudo Kieft
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, United States of America
| | - Yang Zhang
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, United States of America
| | - Alexandre P. Marand
- Department of Genetics, University of Georgia, Athens, Georgia, United States of America
| | - Jose Dagoberto Moran
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, United States of America
| | - Robert Bridger
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, United States of America
| | - Lance Wells
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, United States of America
| | - Robert J. Schmitz
- Department of Genetics, University of Georgia, Athens, Georgia, United States of America
| | - Robert Sabatini
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, United States of America
- * E-mail:
| |
Collapse
|
21
|
Affiliation(s)
- Bi-Feng Yuan
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry and Sauvage Center for Molecular Sciences, Wuhan University, Wuhan 430072, P.R. China
| |
Collapse
|
22
|
Adamopoulos A, Heidebrecht T, Roosendaal J, Touw WG, Phan IQ, Beijnen J, Perrakis A. The domain architecture of the protozoan protein J-DNA-binding protein 1 suggests synergy between base J DNA binding and thymidine hydroxylase activity. J Biol Chem 2019; 294:12815-12825. [PMID: 31292194 DOI: 10.1074/jbc.ra119.007393] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 07/04/2019] [Indexed: 11/06/2022] Open
Abstract
J-DNA-binding protein 1 (JBP1) contributes to the biosynthesis and maintenance of base J (β-d-glucosyl-hydroxymethyluracil), an epigenetic modification of thymidine (T) confined to pathogenic protozoa such as Trypanosoma and Leishmania JBP1 has two known functional domains: an N-terminal T hydroxylase (TH) homologous to the 5-methylcytosine hydroxylase domain in TET proteins and a J-DNA-binding domain (JDBD) that resides in the middle of JBP1. Here, we show that removing JDBD from JBP1 results in a soluble protein (Δ-JDBD) with the N- and C-terminal regions tightly associated together in a well-ordered structure. We found that this Δ-JDBD domain retains TH activity in vitro but displays a 15-fold lower apparent rate of hydroxylation compared with JBP1. Small-angle X-ray scattering (SAXS) experiments on JBP1 and JDBD in the presence or absence of J-DNA and on Δ-JDBD enabled us to generate low-resolution three-dimensional models. We conclude that Δ-JDBD, and not the N-terminal region of JBP1 alone, is a distinct folding unit. Our SAXS-based model supports the notion that binding of JDBD specifically to J-DNA can facilitate T hydroxylation 12-14 bp downstream on the complementary strand of the J-recognition site. We postulate that insertion of the JDBD module into the Δ-JDBD scaffold during evolution provided a mechanism that synergized J recognition and T hydroxylation, ensuring inheritance of base J in specific sequence patterns following DNA replication in kinetoplastid parasites.
Collapse
Affiliation(s)
- Athanassios Adamopoulos
- Department of Biochemistry, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Tatjana Heidebrecht
- Department of Biochemistry, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Jeroen Roosendaal
- Department of Clinical Pharmacology, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Wouter G Touw
- Department of Biochemistry, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Isabelle Q Phan
- Seattle Structural Genomics Center for Infectious Disease, Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, Washington 98109
| | - Jos Beijnen
- Department of Clinical Pharmacology, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Anastassis Perrakis
- Department of Biochemistry, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| |
Collapse
|
23
|
Dynamic colocalization of 2 simultaneously active VSG expression sites within a single expression-site body in Trypanosoma brucei. Proc Natl Acad Sci U S A 2019; 116:16561-16570. [PMID: 31358644 PMCID: PMC6697882 DOI: 10.1073/pnas.1905552116] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The African trypanosome Trypanosoma brucei expresses a single variant surface glycoprotein (VSG) gene from one of multiple VSG expression sites (ESs) in a stringent monoallelic fashion. The counting mechanism behind this restriction is poorly understood. Unusually for a eukaryote, the active ES is transcribed by RNA polymerase I (Pol I) within a unique Pol I body called the expression-site body (ESB). We have demonstrated the importance of the ESB in restricting the singular expression of VSG. We have generated double-expresser trypanosomes, which simultaneously express 2 ESs at the same time in an unstable dynamic fashion. These cells predominantly contain 1 ESB, and, surprisingly, simultaneous transcription of the 2 ESs is observed only when they are both colocalized within it. Monoallelic exclusion ensures that the African trypanosome Trypanosoma brucei exclusively expresses only 1 of thousands of different variant surface glycoprotein (VSG) coat genes. The active VSG is transcribed from 1 of 15 polycistronic bloodstream-form VSG expression sites (ESs), which are controlled in a mutually exclusive fashion. Unusually, T. brucei uses RNA polymerase I (Pol I) to transcribe the active ES, which is unprecedented among eukaryotes. This active ES is located within a unique extranucleolar Pol I body called the expression-site body (ESB). A stringent restriction mechanism prevents T. brucei from expressing multiple ESs at the same time, although how this is mediated is unclear. By using drug-selection pressure, we generated VSG double-expresser T. brucei lines, which have disrupted monoallelic exclusion, and simultaneously express 2 ESs in a dynamic fashion. The 2 unstably active ESs appear epigenetically similar to fully active ESs as determined by using chromatin immunoprecipitation for multiple epigenetic marks (histones H3 and H1, TDP1, and DNA base J). We find that the double-expresser cells, similar to wild-type single-expresser cells, predominantly contain 1 subnuclear ESB, as determined using Pol I or the ESB marker VEX1. Strikingly, simultaneous transcription of the 2 dynamically transcribed ESs is normally observed only when the 2 ESs are both located within this single ESB. This colocalization is reversible in the absence of drug selection. This discovery that simultaneously active ESs dynamically share a single ESB demonstrates the importance of this unique subnuclear body in restricting the monoallelic expression of VSG.
Collapse
|
24
|
van Beusekom B, Heidebrecht T, Adamopoulos A, Fish A, Pardon E, Steyaert J, Joosten RP, Perrakis A. Characterization and structure determination of a llama-derived nanobody targeting the J-base binding protein 1. Acta Crystallogr F Struct Biol Commun 2018; 74:690-695. [PMID: 30387773 PMCID: PMC6213982 DOI: 10.1107/s2053230x18010282] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 07/16/2018] [Indexed: 01/06/2023] Open
Abstract
J-base binding protein 1 (JBP1) contributes to the biosynthesis and maintenance of base J (β-D-glucosylhydroxymethyluracil), a modification of thymidine confined to some protozoa. Camelid (llama) single-domain antibody fragments (nanobodies) targeting JBP1 were produced for use as crystallization chaperones. Surface plasmon resonance screening identified Nb6 as a strong binder, recognizing JBP1 with a 1:1 stoichiometry and high affinity (Kd = 30 nM). Crystallization trials of JBP1 in complex with Nb6 yielded crystals that diffracted to 1.47 Å resolution. However, the dimensions of the asymmetric unit and molecular replacement with a nanobody structure clearly showed that the crystals of the expected complex with JBP1 were of the nanobody alone. Nb6 crystallizes in space group P31 with two molecules in the asymmetric unit; its crystal structure was refined to a final resolution of 1.64 Å. Ensemble refinement suggests that in the ligand-free state one of the complementarity-determining regions (CDRs) is flexible, while the other two adopt well defined conformations.
Collapse
Affiliation(s)
- Bart van Beusekom
- Department of Biochemistry, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Tatjana Heidebrecht
- Department of Biochemistry, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Athanassios Adamopoulos
- Department of Biochemistry, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Alexander Fish
- Department of Biochemistry, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Els Pardon
- VIB–VUB Center for Structural Biology, VIB, Pleinlaan 2, 1050 Brussels, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
| | - Jan Steyaert
- VIB–VUB Center for Structural Biology, VIB, Pleinlaan 2, 1050 Brussels, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
| | - Robbie P. Joosten
- Department of Biochemistry, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Anastassis Perrakis
- Department of Biochemistry, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| |
Collapse
|
25
|
Martínez-Calvillo S, Romero-Meza G, Vizuet-de-Rueda JC, Florencio-Martínez LE, Manning-Cela R, Nepomuceno-Mejía T. Epigenetic Regulation of Transcription in Trypanosomatid Protozoa. Curr Genomics 2018; 19:140-149. [PMID: 29491742 PMCID: PMC5814962 DOI: 10.2174/1389202918666170911163517] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 02/13/2017] [Accepted: 04/18/2017] [Indexed: 12/15/2022] Open
Abstract
The Trypanosomatid family includes flagellated parasites that cause fatal human diseases. Remarkably, protein-coding genes in these organisms are positioned in long tandem arrays that are transcribed polycistronically. However, the knowledge about regulation of transcription initiation and termination in trypanosomatids is scarce. The importance of epigenetic regulation in these processes has become evident in the last years, as distinctive histone modifications and histone variants have been found in transcription initiation and termination regions. Moreover, multiple chromatin-related proteins have been identified and characterized in trypanosomatids, including histone-modifying enzymes, effector complexes, chromatin-remodelling enzymes and histone chaperones. Notably, base J, a modified thymine residue present in the nuclear DNA of trypanosomatids, has been implicated in transcriptional regulation. Here we review the current knowledge on epigenetic control of transcription by all three RNA polymerases in this group of early-diverged eukaryotes.
Collapse
Affiliation(s)
- Santiago Martínez-Calvillo
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México. Av. de los Barrios 1, Col. Los Reyes Iztacala, Tlalnepantla, Edo. de México, CP 54090, México
| | - Gabriela Romero-Meza
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México. Av. de los Barrios 1, Col. Los Reyes Iztacala, Tlalnepantla, Edo. de México, CP 54090, México
| | - Juan C. Vizuet-de-Rueda
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México. Av. de los Barrios 1, Col. Los Reyes Iztacala, Tlalnepantla, Edo. de México, CP 54090, México
| | - Luis E. Florencio-Martínez
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México. Av. de los Barrios 1, Col. Los Reyes Iztacala, Tlalnepantla, Edo. de México, CP 54090, México
| | - Rebeca Manning-Cela
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del IPN, Av. IPN 2508, México, D.F., CP 07360, México
| | - Tomás Nepomuceno-Mejía
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México. Av. de los Barrios 1, Col. Los Reyes Iztacala, Tlalnepantla, Edo. de México, CP 54090, México
| |
Collapse
|
26
|
Cestari I, Stuart K. Transcriptional Regulation of Telomeric Expression Sites and Antigenic Variation in Trypanosomes. Curr Genomics 2018; 19:119-132. [PMID: 29491740 PMCID: PMC5814960 DOI: 10.2174/1389202918666170911161831] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 04/03/2017] [Accepted: 05/04/2017] [Indexed: 12/29/2022] Open
Abstract
INTRODUCTION Trypanosoma brucei uses antigenic variation to evade the host antibody clearance by periodically changing its Variant Surface Glycoprotein (VSGs) coat. T. brucei encode over 2,500 VSG genes and pseudogenes, however they transcribe only one VSG gene at time from one of the 20 telomeric Expression Sites (ESs). VSGs are transcribed in a monoallelic fashion by RNA polymerase I from an extranucleolar site named ES body. VSG antigenic switching occurs by transcriptional switching between telomeric ESs or by recombination of the VSG gene expressed. VSG expression is developmentally regulated and its transcription is controlled by epigenetic mechanisms and influenced by a telomere position effect. CONCLUSION Here, we discuss 1) the molecular basis underlying transcription of telomeric ESs and VSG antigenic switching; 2) the current knowledge of VSG monoallelic expression; 3) the role of inositol phosphate pathway in the regulation of VSG expression and switching; and 4) the developmental regulation of Pol I transcription of procyclin and VSG genes.
Collapse
Affiliation(s)
- Igor Cestari
- Center for Infectious Disease Research, Seattle, WA98109, USA
| | - Ken Stuart
- Center for Infectious Disease Research, Seattle, WA98109, USA
- Department of Global Health, University of Washington, Seattle, WA98195, USA
| |
Collapse
|
27
|
Smircich P, El-Sayed NM, Garat B. Intrinsic DNA curvature in trypanosomes. BMC Res Notes 2017; 10:585. [PMID: 29121981 PMCID: PMC5679330 DOI: 10.1186/s13104-017-2908-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 11/01/2017] [Indexed: 12/21/2022] Open
Abstract
Background Trypanosoma cruzi and Trypanosoma brucei are protozoan parasites
causing Chagas disease and African sleeping sickness, displaying unique features of cellular and molecular biology. Remarkably, no canonical signals for RNA polymerase II promoters, which drive protein coding genes transcription, have been identified so far. The secondary structure of DNA has long been recognized as a signal in biological processes and more recently, its involvement in transcription initiation in Leishmania was proposed. In order to study whether this feature is conserved in trypanosomatids, we undertook a genome wide search for intrinsic DNA curvature in T. cruzi and T. brucei. Results Using a region integrated intrinsic curvature (RIIC) scoring that we previously developed, a non-random distribution of sequence-dependent curvature was observed. High RIIC scores were found to be significantly correlated with transcription start sites in T. cruzi, which have been mapped in divergent switch regions, whereas in T. brucei, the high RIIC scores correlated with sites that have been involved not only in RNA polymerase II initiation but also in termination. In addition, we observed regions with high RIIC score presenting in-phase tracts of Adenines, in the subtelomeric regions of the T. brucei chromosomes that harbor the variable surface glycoproteins genes. Conclusions In both T. cruzi and T. brucei genomes, a link between DNA conformational signals and gene expression was found. High sequence dependent curvature is associated with transcriptional regulation regions. High intrinsic curvature also occurs at the T. brucei chromosome subtelomeric regions where the recombination processes involved in the evasion of the immune host system take place. These findings underscore the relevance of indirect DNA readout in these ancient eukaryotes. Electronic supplementary material The online version of this article (10.1186/s13104-017-2908-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Pablo Smircich
- Laboratorio de Interacciones Moleculares, Facultad de Ciencias, Universidad de la Republica, 11400, Montevideo, Uruguay.,Departamento de Genética, Facultad de Medicina, Universidad de la Republica, 11800, Montevideo, Uruguay
| | - Najib M El-Sayed
- Department of Cell Biology and Molecular Genetics and Center for Bioinformatics and Computational Biology, University of Maryland College Park, College Park, MD, 20742, USA
| | - Beatriz Garat
- Laboratorio de Interacciones Moleculares, Facultad de Ciencias, Universidad de la Republica, 11400, Montevideo, Uruguay.
| |
Collapse
|
28
|
Bullard W, Kieft R, Sabatini R. A method for the efficient and selective identification of 5-hydroxymethyluracil in genomic DNA. Biol Methods Protoc 2017; 2. [PMID: 29276783 PMCID: PMC5741180 DOI: 10.1093/biomethods/bpw006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Recently, 5-hydroxymethyluracil (5hmU) was identified in mammalian genomic DNA as an oxidative product of thymine by the ten-eleven translocation (TET) proteins. While the biological role of this modification remains unclear, identifying its genomic location will assist in elucidating function. Here we present a rapid and robust method to selectively tag and enrich genomic regions containing 5hmU. This method involves the selective glucosylation of 5hmU residues by the base J glucosyltransferase from trypanosomes creating glucosylhydroxymethyluracil (base J). The base J can then be efficiently and selectively pulled down by antibodies against base J or by J-binding protein 1. DNA that is enriched is suitable for analysis by quantitative PCR or sequencing. We utilized this tagging reaction to provide proof of concept for the enrichment of 5hmU containing DNA from a pool that contains modified and unmodified DNA. Furthermore, we demonstrate that the base J pull-down assay identifies 5hmU at specific regions of the trypanosome genome involved in transcriptional repression. The method described here will allow for a greater understanding of the functional role and dynamics of 5hmU in biology.
Collapse
Affiliation(s)
- Whitney Bullard
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, 30602, USA
| | - Rudo Kieft
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, 30602, USA
| | - Robert Sabatini
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, 30602, USA
| |
Collapse
|
29
|
Base J and H3.V Regulate Transcriptional Termination in Trypanosoma brucei. PLoS Genet 2016; 12:e1005762. [PMID: 26796638 PMCID: PMC4721952 DOI: 10.1371/journal.pgen.1005762] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 12/02/2015] [Indexed: 11/25/2022] Open
Abstract
Trypanosoma brucei is a protozoan parasite that lacks many transcription factors found in other eukaryotes, such as those whose binding demarcates enhancers. T. brucei retains histone variants and modifications, however, and it is hypothesized that it relies on epigenetic marks to define transcription-related boundaries. The histone H3 variant (H3.V) and an alternate nucleotide, base J (ß-D-glucosyl-hydroxymethyluracil), are two chromatin marks found at both transcription termination sites (TTSs) and telomeres. Here, we report that the absence of both base J and H3.V result in transcription readthrough and the appearance of antisense transcripts near TTSs. Additionally, we find that maintaining the transcriptional silencing of pol I-transcribed telomeric Variant Surface Glycoprotein (VSG) genes appears to be dependent on deposition of H3.V alone. Our study reveals that gene expression depends on different epigenetic cues depending on chromosomal location and on the transcribing polymerase. This work provides insight into how these signals may have evolved into the more nuanced and fine-tuned gene regulatory mechanisms observed in other model systems. In eukaryotes, DNA is wrapped around histones to form chromatin. Modifications on the DNA itself, or on the canonical histones around which the DNA is wrapped, can lead to changes in gene expression. Alternate histones are also used to regulate gene expression. The African trypanosome, the causative agent of African sleeping sickness, transcribes its genes in long arrays called polycistronic transcription units (PTUs). In this study, we describe how the African Trypanosome uses two chromatin marks to regulate genes that lie close to the end of the PTU or close to the ends of chromosomes, called telomeres. One mark, base J, is on the DNA itself, while the other utilized mark is an alternate histone protein called H3.V. In the absence of these marks, there is an increase in antisense RNA that corresponds to genes that lie near the ends of the PTUs, and an increase in sense RNA for genes near telomeres. Since trypanosomes are evolutionarily distant from humans, these findings shed light on how gene expression mechanisms that are modulated by chromatin marks may have evolved to produce the complex gene regulatory networks found in our own tissues.
Collapse
|
30
|
Olinski R, Starczak M, Gackowski D. Enigmatic 5-hydroxymethyluracil: Oxidatively modified base, epigenetic mark or both? MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2016; 767:59-66. [DOI: 10.1016/j.mrrev.2016.02.001] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 02/05/2016] [Accepted: 02/07/2016] [Indexed: 11/24/2022]
|
31
|
Reynolds D, Hofmeister BT, Cliffe L, Alabady M, Siegel TN, Schmitz RJ, Sabatini R. Histone H3 Variant Regulates RNA Polymerase II Transcription Termination and Dual Strand Transcription of siRNA Loci in Trypanosoma brucei. PLoS Genet 2016; 12:e1005758. [PMID: 26796527 PMCID: PMC4721609 DOI: 10.1371/journal.pgen.1005758] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 12/01/2015] [Indexed: 01/22/2023] Open
Abstract
Base J, β-D-glucosyl-hydroxymethyluracil, is a chromatin modification of thymine in the nuclear DNA of flagellated protozoa of the order Kinetoplastida. In Trypanosoma brucei, J is enriched, along with histone H3 variant (H3.V), at sites involved in RNA Polymerase (RNAP) II termination and telomeric sites involved in regulating variant surface glycoprotein gene (VSG) transcription by RNAP I. Reduction of J in T. brucei indicated a role of J in the regulation of RNAP II termination, where the loss of J at specific sites within polycistronic gene clusters led to read-through transcription and increased expression of downstream genes. We now demonstrate that the loss of H3.V leads to similar defects in RNAP II termination within gene clusters and increased expression of downstream genes. Gene derepression is intensified upon the subsequent loss of J in the H3.V knockout. mRNA-seq indicates gene derepression includes VSG genes within the silent RNAP I transcribed telomeric gene clusters, suggesting an important role for H3.V in telomeric gene repression and antigenic variation. Furthermore, the loss of H3.V at regions of overlapping transcription at the end of convergent gene clusters leads to increased nascent RNA and siRNA production. Our results suggest base J and H3.V can act independently as well as synergistically to regulate transcription termination and expression of coding and non-coding RNAs in T. brucei, depending on chromatin context (and transcribing polymerase). As such these studies provide the first direct evidence for histone H3.V negatively influencing transcription elongation to promote termination.
Collapse
Affiliation(s)
- David Reynolds
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, United States of America
| | - Brigitte T. Hofmeister
- Institute of Bioinformatics, University of Georgia, Athens, Georgia, United States of America
| | - Laura Cliffe
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, United States of America
| | - Magdy Alabady
- Department of Plant Biology, University of Georgia, Athens, Georgia, United States of America
| | - T. Nicolai Siegel
- Research Center for Infectious Diseases, University of Wuerzburg, Wuerzburg, Germany
| | - Robert J. Schmitz
- Department of Genetics, University of Georgia, Athens, Georgia, United States of America
| | - Robert Sabatini
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, United States of America
| |
Collapse
|
32
|
Borst P. Maxi-circles, glycosomes, gene transposition, expression sites, transsplicing, transferrin receptors and base J. Mol Biochem Parasitol 2016; 205:39-52. [DOI: 10.1016/j.molbiopara.2016.03.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 03/22/2016] [Accepted: 03/22/2016] [Indexed: 01/05/2023]
|
33
|
Genest PA, Baugh L, Taipale A, Zhao W, Jan S, van Luenen HGAM, Korlach J, Clark T, Luong K, Boitano M, Turner S, Myler PJ, Borst P. Defining the sequence requirements for the positioning of base J in DNA using SMRT sequencing. Nucleic Acids Res 2015; 43:2102-15. [PMID: 25662217 PMCID: PMC4344527 DOI: 10.1093/nar/gkv095] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Base J (β-D-glucosyl-hydroxymethyluracil) replaces 1% of T in the Leishmania genome and is only found in telomeric repeats (99%) and in regions where transcription starts and stops. This highly restricted distribution must be co-determined by the thymidine hydroxylases (JBP1 and JBP2) that catalyze the initial step in J synthesis. To determine the DNA sequences recognized by JBP1/2, we used SMRT sequencing of DNA segments inserted into plasmids grown in Leishmania tarentolae. We show that SMRT sequencing recognizes base J in DNA. Leishmania DNA segments that normally contain J also picked up J when present in the plasmid, whereas control sequences did not. Even a segment of only 10 telomeric (GGGTTA) repeats was modified in the plasmid. We show that J modification usually occurs at pairs of Ts on opposite DNA strands, separated by 12 nucleotides. Modifications occur near G-rich sequences capable of forming G-quadruplexes and JBP2 is needed, as it does not occur in JBP2-null cells. We propose a model whereby de novo J insertion is mediated by JBP2. JBP1 then binds to J and hydroxylates another T 13 bp downstream (but not upstream) on the complementary strand, allowing JBP1 to maintain existing J following DNA replication.
Collapse
Affiliation(s)
- Paul-Andre Genest
- Division of Molecular Oncology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Loren Baugh
- Seattle Biomedical Research Institute, 307 Westlake Avenue, Seattle, WA 98109-5219, USA
| | - Alex Taipale
- Seattle Biomedical Research Institute, 307 Westlake Avenue, Seattle, WA 98109-5219, USA
| | - Wanqi Zhao
- Division of Molecular Oncology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Sabrina Jan
- Division of Molecular Oncology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Henri G A M van Luenen
- Division of Molecular Oncology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Jonas Korlach
- Pacific Biosciences, 1380 Willow Road, Menlo Park, CA 94025, USA
| | - Tyson Clark
- Pacific Biosciences, 1380 Willow Road, Menlo Park, CA 94025, USA
| | - Khai Luong
- Pacific Biosciences, 1380 Willow Road, Menlo Park, CA 94025, USA
| | - Matthew Boitano
- Pacific Biosciences, 1380 Willow Road, Menlo Park, CA 94025, USA
| | - Steve Turner
- Pacific Biosciences, 1380 Willow Road, Menlo Park, CA 94025, USA
| | - Peter J Myler
- Seattle Biomedical Research Institute, 307 Westlake Avenue, Seattle, WA 98109-5219, USA Department of Biomedical Informatics and Medical Education, University of Washington, Seattle, WA 98195, USA Department of Global Health, University of Washington, Seattle, WA 98195, USA
| | - Piet Borst
- Division of Molecular Oncology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| |
Collapse
|
34
|
Jehi SE, Li X, Sandhu R, Ye F, Benmerzouga I, Zhang M, Zhao Y, Li B. Suppression of subtelomeric VSG switching by Trypanosoma brucei TRF requires its TTAGGG repeat-binding activity. Nucleic Acids Res 2014; 42:12899-911. [PMID: 25313155 PMCID: PMC4227783 DOI: 10.1093/nar/gku942] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Trypanosoma brucei causes human African trypanosomiasis and regularly switches its major surface antigen, VSG, in the bloodstream of its mammalian host to evade the host immune response. VSGs are expressed exclusively from subtelomeric loci, and we have previously shown that telomere proteins TbTIF2 and TbRAP1 play important roles in VSG switching and VSG silencing regulation, respectively. We now discover that the telomere duplex DNA-binding factor, TbTRF, also plays a critical role in VSG switching regulation, as a transient depletion of TbTRF leads to significantly more VSG switching events. We solved the NMR structure of the DNA-binding Myb domain of TbTRF, which folds into a canonical helix-loop-helix structure that is conserved to the Myb domains of mammalian TRF proteins. The TbTRF Myb domain tolerates well the bulky J base in T. brucei telomere DNA, and the DNA-binding affinity of TbTRF is not affected by the presence of J both in vitro and in vivo. In addition, we find that point mutations in TbTRF Myb that significantly reduced its in vivo telomere DNA-binding affinity also led to significantly increased VSG switching frequencies, indicating that the telomere DNA-binding activity is critical for TbTRF's role in VSG switching regulation.
Collapse
Affiliation(s)
- Sanaa E Jehi
- Center for Gene Regulation in Health and Disease, Department of Biological, Geological, and Environmental Sciences, Cleveland State University, Cleveland, OH 44115, USA
| | - Xiaohua Li
- Department of Applied Biology and Chemical Technology, State Key Laboratory of Chirosciences, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, P. R. China The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, P.R. China
| | - Ranjodh Sandhu
- Center for Gene Regulation in Health and Disease, Department of Biological, Geological, and Environmental Sciences, Cleveland State University, Cleveland, OH 44115, USA
| | - Fei Ye
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, P. R. China
| | - Imaan Benmerzouga
- Center for Gene Regulation in Health and Disease, Department of Biological, Geological, and Environmental Sciences, Cleveland State University, Cleveland, OH 44115, USA
| | - Mingjie Zhang
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, P. R. China
| | - Yanxiang Zhao
- Department of Applied Biology and Chemical Technology, State Key Laboratory of Chirosciences, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, P. R. China
| | - Bibo Li
- Center for Gene Regulation in Health and Disease, Department of Biological, Geological, and Environmental Sciences, Cleveland State University, Cleveland, OH 44115, USA Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA Department of Molecular Genetics, Cleveland Clinic Lerner Research Institute, Cleveland, OH 44195, USA The Rockefeller University, New York, NY 10065, USA
| |
Collapse
|
35
|
Liu S, Ji D, Cliffe L, Bullard W, Sabatini R, Wang Y. Quantitative mass spectrometry-based analysis of β-D-glucosyl-5-hydroxymethyluracil in genomic DNA of Trypanosoma brucei. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2014; 25:1763-1770. [PMID: 25078157 PMCID: PMC4163122 DOI: 10.1007/s13361-014-0960-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Revised: 07/01/2014] [Accepted: 07/02/2014] [Indexed: 06/03/2023]
Abstract
β-D-glucosyl-5-hydroxymethyluracil (base J) is a hyper-modified nucleobase found in the nuclear DNA of kinetoplastid parasites. With replacement of a fraction of thymine in DNA, J is localized primarily in telomeric regions of all organisms carrying this modified base. The biosynthesis of J occurs in two putative steps: first, a specific thymine in DNA is recognized and converted into 5-hydroxymethyluracil (5-HmU) by J-binding proteins (JBP1 and JBP2); a glucosyl transferase (GT) subsequently glucosylates the 5-HmU to yield J. Although several recent studies revealed the roles of internal J in regulating transcription in kinetoplastids, functions of telomeric J and proteins involved in J synthesis remain elusive. Assessing the functions of base J and understanding fully its biosynthesis necessitate the measurement of its level in cells and organisms. In this study, we reported a reversed-phase HPLC coupled with tandem mass spectrometry (LC-MS/MS) method, together with the use of a surrogate internal standard (β-D-glucosyl-5-hydroxymethyl-2'-deoxycytidine, 5-gHmdC), for the accurate detection of β-D-glucosyl-5-hydroxymethyl-2'-deoxyuridine (dJ) in Trypanosoma brucei DNA. For comparison, we also measured the level of the precursor for dJ synthesis [i.e. 5-hydroxymethyl-2'-deoxyuridine (5-HmdU)]. We found that base J was not detectable in the JBP-null cells whereas it replaced approximately 0.5% thymine in wild-type cells, which was accompanied with a markedly decreased level of 5-HmdU in JBP1/JBP2-null strain relative to the wild-type strain. These results provided direct evidence supporting that JBP proteins play an important role in oxidizing thymidine to form 5-HmdU, which facilitated the generation of dJ. This is the first report about the application of LC-MS/MS for the quantification of base J. The analytical method built a solid foundation for dissecting the molecular mechanisms of J biosynthesis and assessing the biological functions of base J in the future.ᅟ
Collapse
Affiliation(s)
- Shuo Liu
- Environmental Toxicology Graduate Program, University of California, Riverside, CA 92521, USA
| | - Debin Ji
- Department of Chemistry, University of California, Riverside, CA 92521, USA
| | - Laura Cliffe
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602, USA
| | - Whitney Bullard
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602, USA
| | - Robert Sabatini
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602, USA
| | - Yinsheng Wang
- Environmental Toxicology Graduate Program, University of California, Riverside, CA 92521, USA
- Department of Chemistry, University of California, Riverside, CA 92521, USA
| |
Collapse
|
36
|
Reynolds D, Cliffe L, Förstner KU, Hon CC, Siegel TN, Sabatini R. Regulation of transcription termination by glucosylated hydroxymethyluracil, base J, in Leishmania major and Trypanosoma brucei. Nucleic Acids Res 2014; 42:9717-29. [PMID: 25104019 PMCID: PMC4150806 DOI: 10.1093/nar/gku714] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Base J, β-d-glucosyl-hydroxymethyluracil, is an epigenetic modification of thymine in the nuclear DNA of flagellated protozoa of the order Kinetoplastida. J is enriched at sites involved in RNA polymerase (RNAP) II initiation and termination. Reduction of J in Leishmania tarentolae via growth in BrdU resulted in cell death and indicated a role of J in the regulation of RNAP II termination. To further explore J function in RNAP II termination among kinetoplastids and avoid indirect effects associated with BrdU toxicity and genetic deletions, we inhibited J synthesis in Leishmania major and Trypanosoma brucei using DMOG. Reduction of J in L. major resulted in genome-wide defects in transcription termination at the end of polycistronic gene clusters and the generation of antisense RNAs, without cell death. In contrast, loss of J in T. brucei did not lead to genome-wide termination defects; however, the loss of J at specific sites within polycistronic gene clusters led to altered transcription termination and increased expression of downstream genes. Thus, J regulation of RNAP II transcription termination genome-wide is restricted to Leishmania spp., while in T. brucei it regulates termination and gene expression at specific sites within polycistronic gene clusters.
Collapse
Affiliation(s)
- David Reynolds
- Department of Biochemistry and Molecular Biology, University of Georgia, Davison Life Sciences Building, 120 Green Street, Athens, GA 30602-7229, USA
| | - Laura Cliffe
- Department of Biochemistry and Molecular Biology, University of Georgia, Davison Life Sciences Building, 120 Green Street, Athens, GA 30602-7229, USA
| | - Konrad U Förstner
- Core Unit Systems Medicine, University of Wuerzburg, Wuerzburg 97080, Germany
| | - Chung-Chau Hon
- Institut Pasteur, Unité Biologie Cellulaire du Parasitisme, Département Biologie cellulaire et infection, Paris 75015, France INSERM U786, Paris 75015, France
| | - T Nicolai Siegel
- Research Center for Infectious Diseases, University of Wuerzburg, Wuerzburg 97080, Germany
| | - Robert Sabatini
- Department of Biochemistry and Molecular Biology, University of Georgia, Davison Life Sciences Building, 120 Green Street, Athens, GA 30602-7229, USA
| |
Collapse
|
37
|
Sekar A, Merritt C, Baugh L, Stuart K, Myler PJ. Tb927.10.6900 encodes the glucosyltransferase involved in synthesis of base J in Trypanosoma brucei. Mol Biochem Parasitol 2014; 196:9-11. [PMID: 25064607 DOI: 10.1016/j.molbiopara.2014.07.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 07/11/2014] [Accepted: 07/14/2014] [Indexed: 01/28/2023]
Abstract
Base J is a DNA modification found in the genome of Trypanosoma brucei and all other kinetoplastids analyzed, where it replaces a small fraction of Ts, mainly in telomeric and chromosome-internal transcription initiation and termination regions. The synthesis of base J is a two-step process whereby a specific T is converted to HOMedU (hydroxymethyldeoxyuridine) and subsequently glucosylated to generate J. The thymidine hydroxylases (JPB1 and JBP2) that catalyze the first step have been characterized, but the identity of the glucosyltransferase catalyzing the second step has proven elusive. Recent bioinformatic analysis by Iyer et al. (Nucleic Acids Res 2013;41:7635) suggested that Tb927.10.6900 encodes the glucosyltransferase (HmdUGT) responsible for converting HOMedU to J in T. brucei. We now present experimental evidence to validate this hypothesis; null mutants of Tb927.10.6900 are unable to synthesize base J. Orthologues from related kinetoplastids show only modest conservation, with several insertion sequences found in those from Leishmania and related genera.
Collapse
Affiliation(s)
- Aarthi Sekar
- Seattle Biomedical Research Institute, 307 Westlake Avenue N., Seattle WA 98109-5219, USA
| | - Christopher Merritt
- Seattle Biomedical Research Institute, 307 Westlake Avenue N., Seattle WA 98109-5219, USA
| | - Loren Baugh
- Seattle Biomedical Research Institute, 307 Westlake Avenue N., Seattle WA 98109-5219, USA
| | - Kenneth Stuart
- Seattle Biomedical Research Institute, 307 Westlake Avenue N., Seattle WA 98109-5219, USA; Department of Global Health, University of Washington, Seattle, WA 98195, USA
| | - Peter J Myler
- Seattle Biomedical Research Institute, 307 Westlake Avenue N., Seattle WA 98109-5219, USA; Department of Biomedical Informatics & Medical Education, Seattle, WA 98195, USA; Department of Global Health, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
38
|
Maree JP, Patterton HG. The epigenome of Trypanosoma brucei: a regulatory interface to an unconventional transcriptional machine. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1839:743-50. [PMID: 24942804 DOI: 10.1016/j.bbagrm.2014.05.028] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Revised: 05/09/2014] [Accepted: 05/28/2014] [Indexed: 12/15/2022]
Abstract
The epigenome represents a major regulatory interface to the eukaryotic genome. Nucleosome positions, histone variants, histone modifications and chromatin associated proteins all play a role in the epigenetic regulation of DNA function. Trypanosomes, an ancient branch of the eukaryotic evolutionary lineage, exhibit some highly unusual transcriptional features, including the arrangement of functionally unrelated genes in large, polymerase II transcribed polycistronic transcription units, often exceeding hundreds of kilobases in size. It is generally believed that transcription initiation plays a minor role in regulating the transcript level of genes in trypanosomes, which are mainly regulated post-transcriptionally. Recent advances have revealed that epigenetic mechanisms play an essential role in the transcriptional regulation of Trypanosoma brucei. This suggested that the modulation of gene activity, particularly that of pol I transcribed genes, is, indeed, an important control mechanism, and that the epigenome is critical in regulating gene expression programs that allow the successful migration of this parasite between hosts, as well as the continuous evasion of the immune system in mammalian hosts. A wide range of epigenetic signals, readers, writers and erasers have been identified in trypanosomes, some of which have been mapped to essential genetic functions. Some epigenetic mechanisms have also been observed to be unique to trypanosomes. We review recent advances in our understanding of epigenetic control mechanisms in T. brucei, the causative agent of African sleeping sickness, and highlight the utility of epigenetic targets in the possible development of new therapies for human African trypanosomiasis.
Collapse
Affiliation(s)
- Johannes P Maree
- Advanced Biomolecular Research Cluster, University of the Free State, PO Box 339, Bloemfontein 9332, South Africa
| | - Hugh-G Patterton
- Advanced Biomolecular Research Cluster, University of the Free State, PO Box 339, Bloemfontein 9332, South Africa.
| |
Collapse
|
39
|
Bullard W, Lopes da Rosa-Spiegler J, Liu S, Wang Y, Sabatini R. Identification of the glucosyltransferase that converts hydroxymethyluracil to base J in the trypanosomatid genome. J Biol Chem 2014; 289:20273-82. [PMID: 24891501 DOI: 10.1074/jbc.m114.579821] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
O-linked glucosylation of thymine in DNA (base J) is an important regulatory epigenetic mark in trypanosomatids. β-d-glucopyranosyloxymethyluracil (base J) synthesis is initiated by the JBP1/2 enzymes that hydroxylate thymine, forming 5-hydroxymethyluracil (hmU). hmU is then glucosylated by a previously unknown glucosyltransferase. A recent computational screen identified a possible candidate for the base J-associated glucosyltransferase (JGT) in trypanosomatid genomes. We demonstrate that recombinant JGT utilizes uridine diphosphoglucose to transfer glucose to hmU in the context of dsDNA. Mutation of conserved residues typically involved in glucosyltransferase catalysis impairs DNA glucosylation in vitro. The deletion of both alleles of JGT from the genome of Trypanosoma brucei generates a cell line that completely lacks base J. Reintroduction of JGT in the JGT KO restores J synthesis. Ablation of JGT mRNA levels by RNAi leads to the sequential reduction in base J and increased levels of hmU that dissipate rapidly. The analysis of JGT function confirms the two-step J synthesis model and demonstrates that JGT is the only glucosyltransferase enzyme required for the second step of the pathway. Similar to the activity of the related Ten-Eleven Translocation (TET) family of dioxygenases on 5mC, our studies also suggest the ability of the base J-binding protein enzymes to catalyze iterative oxidation of thymine in trypanosome DNA. Here we discuss the regulation of hmU and base J formation in the trypanosome genome by JGT and base J-binding protein.
Collapse
Affiliation(s)
- Whitney Bullard
- From the Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602 and
| | | | - Shuo Liu
- the Environmental Toxicology Graduate Program and
| | - Yinsheng Wang
- the Environmental Toxicology Graduate Program and Department of Chemistry, University of California, Riverside, California 92521
| | - Robert Sabatini
- From the Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602 and
| |
Collapse
|
40
|
Glover L, Hutchinson S, Alsford S, McCulloch R, Field MC, Horn D. Antigenic variation in African trypanosomes: the importance of chromosomal and nuclear context in VSG expression control. Cell Microbiol 2013; 15:1984-93. [PMID: 24047558 PMCID: PMC3963442 DOI: 10.1111/cmi.12215] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Revised: 09/09/2013] [Accepted: 09/11/2013] [Indexed: 12/24/2022]
Abstract
African trypanosomes are lethal human and animal parasites that use antigenic variation for evasion of host adaptive immunity. To facilitate antigenic variation, trypanosomes dedicate approximately one third of their nuclear genome, including many minichromosomes, and possibly all sub-telomeres, to variant surface glycoprotein (VSG) genes and associated sequences. Antigenic variation requires transcription of a single VSG by RNA polymerase I (Pol-I), with silencing of other VSGs, and periodic switching of the expressed gene, typically via DNA recombination with duplicative translocation of a new VSG to the active site. Thus, telomeric location, epigenetic controls and monoallelic transcription by Pol-I at an extranucleolar site are prominent features of VSGs and their expression, with telomeres, chromatin structure and nuclear organization all making vitally important contributions to monoallelic VSG expression control and switching. We discuss VSG transcription, recombination and replication control within this chromosomal and sub-nuclear context.
Collapse
Affiliation(s)
- Lucy Glover
- Division of Biological Chemistry & Drug Discovery, College of Life Sciences, University of Dundee, Dow Street, Dundee, DD1 5EH, UK
| | | | | | | | | | | |
Collapse
|
41
|
Anderson BA, Wong ILK, Baugh L, Ramasamy G, Myler PJ, Beverley SM. Kinetoplastid-specific histone variant functions are conserved in Leishmania major. Mol Biochem Parasitol 2013; 191:53-7. [PMID: 24080031 DOI: 10.1016/j.molbiopara.2013.09.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Revised: 09/16/2013] [Accepted: 09/18/2013] [Indexed: 01/08/2023]
Abstract
Regions of transcription initiation and termination in kinetoplastid protists lack known eukaryotic promoter and terminator elements, although epigenetic marks such as histone variants and the modified DNA base J have been localized to these regions in Trypanosoma brucei, Trypanosoma cruzi, and/or Leishmania major. Phenotypes of base J mutants vary significantly across trypanosomatids, implying divergence in the epigenetic networks governing transcription during evolution. Here, we demonstrate that the histone variants H2A.Z and H2B.V are essential in L. major using a powerful quantitative plasmid segregation-based test. In contrast, H3.V is not essential for viability or normal growth in Leishmania. Steady-state transcript levels and the efficiency of transcription termination at convergent strand switch regions (SSRs) in H3V-null parasites were comparable to WT parasites. Our genetic tests show a conservation of histone variant phenotypes between L. major and T. brucei, unlike the diversity of phenotypes associated with genetic manipulation of the DNA base J modification.
Collapse
Affiliation(s)
- Britta A Anderson
- Department of Molecular Microbiology, Washington University School of Medicine, Box 8230, 600 S. Euclid Avenue, St. Louis, MO 63110, USA
| | | | | | | | | | | |
Collapse
|
42
|
Moretti NS, Schenkman S. Chromatin modifications in trypanosomes due to stress. Cell Microbiol 2013; 15:709-17. [DOI: 10.1111/cmi.12111] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2012] [Revised: 01/08/2013] [Accepted: 01/10/2013] [Indexed: 01/02/2023]
Affiliation(s)
- Nilmar Silvio Moretti
- Department of Microbiology, Immunology and Parasitology; Federal University of São Paulo; São Paulo Brazil
| | - Sergio Schenkman
- Department of Microbiology, Immunology and Parasitology; Federal University of São Paulo; São Paulo Brazil
| |
Collapse
|
43
|
|
44
|
van Luenen HGAM, Farris C, Jan S, Genest PA, Tripathi P, Velds A, Kerkhoven RM, Nieuwland M, Haydock A, Ramasamy G, Vainio S, Heidebrecht T, Perrakis A, Pagie L, van Steensel B, Myler PJ, Borst P. Glucosylated hydroxymethyluracil, DNA base J, prevents transcriptional readthrough in Leishmania. Cell 2012; 150:909-21. [PMID: 22939620 DOI: 10.1016/j.cell.2012.07.030] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Revised: 05/16/2012] [Accepted: 07/25/2012] [Indexed: 12/25/2022]
Abstract
Some Ts in nuclear DNA of trypanosomes and Leishmania are hydroxylated and glucosylated to yield base J (β-D-glucosyl-hydroxymethyluracil). In Leishmania, about 99% of J is located in telomeric repeats. We show here that most of the remaining J is located at chromosome-internal RNA polymerase II termination sites. This internal J and telomeric J can be reduced by a knockout of J-binding protein 2 (JBP2), an enzyme involved in the first step of J biosynthesis. J levels are further reduced by growing Leishmania JBP2 knockout cells in BrdU-containing medium, resulting in cell death. The loss of internal J in JBP2 knockout cells is accompanied by massive readthrough at RNA polymerase II termination sites. The readthrough varies between transcription units but may extend over 100 kb. We conclude that J is required for proper transcription termination and infer that the absence of internal J kills Leishmania by massive readthrough of transcriptional stops.
Collapse
Affiliation(s)
- Henri G A M van Luenen
- Division of Molecular Biology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Religa AA, Waters AP. Sirtuins of parasitic protozoa: in search of function(s). Mol Biochem Parasitol 2012; 185:71-88. [PMID: 22906508 PMCID: PMC3484402 DOI: 10.1016/j.molbiopara.2012.08.003] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Revised: 08/01/2012] [Accepted: 08/02/2012] [Indexed: 01/09/2023]
Abstract
The SIR2 family of NAD+-dependent protein deacetylases, collectively called sirtuins, has been of central interest due to their proposed roles in life-span regulation and ageing. Sirtuins are one group of environment sensors of a cell interpreting external information and orchestrating internal responses at the sub-cellular level, through participation in gene regulation mechanisms. Remarkably conserved across all kingdoms of life SIR2 proteins in several protozoan parasites appear to have both conserved and intriguing unique functions. This review summarises our current knowledge of the members of the sirtuin families in Apicomplexa, including Plasmodium, and other protozoan parasites such as Trypanosoma and Leishmania. The wide diversity of processes regulated by SIR2 proteins makes them targets worthy of exploitation in anti-parasitic therapies.
Collapse
Affiliation(s)
- Agnieszka A Religa
- Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow G12 8TA, UK.
| | | |
Collapse
|
46
|
Abstract
The African trypanosome Trypanosoma brucei is a flagellated unicellular parasite transmitted by tsetse flies that causes African sleeping sickness in sub-Saharan Africa. Trypanosomes are highly adapted for life in the hostile environment of the mammalian bloodstream, and have various adaptations to their cell biology that facilitate immune evasion. These include a specialized morphology, with most nutrient uptake occurring in the privileged location of the flagellar pocket. In addition, trypanosomes show extremely high rates of recycling of a protective VSG (variant surface glycoprotein) coat, whereby host antibodies are stripped off of the VSG before it is re-used. VSG recycling therefore functions as a mechanism for cleaning the VSG coat, allowing trypanosomes to survive in low titres of anti-VSG antibodies. Lastly, T. brucei has developed an extremely sophisticated strategy of antigenic variation of its VSG coat allowing it to evade host antibodies. A single trypanosome has more than 1500 VSG genes, most of which are located in extensive silent arrays. Strikingly, most of these silent VSGs are pseudogenes, and we are still in the process of trying to understand how non-intact VSGs are recombined to produce genes encoding functional coats. Only one VSG is expressed at a time from one of approximately 15 telomeric VSG ES (expression site) transcription units. It is becoming increasingly clear that chromatin remodelling must play a critical role in ES control. Hopefully, a better understanding of these unique trypanosome adaptations will eventually allow us to disrupt their ability to multiply in the mammalian bloodstream.
Collapse
|
47
|
Epigenetic mechanisms, nuclear architecture and the control of gene expression in trypanosomes. Expert Rev Mol Med 2012; 14:e13. [PMID: 22640744 DOI: 10.1017/erm.2012.7] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The control of gene expression, and more significantly gene cohorts, requires tight transcriptional coordination and is an essential feature of probably all cells. In higher eukaryotes, the mechanisms used involve controlled modifications to both local and global DNA environments, principally through changes in chromatin structure as well as cis-element-driven mechanisms. Although the mechanisms regulating chromatin in terms of transcriptional permissiveness and the relation to developmental programmes and responses to the environment are becoming better understood for animal and fungal cells, it is only just beginning to become clear how these processes operate in other taxa, including the trypanosomatids. Recent advances are now illuminating how African trypanosomes regulate higher-order chromatin structure, and, further, how these mechanisms impact on the expression of major surface antigens that are of fundamental importance to life-cycle progression. It is now apparent that several mechanisms are rather more similar between animal and fungal cells and trypanosomes than it originally appeared, but some aspects do involve gene products unique to trypanosomes. Therefore, both evolutionarily common and novel mechanisms cohabit in trypanosomes, offering both important biological insights and possible therapeutic opportunity.
Collapse
|
48
|
Korlach J, Turner SW. Going beyond five bases in DNA sequencing. Curr Opin Struct Biol 2012; 22:251-61. [PMID: 22575758 DOI: 10.1016/j.sbi.2012.04.002] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Revised: 04/16/2012] [Accepted: 04/16/2012] [Indexed: 12/01/2022]
Abstract
DNA sequencing has provided a wealth of information about biological systems, but thus far has focused on the four canonical bases, and 5-methylcytosine through comparison of the genomic DNA sequence to a transformed four-base sequence obtained after treatment with bisulfite. However, numerous other chemical modifications to the nucleotides are known to control fundamental life functions, influence virulence of pathogens, and are associated with many diseases. These modifications cannot be accessed with traditional sequencing methods. In this opinion, we highlight several emerging single-molecule sequencing techniques that have the potential to directly detect many types of DNA modifications as an integral part of the sequencing protocol.
Collapse
Affiliation(s)
- Jonas Korlach
- Pacific Biosciences, 1380 Willow Road, Menlo Park, CA 94025, United States.
| | | |
Collapse
|
49
|
Cliffe LJ, Hirsch G, Wang J, Ekanayake D, Bullard W, Hu M, Wang Y, Sabatini R. JBP1 and JBP2 proteins are Fe2+/2-oxoglutarate-dependent dioxygenases regulating hydroxylation of thymidine residues in trypanosome DNA. J Biol Chem 2012; 287:19886-95. [PMID: 22514282 DOI: 10.1074/jbc.m112.341974] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
We have recently demonstrated that O-linked glucosylation of thymine in trypanosome DNA (base J) regulates polymerase II transcription initiation. In vivo analysis has indicated that base J synthesis is initiated by the hydroxylation of thymidine by proteins (JBP1 and JBP2) homologous to the Fe(2+)/2-oxoglutarate (2-OG)-dependent dioxygenase superfamily where hydroxylation is driven by the oxidative decarboxylation of 2-OG, forming succinate and CO(2). However, no direct evidence for hydroxylase activity has been reported for the JBP proteins. We now demonstrate recombinant JBP1 hydroxylates thymine specifically in the context of dsDNA in a Fe(2+)-, 2-OG-, and O(2)-dependent manner. Under anaerobic conditions, the addition of Fe(2+) to JBP1/2-OG results in the formation of a broad absorption spectrum centered at 530 nm attributed to metal chelation of 2-OG bound to JBP, a spectroscopic signature of Fe(2+)/2-OG-dependent dioxygenases. The N-terminal thymidine hydroxylase domain of JBP1 is sufficient for full activity and mutation of residues involved in coordinating Fe(2+) inhibit iron binding and thymidine hydroxylation. Hydroxylation in vitro and J synthesis in vivo is inhibited by known inhibitors of Fe(2+)/2-OG-dependent dioxygenases. The data clearly demonstrate the JBP enzymes are dioxygenases acting directly on dsDNA, confirming the two-step J synthesis model. Growth of trypanosomes in hypoxic conditions decreases JBP1 and -2 activity, resulting in reduced levels of J and changes in parasite virulence previously characterized in the JBP KO. The influence of environment upon J biosynthesis via oxygen-sensitive regulation of JBP1/2 has exciting implications for the regulation of gene expression and parasite adaptation to different host niches.
Collapse
Affiliation(s)
- Laura J Cliffe
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602-7229, USA
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Ersfeld K. Nuclear architecture, genome and chromatin organisation in Trypanosoma brucei. Res Microbiol 2011; 162:626-36. [PMID: 21392575 DOI: 10.1016/j.resmic.2011.01.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2010] [Accepted: 01/29/2011] [Indexed: 11/29/2022]
Abstract
The nucleus of the human pathogen Trypanosoma brucei not only has unusual chromosomal composition, characterised by the presence of megabase, intermediate and minichromosomes, but also chromosome and gene organisation that is unique amongst eukaryotes. Here I provide an overview of current knowledge of nuclear structure, chromatin organisation and chromosome dynamics during interphase and mitosis. New technologies such as chromatin immunoprecipitation, in combination with new generation sequencing and proteomic analysis of subnuclear fractions, have led to novel insights into the organisation of the nucleus and chromatin. In particular, we are beginning to understand how universal mechanisms of chromatin modifications and nuclear position effects are deployed for parasite-specific functions and are centrally involved in genomic organisation and transcriptional regulation. These advances also have a major impact on progress in understanding the molecular basis of antigenic variation.
Collapse
Affiliation(s)
- Klaus Ersfeld
- Department of Biological Sciences and Hull York Medical School, University of Hull, Hull HU6 7RX, UK.
| |
Collapse
|