1
|
Furman DP, Bukharina TA. Genetic Regulation of Morphogenesis of Drosophila melanogaster Mechanoreceptors. Russ J Dev Biol 2022. [DOI: 10.1134/s1062360422040038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
2
|
Chen R, Deng X, Zhu S. The Ets protein Pointed P1 represses Asense expression in type II neuroblasts by activating Tailless. PLoS Genet 2022; 18:e1009928. [PMID: 35100262 PMCID: PMC8830786 DOI: 10.1371/journal.pgen.1009928] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 02/10/2022] [Accepted: 01/20/2022] [Indexed: 12/03/2022] Open
Abstract
Intermediate neural progenitors (INPs) boost the number and diversity of neurons generated from neural stem cells (NSCs) by undergoing transient proliferation. In the developing Drosophila brains, INPs are generated from type II neuroblasts (NBs). In order to maintain type II NB identity and their capability to produce INPs, the proneural protein Asense (Ase) needs to be silenced by the Ets transcription factor pointed P1 (PntP1), a master regulator of type II NB development. However, the molecular mechanisms underlying the PntP1-mediated suppression of Ase is still unclear. In this study, we utilized genetic and molecular approaches to determine the transcriptional property of PntP1 and identify the direct downstream effector of PntP1 and the cis-DNA elements that mediate the suppression of ase. Our results demonstrate that PntP1 directly activates the expression of the transcriptional repressor, Tailless (Tll), by binding to seven Ets-binding sites, and Tll in turn suppresses the expression of Ase in type II NBs by binding to two hexameric core half-site motifs. We further show that Tll provides positive feedback to maintain the expression of PntP1 and the identity of type II NBs. Thus, our study identifies a novel direct target of PntP1 and reveals mechanistic details of the specification and maintenance of the type II NB identity by PntP1. Type II neuroblasts (NBs) are the neural stem cells (NSCs) in Drosophila central brains that produce neurons by generating intermediate neural progenitors (INPs) to boost brain complexity, as mammalian NSCs do during the development of neocortex. The key to the generation of INPs from type II NBs is the suppression of proneural protein Asense (Ase) in type II NBs by the Ets family transcription factor Pointed P1 (PntP1), but how PntP1 suppresses Ase expression remains unclear. In this study, we provided evidence to demonstrate that PntP1 directly activates the orphan nuclear receptor Tailless (Tll), which in turn suppresses Ase expression to maintain the capability of type II NBs to produce INPs. Meanwhile, Tll provides positive feedback to maintain the expression of PntP1 and type II NB identity. We further identified seven PntP1 binding sites in the tll enhancer regions and two Tll binding sites in the ase regulatory regions that mediate the activation of tll and the suppression of ase, respectively. Our work reveals detailed mechanisms of the specification and maintenance of the type II NB identity by PntP1.
Collapse
Affiliation(s)
- Rui Chen
- Department of Neuroscience and Physiology, State University of New York Upstate Medical University, Syracuse, New York, United States of America
| | - Xiaobing Deng
- Department of Neuroscience and Physiology, State University of New York Upstate Medical University, Syracuse, New York, United States of America
| | - Sijun Zhu
- Department of Neuroscience and Physiology, State University of New York Upstate Medical University, Syracuse, New York, United States of America
- * E-mail:
| |
Collapse
|
3
|
Signaling cross-talk during development: Context-specific networking of Notch, NF-κB and JNK signaling pathways in Drosophila. Cell Signal 2021; 82:109937. [PMID: 33529757 DOI: 10.1016/j.cellsig.2021.109937] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 01/25/2021] [Accepted: 01/26/2021] [Indexed: 01/08/2023]
Abstract
Multicellular organisms depend on a handful of core signaling pathways that regulate a variety of cell fate choices. Often these relatively simple signals integrate to form a large and complex signaling network to achieve a distinct developmental fate in a context-specific manner. Various pathway-dependent and independent events control the assembly of signaling complexes. Notch pathway is one such conserved signaling mechanism that integrates with other signaling pathways to exhibit a context-dependent pleiotropic output. To understand how Notch signaling provides a spectrum of distinct outputs, it is important to understand various regulatory switches involved in mediating signaling cross-talk of Notch with other pathways. Here, we review our current understanding as to how Notch signal integrates with JNK and NF-κB signaling pathways in Drosophila to regulate various developmental events such as sensory organ precursor formation, innate immunity, dorsal closure, establishment of planar cell polarity as well as during proliferation and tumor progression. We highlight the importance of conserved signaling molecules during these cross-talks and debate further possibilities of novel switches that may be involved in mediating these cross-talk events.
Collapse
|
4
|
Falo-Sanjuan J, Bray SJ. Decoding the Notch signal. Dev Growth Differ 2019; 62:4-14. [PMID: 31886523 DOI: 10.1111/dgd.12644] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 12/06/2019] [Accepted: 12/06/2019] [Indexed: 01/04/2023]
Abstract
Notch signalling controls many key cellular processes which differ according to the context where the pathway is deployed due to the transcriptional activation of specific sets of genes. The pathway is unusual in its lack of amplification, also raising the question of how it can efficiently activate transcription with limited amounts of nuclear activity. Here, we focus on mechanisms that enable Notch to produce appropriate transcriptional responses and speculate on models that could explain the current gaps in knowledge.
Collapse
Affiliation(s)
- Julia Falo-Sanjuan
- Department of Physiology Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Sarah J Bray
- Department of Physiology Development and Neuroscience, University of Cambridge, Cambridge, UK
| |
Collapse
|
5
|
Poe AR, Wang B, Sapar ML, Ji H, Li K, Onabajo T, Fazliyeva R, Gibbs M, Qiu Y, Hu Y, Han C. Robust CRISPR/Cas9-Mediated Tissue-Specific Mutagenesis Reveals Gene Redundancy and Perdurance in Drosophila. Genetics 2019; 211:459-472. [PMID: 30504366 PMCID: PMC6366929 DOI: 10.1534/genetics.118.301736] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Accepted: 11/29/2018] [Indexed: 12/26/2022] Open
Abstract
Tissue-specific loss-of-function (LOF) analysis is essential for characterizing gene function. Here, we present a simple, yet highly efficient, clustered regularly interspaced short palindromic repeats (CRISPR)-mediated tissue-restricted mutagenesis (CRISPR-TRiM) method for ablating gene function in Drosophila This binary system consists of a tissue-specific Cas9 and a ubiquitously expressed multi-guide RNA (gRNA) transgene. We describe convenient toolkits for making enhancer-driven Cas9 lines and multi-gRNAs that are optimized for mutagenizing somatic cells. We demonstrate that insertions or deletions in coding sequences more reliably cause somatic mutations than DNA excisions induced by two gRNAs. We further show that enhancer-driven Cas9 is less cytotoxic yet results in more complete LOF than Gal4-driven Cas9 in larval sensory neurons. Finally, CRISPR-TRiM efficiently unmasks redundant soluble N-ethylmaleimide-sensitive factor attachment protein receptor gene functions in neurons and epidermal cells. Importantly, Cas9 transgenes expressed at different times in the neuronal lineage reveal the extent to which gene products persist in cells after tissue-specific gene knockout. These CRISPR tools can be applied to analyze tissue-specific gene function in many biological processes.
Collapse
Affiliation(s)
- Amy R Poe
- Weill Institute for Cell and Molecular Biology and Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853
| | - Bei Wang
- Weill Institute for Cell and Molecular Biology and Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853
| | - Maria L Sapar
- Weill Institute for Cell and Molecular Biology and Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853
| | - Hui Ji
- Weill Institute for Cell and Molecular Biology and Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853
| | - Kailyn Li
- Weill Institute for Cell and Molecular Biology and Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853
| | - Tireniolu Onabajo
- Weill Institute for Cell and Molecular Biology and Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853
| | - Rushaniya Fazliyeva
- Weill Institute for Cell and Molecular Biology and Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853
| | - Mary Gibbs
- Weill Institute for Cell and Molecular Biology and Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853
| | - Yue Qiu
- Weill Institute for Cell and Molecular Biology and Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853
| | - Yuzhao Hu
- Weill Institute for Cell and Molecular Biology and Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853
| | - Chun Han
- Weill Institute for Cell and Molecular Biology and Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853
| |
Collapse
|
6
|
Nagy O, Nuez I, Savisaar R, Peluffo AE, Yassin A, Lang M, Stern DL, Matute DR, David JR, Courtier-Orgogozo V. Correlated Evolution of Two Copulatory Organs via a Single cis-Regulatory Nucleotide Change. Curr Biol 2018; 28:3450-3457.e13. [PMID: 30344115 DOI: 10.1016/j.cub.2018.08.047] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Revised: 07/12/2018] [Accepted: 08/21/2018] [Indexed: 01/25/2023]
Abstract
Diverse traits often covary between species [1-3]. The possibility that a single mutation could contribute to the evolution of several characters between species [3] is rarely investigated as relatively few cases are dissected at the nucleotide level. Drosophila santomea has evolved additional sex comb sensory teeth on its legs and has lost two sensory bristles on its genitalia. We present evidence that a single nucleotide substitution in an enhancer of the scute gene contributes to both changes. The mutation alters a binding site for the Hox protein Abdominal-B in the developing genitalia, leading to bristle loss, and for another factor in the developing leg, leading to bristle gain. Our study suggests that morphological evolution between species can occur through a single nucleotide change affecting several sexually dimorphic traits. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Olga Nagy
- Institut Jacques Monod, CNRS UMR7592, Université Paris-Diderot, 75013 Paris, France
| | - Isabelle Nuez
- Institut Jacques Monod, CNRS UMR7592, Université Paris-Diderot, 75013 Paris, France
| | - Rosina Savisaar
- Institut Jacques Monod, CNRS UMR7592, Université Paris-Diderot, 75013 Paris, France
| | - Alexandre E Peluffo
- Institut Jacques Monod, CNRS UMR7592, Université Paris-Diderot, 75013 Paris, France
| | - Amir Yassin
- Institut Systématique Évolution Biodiversité (ISYEB), Centre National de Recherche Scientifique, MNHN, Sorbonne Université, EPHE, 57 rue Cuvier, CP 50, 75005 Paris, France
| | - Michael Lang
- Institut Jacques Monod, CNRS UMR7592, Université Paris-Diderot, 75013 Paris, France
| | - David L Stern
- Janelia Research Campus, 19700 Helix Drive, Ashburn, VA 20147, USA
| | - Daniel R Matute
- Biology Department, University of North Carolina, Chapel Hill, NC, USA
| | - Jean R David
- Institut Systématique Évolution Biodiversité (ISYEB), Centre National de Recherche Scientifique, MNHN, Sorbonne Université, EPHE, 57 rue Cuvier, CP 50, 75005 Paris, France; Laboratoire Evolution, Génomes, Comportement, Biodiversité (EGCE), CNRS, IRD, Université Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette, France
| | | |
Collapse
|
7
|
Miller SW, Posakony JW. Lateral inhibition: Two modes of non-autonomous negative autoregulation by neuralized. PLoS Genet 2018; 14:e1007528. [PMID: 30028887 PMCID: PMC6070291 DOI: 10.1371/journal.pgen.1007528] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 08/01/2018] [Accepted: 07/01/2018] [Indexed: 11/18/2022] Open
Abstract
Developmental patterning involves the progressive subdivision of tissue into different cell types by invoking different genetic programs. In particular, cell-cell signaling is a universally deployed means of specifying distinct cell fates in adjacent cells. For this mechanism to be effective, it is essential that an asymmetry be established in the signaling and responding capacities of the participating cells. Here we focus on the regulatory mechanisms underlying the role of the neuralized gene and its protein product in establishing and maintaining asymmetry of signaling through the Notch pathway. The context is the classical process of “lateral inhibition” within Drosophila proneural clusters, which is responsible for distinguishing the sensory organ precursor (SOP) and non-SOP fates among adjacent cells. We find that neur is directly regulated in proneural clusters by both proneural transcriptional activators and Enhancer of split basic helix-loop-helix repressors (bHLH-Rs), via two separate cis-regulatory modules within the neur locus. We show that this bHLH-R regulation is required to prevent the early, pre-SOP expression of neur from being maintained in a subset of non-SOPs following SOP specification. Lastly, we demonstrate that Neur activity in the SOP is required to inhibit, in a cell non-autonomous manner, both neur expression and Neur function in non-SOPs, thus helping to secure the robust establishment of distinct cell identities within the developing proneural cluster. Much of the process of animal development is concerned with giving cells specific instructions as to what type of cell they are to become—their “fate”. Often, it is even necessary to assign very different fates to cells that are adjacent to each other in the tissue. In such cases, cell-to-cell signaling is frequently utilized as the means of distinguishing the cells’ fates. For example, one cell might send a signal to its neighbors that inhibits them from adopting the same fate as itself. Here, it is obviously vital that there is an asymmetry between the “sending” and “receiving” cells in the ability to transmit such a signal. In the fruit fly Drosophila, the gene neuralized encodes a protein that plays a critical role in establishing the capacity to send such an inhibitory signal. The work we describe here reveals specifically how the receiving cells are prevented from acquiring the ability to send the signal. Remarkably, the Neuralized protein itself is deeply involved in this process. Neuralized function in the sending cell generates two distinct mechanisms that inhibit its own activity in the receiving cells.
Collapse
Affiliation(s)
- Steven W. Miller
- Division of Biological Sciences, Section of Cell & Developmental Biology, University of California San Diego, La Jolla, California, United States of America
| | - James W. Posakony
- Division of Biological Sciences, Section of Cell & Developmental Biology, University of California San Diego, La Jolla, California, United States of America
- * E-mail:
| |
Collapse
|
8
|
Baker NE, Brown NL. All in the family: proneural bHLH genes and neuronal diversity. Development 2018; 145:145/9/dev159426. [PMID: 29720483 DOI: 10.1242/dev.159426] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Proneural basic Helix-Loop-Helix (bHLH) proteins are required for neuronal determination and the differentiation of most neural precursor cells. These transcription factors are expressed in vastly divergent organisms, ranging from sponges to primates. Here, we review proneural bHLH gene evolution and function in the Drosophila and vertebrate nervous systems, arguing that the Drosophila gene atonal provides a useful platform for understanding proneural gene structure and regulation. We also discuss how functional equivalency experiments using distinct proneural genes can reveal how proneural gene duplication and divergence are interwoven with neuronal complexity.
Collapse
Affiliation(s)
- Nicholas E Baker
- Department of Genetics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461 USA
| | - Nadean L Brown
- Department of Cell Biology and Human Anatomy, University of California, One Shields Avenue, Davis, CA 95616 USA
| |
Collapse
|
9
|
Mariappa D, Ferenbach AT, van Aalten DMF. Effects of hypo- O-GlcNAcylation on Drosophila development. J Biol Chem 2018; 293:7209-7221. [PMID: 29588363 PMCID: PMC5950000 DOI: 10.1074/jbc.ra118.002580] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 03/21/2018] [Indexed: 01/12/2023] Open
Abstract
Post-translational modification of serine/threonine residues in nucleocytoplasmic proteins with GlcNAc (O-GlcNAcylation) is an essential regulatory mechanism in many cellular processes. In Drosophila, null mutants of the Polycomb gene O-GlcNAc transferase (OGT; also known as super sex combs (sxc)) display homeotic phenotypes. To dissect the requirement for O-GlcNAc signaling in Drosophila development, we used CRISPR/Cas9 gene editing to generate rationally designed sxc catalytically hypomorphic or null point mutants. Of the fertile males derived from embryos injected with the CRISPR/Cas9 reagents, 25% produced progeny carrying precise point mutations with no detectable off-target effects. One of these mutants, the catalytically inactive sxcK872M, was recessive lethal, whereas a second mutant, the hypomorphic sxcH537A, was homozygous viable. We observed that reduced total protein O-GlcNAcylation in the sxcH537A mutant is associated with a wing vein phenotype and temperature-dependent lethality. Genetic interaction between sxcH537A and a null allele of Drosophila host cell factor (dHcf), encoding an extensively O-GlcNAcylated transcriptional coactivator, resulted in abnormal scutellar bristle numbers. A similar phenotype was also observed in sxcH537A flies lacking a copy of skuld (skd), a Mediator complex gene known to affect scutellar bristle formation. Interestingly, this phenotype was independent of OGT Polycomb function or dHcf downstream targets. In conclusion, the generation of the endogenous OGT hypomorphic mutant sxcH537A enabled us to identify pleiotropic effects of globally reduced protein O-GlcNAc during Drosophila development. The mutants generated and phenotypes observed in this study provide a platform for discovery of OGT substrates that are critical for Drosophila development.
Collapse
Affiliation(s)
- Daniel Mariappa
- Division of Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, United Kingdom.
| | - Andrew T Ferenbach
- Division of Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, United Kingdom
| | - Daan M F van Aalten
- Division of Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, United Kingdom.
| |
Collapse
|
10
|
Chen J, Xu N, Wang C, Huang P, Huang H, Jin Z, Yu Z, Cai T, Jiao R, Xi R. Transient Scute activation via a self-stimulatory loop directs enteroendocrine cell pair specification from self-renewing intestinal stem cells. Nat Cell Biol 2018; 20:152-161. [PMID: 29335529 DOI: 10.1038/s41556-017-0020-0] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 12/01/2017] [Indexed: 01/26/2023]
Abstract
The process through which multiple types of cell-lineage-restricted progenitor cells are specified from multipotent stem cells is unclear. Here we show that, in intestinal stem cell lineages in adult Drosophila, in which the Delta-Notch-signalling-guided progenitor cell differentiation into enterocytes is the default mode, the specification of enteroendocrine cells (EEs) is initiated by transient Scute activation in a process driven by transcriptional self-stimulation combined with a negative feedback regulation between Scute and Notch targets. Scute activation induces asymmetric intestinal stem cell divisions that generate EE progenitor cells. The mitosis-inducing and fate-inducing activities of Scute guide each EE progenitor cell to divide exactly once prior to its terminal differentiation, yielding a pair of EEs. The transient expression of a fate inducer therefore specifies both type and numbers of committed progenitor cells originating from stem cells, which could represent a general mechanism used for diversifying committed progenitor cells from multipotent stem cells.
Collapse
Affiliation(s)
- Jun Chen
- Graduate School of Peking Union Medical College, Beijing, China.,National Institute of Biological Sciences, Beijing, China
| | - Na Xu
- National Institute of Biological Sciences, Beijing, China
| | - Chenhui Wang
- National Institute of Biological Sciences, Beijing, China
| | - Pin Huang
- National Institute of Biological Sciences, Beijing, China
| | - Huanwei Huang
- National Institute of Biological Sciences, Beijing, China
| | - Zhen Jin
- National Institute of Biological Sciences, Beijing, China
| | - Zhongsheng Yu
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Tao Cai
- National Institute of Biological Sciences, Beijing, China
| | - Renjie Jiao
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou, China
| | - Rongwen Xi
- Graduate School of Peking Union Medical College, Beijing, China. .,National Institute of Biological Sciences, Beijing, China. .,Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China.
| |
Collapse
|
11
|
Corson F, Couturier L, Rouault H, Mazouni K, Schweisguth F. Self-organized Notch dynamics generate stereotyped sensory organ patterns in Drosophila. Science 2017; 356:science.aai7407. [PMID: 28386027 DOI: 10.1126/science.aai7407] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2016] [Accepted: 03/20/2017] [Indexed: 12/26/2022]
Abstract
The emergence of spatial patterns in developing multicellular organisms relies on positional cues and cell-cell communication. Drosophila sensory organs have informed a paradigm in which these operate in two distinct steps: Prepattern factors drive localized proneural activity, then Notch-mediated lateral inhibition singles out neural precursors. Here we show that self-organization through Notch signaling also establishes the proneural stripes that resolve into rows of sensory bristles on the fly thorax. Patterning, initiated by a gradient of Delta ligand expression, progresses through inhibitory signaling between and within stripes. Thus, Notch signaling can support self-organized tissue patterning as a prepattern is transduced by cell-cell interactions into a refined arrangement of cellular fates.
Collapse
Affiliation(s)
- Francis Corson
- Laboratoire de Physique Statistique, Ecole Normale Supérieure, CNRS, Université Pierre et Marie Curie, Université Paris Diderot, 75005 Paris, France.
| | - Lydie Couturier
- Department of Developmental and Stem Cell Biology, Institut Pasteur, 75015 Paris, France.,CNRS, UMR3738, 75015 Paris, France
| | - Hervé Rouault
- Department of Developmental and Stem Cell Biology, Institut Pasteur, 75015 Paris, France.,CNRS, UMR3738, 75015 Paris, France
| | - Khalil Mazouni
- Department of Developmental and Stem Cell Biology, Institut Pasteur, 75015 Paris, France.,CNRS, UMR3738, 75015 Paris, France
| | - François Schweisguth
- Department of Developmental and Stem Cell Biology, Institut Pasteur, 75015 Paris, France. .,CNRS, UMR3738, 75015 Paris, France
| |
Collapse
|
12
|
Shukla JP, Deshpande G, Shashidhara LS. Ataxin 2-binding protein 1 is a context-specific positive regulator of Notch signaling during neurogenesis in Drosophila melanogaster. Development 2017; 144:905-915. [PMID: 28174239 DOI: 10.1242/dev.140657] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 01/18/2017] [Indexed: 12/28/2022]
Abstract
The role of the Notch pathway during the lateral inhibition that underlies binary cell fate choice is extensively studied, but the context specificity that generates diverse outcomes is less well understood. In the peripheral nervous system of Drosophila melanogaster, differential Notch signaling between cells of the proneural cluster orchestrates sensory organ specification. Here we report functional analysis of Drosophila Ataxin 2-binding protein 1 (A2BP1) during this process. Its human ortholog is linked to type 2 spinocerebellar ataxia and other complex neuronal disorders. Downregulation of Drosophila A2BP1 in the proneural cluster increases adult sensory bristle number, whereas its overexpression results in loss of bristles. We show that A2BP1 regulates sensory organ specification by potentiating Notch signaling. Supporting its direct involvement, biochemical analysis shows that A2BP1 is part of the Suppressor of Hairless [Su(H)] complex in the presence and absence of Notch. However, in the absence of Notch signaling, the A2BP1 interacting fraction of Su(H) does not associate with the repressor proteins Groucho and CtBP. We propose a model explaining the requirement of A2BP1 as a positive regulator of context-specific Notch activity.
Collapse
Affiliation(s)
- Jay Prakash Shukla
- Indian Institute of Science Education and Research Pune, Dr Homi Bhabha Road, Pune, Maharashtra 411008, India
| | - Girish Deshpande
- Indian Institute of Science Education and Research Pune, Dr Homi Bhabha Road, Pune, Maharashtra 411008, India.,Department of Molecular Biology, Princeton University, Princeton, NJ 08540, USA
| | - L S Shashidhara
- Indian Institute of Science Education and Research Pune, Dr Homi Bhabha Road, Pune, Maharashtra 411008, India
| |
Collapse
|
13
|
Bivik C, MacDonald RB, Gunnar E, Mazouni K, Schweisguth F, Thor S. Control of Neural Daughter Cell Proliferation by Multi-level Notch/Su(H)/E(spl)-HLH Signaling. PLoS Genet 2016; 12:e1005984. [PMID: 27070787 PMCID: PMC4829154 DOI: 10.1371/journal.pgen.1005984] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2015] [Accepted: 03/17/2016] [Indexed: 11/18/2022] Open
Abstract
The Notch pathway controls proliferation during development and in adulthood, and is frequently affected in many disorders. However, the genetic sensitivity and multi-layered transcriptional properties of the Notch pathway has made its molecular decoding challenging. Here, we address the complexity of Notch signaling with respect to proliferation, using the developing Drosophila CNS as model. We find that a Notch/Su(H)/E(spl)-HLH cascade specifically controls daughter, but not progenitor proliferation. Additionally, we find that different E(spl)-HLH genes are required in different neuroblast lineages. The Notch/Su(H)/E(spl)-HLH cascade alters daughter proliferation by regulating four key cell cycle factors: Cyclin E, String/Cdc25, E2f and Dacapo (mammalian p21CIP1/p27KIP1/p57Kip2). ChIP and DamID analysis of Su(H) and E(spl)-HLH indicates direct transcriptional regulation of the cell cycle genes, and of the Notch pathway itself. These results point to a multi-level signaling model and may help shed light on the dichotomous proliferative role of Notch signaling in many other systems.
Collapse
Affiliation(s)
- Caroline Bivik
- Department of Clinical and Experimental Medicine, Linkoping University, Linkoping, Sweden
| | - Ryan B. MacDonald
- Department of Clinical and Experimental Medicine, Linkoping University, Linkoping, Sweden
| | - Erika Gunnar
- Department of Clinical and Experimental Medicine, Linkoping University, Linkoping, Sweden
| | - Khalil Mazouni
- Institut Pasteur, Paris, France
- CNRS, URA2578, Paris, France
| | | | - Stefan Thor
- Department of Clinical and Experimental Medicine, Linkoping University, Linkoping, Sweden
| |
Collapse
|
14
|
Tamberg L, Sepp M, Timmusk T, Palgi M. Introducing Pitt-Hopkins syndrome-associated mutations of TCF4 to Drosophila daughterless. Biol Open 2015; 4:1762-71. [PMID: 26621827 PMCID: PMC4736037 DOI: 10.1242/bio.014696] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Pitt-Hopkins syndrome (PTHS) is caused by haploinsufficiency of Transcription factor 4 (TCF4), one of the three human class I basic helix-loop-helix transcription factors called E-proteins. Drosophila has a single E-protein, Daughterless (Da), homologous to all three mammalian counterparts. Here we show that human TCF4 can rescue Da deficiency during fruit fly nervous system development. Overexpression of Da or TCF4 specifically in adult flies significantly decreases their survival rates, indicating that these factors are crucial even after development has been completed. We generated da transgenic fruit fly strains with corresponding missense mutations R578H, R580W, R582P and A614V found in TCF4 of PTHS patients and studied the impact of these mutations in vivo. Overexpression of wild type Da as well as human TCF4 in progenitor tissues induced ectopic sensory bristles and the rough eye phenotype. By contrast, overexpression of DaR580W and DaR582P that disrupt DNA binding reduced the number of bristles and induced the rough eye phenotype with partial lack of pigmentation, indicating that these act dominant negatively. Compared to the wild type, DaR578H and DaA614V were less potent in induction of ectopic bristles and the rough eye phenotype, respectively, suggesting that these are hypomorphic. All studied PTHS-associated mutations that we introduced into Da led to similar effects in vivo as the same mutations in TCF4 in vitro. Consequently, our Drosophila models of PTHS are applicable for further studies aiming to unravel the molecular mechanisms of this disorder. Summary: Introducing mutations of the TCF4 gene found in human patients into its fly orthologue daughterless allows the generation of Drosophila models for research into Pitt-Hopkins syndrome.
Collapse
Affiliation(s)
- Laura Tamberg
- Laboratory of Molecular Neurobiology, Department of Gene Technology, Tallinn University of Technology, Akadeemia Rd.15, Tallinn 12618, Estonia
| | - Mari Sepp
- Laboratory of Molecular Neurobiology, Department of Gene Technology, Tallinn University of Technology, Akadeemia Rd.15, Tallinn 12618, Estonia
| | - Tõnis Timmusk
- Laboratory of Molecular Neurobiology, Department of Gene Technology, Tallinn University of Technology, Akadeemia Rd.15, Tallinn 12618, Estonia
| | - Mari Palgi
- Laboratory of Molecular Neurobiology, Department of Gene Technology, Tallinn University of Technology, Akadeemia Rd.15, Tallinn 12618, Estonia
| |
Collapse
|
15
|
Negre B, Simpson P. The achaete-scute complex in Diptera: patterns of noncoding sequence evolution. J Evol Biol 2015; 28:1770-81. [PMID: 26134680 PMCID: PMC4832353 DOI: 10.1111/jeb.12687] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 06/26/2015] [Accepted: 06/29/2015] [Indexed: 11/29/2022]
Abstract
The achaete‐scute complex (AS‐C) has been a useful paradigm for the study of pattern formation and its evolution. achaete‐scute genes have duplicated and evolved distinct expression patterns during the evolution of cyclorraphous Diptera. Are the expression patterns in different species driven by conserved regulatory elements? If so, when did such regulatory elements arise? Here, we have sequenced most of the AS‐C of the fly Calliphora vicina (including the genes achaete, scute and lethal of scute) to compare noncoding sequences with known cis‐regulatory sequences in Drosophila. The organization of the complex is conserved with respect to Drosophila species. There are numerous small stretches of conserved noncoding sequence that, in spite of high sequence turnover, display binding sites for known transcription factors. Synteny of the blocks of conserved noncoding sequences is maintained suggesting not only conservation of the position of regulatory elements but also an origin prior to the divergence between these two species. We propose that some of these enhancers originated by duplication with their target genes.
Collapse
Affiliation(s)
- B Negre
- Department of Zoology, University of Cambridge, Cambridge, UK
| | - P Simpson
- Department of Zoology, University of Cambridge, Cambridge, UK
| |
Collapse
|
16
|
Bukharina TA, Furman DP. The mechanisms determining bristle pattern in Drosophila melanogaster. Russ J Dev Biol 2015. [DOI: 10.1134/s1062360415030029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
17
|
Kiparaki M, Zarifi I, Delidakis C. bHLH proteins involved in Drosophila neurogenesis are mutually regulated at the level of stability. Nucleic Acids Res 2015; 43:2543-59. [PMID: 25694512 PMCID: PMC4357701 DOI: 10.1093/nar/gkv083] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Proneural bHLH activators are expressed in all neuroectodermal regions prefiguring events of central and peripheral neurogenesis. Drosophila Sc is a prototypical proneural activator that heterodimerizes with the E-protein Daughterless (Da) and is antagonized by, among others, the E(spl) repressors. We determined parameters that regulate Sc stability in Drosophila S2 cells. We found that Sc is a very labile phosphoprotein and its turnover takes place via at least three proteasome-dependent mechanisms. (i) When Sc is in excess of Da, its degradation is promoted via its transactivation domain (TAD). (ii) In a DNA-bound Da/Sc heterodimer, Sc degradation is promoted via an SPTSS phosphorylation motif and the AD1 TAD of Da; Da is spared in the process. (iii) When E(spl)m7 is expressed, it complexes with Sc or Da/Sc and promotes their degradation in a manner that requires the corepressor Groucho and the Sc SPTSS motif. Da/Sc reciprocally promotes E(spl)m7 degradation. Since E(spl)m7 is a direct target of Notch, the mutual destabilization of Sc and E(spl) may contribute in part to the highly conserved anti-neural activity of Notch. Sc variants lacking the SPTSS motif are dramatically stabilized and are hyperactive in transgenic flies. Our results propose a novel mechanism of regulation of neurogenesis, involving the stability of key players in the process.
Collapse
Affiliation(s)
- Marianthi Kiparaki
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology Hellas, and Department of Biology, University of Crete, 70013 Heraklion, Crete, Greece
| | - Ioanna Zarifi
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology Hellas, and Department of Biology, University of Crete, 70013 Heraklion, Crete, Greece
| | - Christos Delidakis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology Hellas, and Department of Biology, University of Crete, 70013 Heraklion, Crete, Greece
| |
Collapse
|
18
|
Schachat SR, Oliver JC, Monteiro A. Nymphalid eyespots are co-opted to novel wing locations following a similar pattern in independent lineages. BMC Evol Biol 2015; 15:20. [PMID: 25886182 PMCID: PMC4335541 DOI: 10.1186/s12862-015-0300-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Accepted: 01/29/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Variation in the number of repeated traits, or serial homologs, has contributed greatly to animal body plan diversity. Eyespot color patterns of nymphalid butterflies, like arthropod and vertebrate limbs, are an example of serial homologs. These eyespot color patterns originated in a small number of wing sectors on the ventral hindwing surface and later appeared in novel wing sectors, novel wings, and novel wing surfaces. However, the details of how eyespots were co-opted to these novel wing locations are currently unknown. RESULTS We used a large data matrix of eyespot/presence absence data, previously assembled from photographs of contemporary species, to perform a phylogenetic investigation of eyespot origins in nine independent nymphalid lineages. To determine how the eyespot gene regulatory network acquired novel positional information, we used phylogenetic correlation analyses to test for non-independence in the origination of eyespots. We found consistent patterns of eyespot gene network redeployment in the nine lineages, where eyespots first redeployed from the ventral hindwing to the ventral forewing, then to new sectors within the ventral wing surface, and finally to the dorsal wing surface. Eyespots that appeared in novel wing sectors modified the positional information of their serial homolog ancestors in one of two ways: by changing the wing or surface identity while retaining sector identity, or by changing the sector identity while retaining wing and surface identity. CONCLUSIONS Eyespot redeployment to novel sectors, wings, and surfaces happened multiple times in different nymphalid subfamilies following a similar pattern. This indicates that parallel mutations altering expression of the eyespot gene regulatory network led to its co-option to novel wing locations over time.
Collapse
Affiliation(s)
- Sandra R Schachat
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Mississippi State, MS, 39762, USA. .,Department of Paleobiology, Smithsonian Institution, Washington, DC, 20013, USA.
| | - Jeffrey C Oliver
- Department of Integrative Biology, Oregon State University, Corvallis, OR, 97331, USA.
| | - Antónia Monteiro
- Department of Ecology & Evolutionary Biology, Yale University, New Haven, CT, 06520, USA. .,Department of Biological Sciences, National University of Singapore, 117543, Singapore, Singapore. .,Yale-NUS College, 138614, Singapore, Singapore.
| |
Collapse
|
19
|
Troost T, Schneider M, Klein T. A re-examination of the selection of the sensory organ precursor of the bristle sensilla of Drosophila melanogaster. PLoS Genet 2015; 11:e1004911. [PMID: 25569355 PMCID: PMC4287480 DOI: 10.1371/journal.pgen.1004911] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Accepted: 11/20/2014] [Indexed: 12/31/2022] Open
Abstract
The bristle sensillum of the imago of Drosophila is made of four cells that arise from a sensory organ precursor cell (SOP). This SOP is selected within proneural clusters (PNC) through a mechanism that involves Notch signalling. PNCs are defined through the expression domains of the proneural genes, whose activities enables cells to become SOPs. They encode tissue specific bHLH proteins that form functional heterodimers with the bHLH protein Daughterless (Da). In the prevailing lateral inhibition model for SOP selection, a transcriptional feedback loop that involves the Notch pathway amplifies small differences of proneural activity between cells of the PNC. As a result only one or two cells accumulate sufficient proneural activity to adopt the SOP fate. Most of the experiments that sustained the prevailing lateral inhibition model were performed a decade ago. We here re-examined the selection process using recently available reagents. Our data suggest a different picture of SOP selection. They indicate that a band-like region of proneural activity exists. In this proneural band the activity of the Notch pathway is required in combination with Emc to define the PNCs. We found a sub-group in the PNCs from which a pre-selected SOP arises. Our data indicate that most imaginal disc cells are able to adopt a proneural state from which they can progress to become SOPs. They further show that bristle formation can occur in the absence of the proneural genes if the function of emc is abolished. These results suggest that the tissue specific proneural proteins of Drosophila have a similar function as in the vertebrates, which is to determine the time of emergence and position of the SOP and to stabilise the proneural state. The sensory organ precursor cell (SOP) that forms the mechanosensory bristles of the adult PNS of Drosophila is a paradigm to study neural precursor determination. The current model states that the SOP is selected in proneural clusters (PNCs) defined through the expression of the proneural genes. The selection occurs through lateral inhibition mediated by the Notch signalling pathway. The SOP is pre-selected by differential expression of Extramacrochaetae (Emc), the only member of the Id proteins in Drosophila, which inactivates the proneural factors. We have re-examined the selection process using novel markers and mutants. Our data suggest a different picture of SOP selection. We discovered a band–like region of varying proneural activity where the peaks constitute the proneural clusters. Within the PNC, a subgroup exists from which the SOP arises. The Notch pathway has two distinct functions in the subgroup and in the rest of the band. We show that so far one unappreciated essential role of the proneural genes is the neutralisation of the activity of Emc. Our data suggest that the selection of the SOP is more similar to neural selection in vertebrates than previously anticipated.
Collapse
Affiliation(s)
- Tobias Troost
- Institut fuer Genetik, Heinrich-Heine-Universitaet Duesseldorf, Duesseldorf, Germany
| | - Markus Schneider
- Institut fuer Genetik, Heinrich-Heine-Universitaet Duesseldorf, Duesseldorf, Germany
| | - Thomas Klein
- Institut fuer Genetik, Heinrich-Heine-Universitaet Duesseldorf, Duesseldorf, Germany
- * E-mail:
| |
Collapse
|
20
|
Neural precursor-specific expression of multiple Drosophila genes is driven by dual enhancer modules with overlapping function. Proc Natl Acad Sci U S A 2014; 111:17194-9. [PMID: 25404315 DOI: 10.1073/pnas.1415308111] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Transcriptional cis-regulatory modules (CRMs), or enhancers, are responsible for directing gene expression in specific territories and cell types during development. In some instances, the same gene may be served by two or more enhancers with similar specificities. Here we show that the utilization of dual, or "shadow", enhancers is a common feature of genes that are active specifically in neural precursor (NP) cells in Drosophila. By genome-wide computational discovery of statistically significant clusters of binding motifs for both proneural activator (P) proteins and basic helix-loop-helix (bHLH) repressor (R) factors (a "P+R" regulatory code), we have identified NP-specific enhancer modules associated with multiple genes expressed in this cell type. These CRMs are distinct from those previously identified for the corresponding gene, establishing the existence of a dual-enhancer arrangement in which both modules reside close to the gene they serve. Using wild-type and mutant reporter gene constructs in vivo, we show that P sites in these modules mediate activation by proneural factors in "proneural cluster" territories, whereas R sites mediate repression by bHLH repressors, which serves to restrict expression specifically to NP cells. To our knowledge, our results identify the first direct targets of these bHLH repressors. Finally, using genomic rescue constructs for neuralized (neur), we demonstrate that each of the gene's two NP-specific enhancers is sufficient to rescue neur function in the lateral inhibition process by which adult sensory organ precursor (SOP) cells are specified, but that deletion of both enhancers results in failure of this event.
Collapse
|
21
|
Oliveira MM, Shingleton AW, Mirth CK. Coordination of wing and whole-body development at developmental milestones ensures robustness against environmental and physiological perturbations. PLoS Genet 2014; 10:e1004408. [PMID: 24945255 PMCID: PMC4063698 DOI: 10.1371/journal.pgen.1004408] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Accepted: 04/14/2014] [Indexed: 11/18/2022] Open
Abstract
Development produces correctly patterned tissues under a wide range of conditions that alter the rate of development in the whole body. We propose two hypotheses through which tissue patterning could be coordinated with whole-body development to generate this robustness. Our first hypothesis states that tissue patterning is tightly coordinated with whole-body development over time. The second hypothesis is that tissue patterning aligns at developmental milestones. To distinguish between our two hypotheses, we developed a staging scheme for the wing imaginal discs of Drosophila larvae using the expression of canonical patterning genes, linking our scheme to three whole-body developmental events: moulting, larval wandering and pupariation. We used our scheme to explore how the progression of pattern changes when developmental time is altered either by changing temperature or by altering the timing of hormone synthesis that drives developmental progression. We found the expression pattern in the wing disc always aligned at moulting and pupariation, indicating that these key developmental events represent milestones. Between these milestones, the progression of pattern showed greater variability in response to changes in temperature and alterations in physiology. Furthermore, our data showed that discs from wandering larvae showed greater variability in patterning stage. Thus for wing disc patterning, wandering does not appear to be a developmental milestone. Our findings reveal that tissue patterning remains robust against environmental and physiological perturbations by aligning at developmental milestones. Furthermore, our work provides an important glimpse into how the development of individual tissues is coordinated with the body as a whole.
Collapse
Affiliation(s)
- Marisa M. Oliveira
- Development, Evolution and the Environment Laboratory, Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Alexander W. Shingleton
- Dept. of Zoology, Michigan State University, East Lansing, Michigan, United States of America
- Dept. of Biology, Lake Forest College, Lake Forest, Illinois, United States of America
| | - Christen K. Mirth
- Development, Evolution and the Environment Laboratory, Instituto Gulbenkian de Ciência, Oeiras, Portugal
- * E-mail:
| |
Collapse
|
22
|
|
23
|
Costa M, Calleja M, Alonso CR, Simpson P. The bristle patterning genes hairy and extramacrochaetae regulate the development of structures required for flight in Diptera. Dev Biol 2013; 388:205-15. [PMID: 24384389 PMCID: PMC3988846 DOI: 10.1016/j.ydbio.2013.12.032] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Revised: 12/18/2013] [Accepted: 12/21/2013] [Indexed: 11/11/2022]
Abstract
The distribution of sensory bristles on the thorax of Diptera (true flies) provides a useful model for the study of the evolution of spatial patterns. Large bristles called macrochaetes are arranged into species-specific stereotypical patterns determined via spatially discrete expression of the proneural genes achaete–scute (ac–sc). In Drosophila ac-sc expression is regulated by transcriptional activation at sites where bristle precursors develop and by repression outside of these sites. Three genes, extramacrochaetae (emc), hairy (h) and stripe (sr), involved in repression have been documented. Here we demonstrate that in Drosophila, the repressor genes emc and h, like sr, play an essential role in the development of structures forming part of the flight apparatus. In addition we find that, in Calliphora vicina a species diverged from D. melanogaster by about 100 Myr, spatial expression of emc, h and sr is conserved at the location of development of those structures. Based on these findings we argue, first, that the role emc, h and sr in development of the flight apparatus preceded their activities for macrochaete patterning; second, that species-specific variation in activation and repression of ac-sc expression is evolving in parallel to establish a unique distribution of macrochaetes in each species. The distribution of sensory bristles is a useful model to study spatial patterns. In Drosophila melanogaster the genes emc, h and sr repress bristle formation. In D. melanogaster emc and h are essential for flight apparatus development. Notably, in Calliphora vicina emc, h and sr are expressed in the flight apparatus. We argue that emc, h and sr had an early role in flight apparatus development.
Collapse
Affiliation(s)
- Marta Costa
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3 EJ, UK
| | - Manuel Calleja
- Centro de Biología Molecular Severo Ochoa, C/ Nicolás Cabrera, 1, Universidad Autónoma, 28049 Madrid, Spain
| | - Claudio R Alonso
- John Maynard Smith Building, School of Life Sciences University of Sussex, Brighton BN1 9QG, UK.
| | - Pat Simpson
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3 EJ, UK.
| |
Collapse
|
24
|
Hsiao YL, Chen YJ, Chang YJ, Yeh HF, Huang YC, Pi H. Proneural proteins Achaete and Scute associate with nuclear actin to promote formation of external sensory organs. J Cell Sci 2013; 127:182-90. [PMID: 24190881 DOI: 10.1242/jcs.134718] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Basic helix-loop-helix (bHLH) proneural proteins promote neurogenesis through transcriptional regulation. Although much is known about the tissue-specific regulation of proneural gene expression, how proneural proteins interact with transcriptional machinery to activate downstream target genes is less clear. Drosophila proneural proteins Achaete (Ac) and Scute (Sc) induce external sensory organ formation by activating neural precursor gene expression. Through co-immunoprecipitation and mass spectrometric analyses, we found that nuclear but not cytoplasmic actin associated with the Ac and Sc proteins in Drosophila S2 cells. Daughterless (Da), the common heterodimeric partner of Drosophila bHLH proteins, was observed to associate with nuclear actin through proneural proteins. A yeast two-hybrid assay revealed that the binding specificity between actin and Ac or Sc was conserved in yeast nuclei without the presence of additional Drosophila factors. We further show that actin is required in external sensory organ formation. Reduction in actin gene activity impaired proneural-protein-dependent expression of the neural precursor genes, as well as formation of neural precursors. Furthermore, increased nuclear actin levels, obtained by expression of nucleus-localized actin, elevated Ac-Da-dependent gene transcription as well as Ac-mediated external sensory organ formation. Taken together, our in vivo and in vitro observations suggest a novel link for actin in proneural-protein-mediated transcriptional activation and neural precursor differentiation.
Collapse
Affiliation(s)
- Yun-Ling Hsiao
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, 259 Wen-Hwa 1st Road, Kwei-Shan, Tao-Yuan 333, Taiwan
| | | | | | | | | | | |
Collapse
|
25
|
Dutriaux A, Godart A, Brachet A, Silber J. The insulin receptor is required for the development of the Drosophila peripheral nervous system. PLoS One 2013; 8:e71857. [PMID: 24069139 PMCID: PMC3772016 DOI: 10.1371/journal.pone.0071857] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Accepted: 07/09/2013] [Indexed: 01/12/2023] Open
Abstract
The Insulin Receptor (InR) in Drosophila presents features conserved in its mammalian counterparts. InR is required for growth; it is expressed in the central and embryonic nervous system and modulates the time of differentiation of the eye photoreceptor without altering cell fate. We show that the InR is required for the formation of the peripheral nervous system during larval development and more particularly for the formation of sensory organ precursors (SOPs) on the fly notum and scutellum. SOPs arise in the proneural cluster that expresses high levels of the proneural proteins Achaete (Ac) and Scute (Sc). The other cells will become epidermis due to lateral inhibition induced by the Notch (N) receptor signal that prevents its neighbors from adopting a neural fate. In addition, misexpression of the InR or of other components of the pathway (PTEN, Akt, FOXO) induces the development of an abnormal number of macrochaetes that are Drosophila mechanoreceptors. Our data suggest that InR regulates the neural genes ac, sc and sens. The FOXO transcription factor which is localized in the cytoplasm upon insulin uptake, displays strong genetic interaction with the InR and is involved in Ac regulation. The genetic interactions between the epidermal growth factor receptor (EGFR), Ras and InR/FOXO suggest that these proteins cooperate to induce neural gene expression. Moreover, InR/FOXO is probably involved in the lateral inhibition process, since genetic interactions with N are highly significant. These results show that the InR can alter cell fate, independently of its function in cell growth and proliferation.
Collapse
Affiliation(s)
- Annie Dutriaux
- University Paris Diderot, Sorbonne Paris Cité, IJM, UMR 7592 CNRS, Paris, France
| | - Aurélie Godart
- University Paris Diderot, Sorbonne Paris Cité, IJM, UMR 7592 CNRS, Paris, France
| | - Anna Brachet
- University Paris Diderot, Sorbonne Paris Cité, IJM, UMR 7592 CNRS, Paris, France
| | - Joël Silber
- University Paris Diderot, Sorbonne Paris Cité, IJM, UMR 7592 CNRS, Paris, France
- * E-mail:
| |
Collapse
|
26
|
Ejarque M, Cervantes S, Pujadas G, Tutusaus A, Sanchez L, Gasa R. Neurogenin3 cooperates with Foxa2 to autoactivate its own expression. J Biol Chem 2013; 288:11705-17. [PMID: 23471965 DOI: 10.1074/jbc.m112.388173] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The transcription factor Neurogenin3 functions as a master regulator of endocrine pancreas formation, and its deficiency leads to the development of diabetes in humans and mice. In the embryonic pancreas, Neurogenin3 is transiently expressed at high levels for a narrow time window to initiate endocrine differentiation in scattered progenitor cells. The mechanisms controlling these rapid and robust changes in Neurogenin3 expression are poorly understood. In this study, we characterize a Neurogenin3 positive autoregulatory loop whereby this factor may rapidly induce its own levels. We show that Neurogenin3 binds to a conserved upstream fragment of its own gene, inducing deposition of active chromatin marks and the activation of Neurog3 transcription. Additionally, we show that the broadly expressed endodermal forkhead factors Foxa1 and Foxa2 can cooperate synergistically to amplify Neurogenin3 autoregulation in vitro. However, only Foxa2 colocalizes with Neurogenin3 in pancreatic progenitors, thus indicating a primary role for this factor in regulating Neurogenin3 expression in vivo. Furthermore, in addition to decreasing Neurog3 autoregulation, inhibition of Foxa2 by RNA interference attenuates Neurogenin3-dependent activation of the endocrine developmental program in cultured duct mPAC cells. Hence, these data uncover the potential functional cooperation between the endocrine lineage-determining factor Neurogenin3 and the widespread endoderm progenitor factor Foxa2 in the implementation of the endocrine developmental program in the pancreas.
Collapse
Affiliation(s)
- Miriam Ejarque
- Diabetes and Obesity Laboratory, Institut D'Investigacions Biomèdiques August Pi i Sunyer-Hospital Clínic, 08036 Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
27
|
Kux K, Kiparaki M, Delidakis C. The two Tribolium E(spl) genes show evolutionarily conserved expression and function during embryonic neurogenesis. Mech Dev 2013; 130:207-25. [PMID: 23485410 DOI: 10.1016/j.mod.2013.02.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Revised: 02/13/2013] [Accepted: 02/14/2013] [Indexed: 01/05/2023]
Abstract
Tribolium castaneum is a well-characterised model insect, whose short germ-band mode of embryonic development is characteristic of many insect species and differs from the exhaustively studied Drosophila. Mechanisms of early neurogenesis, however, show significant conservation with Drosophila, as a characteristic pattern of neuroblasts arises from neuroectoderm proneural clusters in response to the bHLH activator Ash, a homologue of Achaete-Scute. Here we study the expression and function of two other bHLH proteins, the bHLH-O repressors E(spl)1 and E(spl)3. Their Drosophila homologues are expressed in response to Notch signalling and antagonize the activity of Achaete-Scute proteins, thus restricting the number of nascent neuroblasts. E(spl)1 and 3 are the only E(spl) homologues in Tribolium and both show expression in the cephalic and ventral neuroectoderm during embryonic neurogenesis, as well as a dynamic pattern of expression in other tissues. Their expression starts early, soon after Ash expression and is dependent on both Ash and Notch activities. They act redundantly, since a double E(spl) knockdown (but not single knockdowns) results in neurogenesis defects similar to those caused by Notch loss-of-function. A number of other activities have been evolutionarily conserved, most notably their ability to interact with proneural proteins Scute and Daughterless.
Collapse
Affiliation(s)
- Kristina Kux
- Institute of Molecular Biology & Biotechnology, Foundation for Research & Technology Hellas and Department of Biology, University of Crete, Heraklion, Crete, Greece
| | | | | |
Collapse
|
28
|
Mellert DJ, Robinett CC, Baker BS. doublesex functions early and late in gustatory sense organ development. PLoS One 2012; 7:e51489. [PMID: 23240029 PMCID: PMC3519885 DOI: 10.1371/journal.pone.0051489] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Accepted: 11/02/2012] [Indexed: 01/05/2023] Open
Abstract
Somatic sexual dimorphisms outside of the nervous system in Drosophila melanogaster are largely controlled by the male- and female-specific Doublesex transcription factors (DSX(M) and DSX(F), respectively). The DSX proteins must act at the right times and places in development to regulate the diverse array of genes that sculpt male and female characteristics across a variety of tissues. To explore how cellular and developmental contexts integrate with doublesex (dsx) gene function, we focused on the sexually dimorphic number of gustatory sense organs (GSOs) in the foreleg. We show that DSX(M) and DSX(F) promote and repress GSO formation, respectively, and that their relative contribution to this dimorphism varies along the proximodistal axis of the foreleg. Our results suggest that the DSX proteins impact specification of the gustatory sensory organ precursors (SOPs). DSX(F) then acts later in the foreleg to regulate gustatory receptor neuron axon guidance. These results suggest that the foreleg provides a unique opportunity for examining the context-dependent functions of DSX.
Collapse
Affiliation(s)
- David J. Mellert
- Janelia Farm Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia, United States of America
- Biology Department, Stanford University, Stanford, California, United States of America
| | - Carmen C. Robinett
- Janelia Farm Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia, United States of America
- * E-mail:
| | - Bruce S. Baker
- Janelia Farm Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia, United States of America
- Biology Department, Stanford University, Stanford, California, United States of America
| |
Collapse
|
29
|
Essential roles of Da transactivation domains in neurogenesis and in E(spl)-mediated repression. Mol Cell Biol 2012; 32:4534-48. [PMID: 22949507 DOI: 10.1128/mcb.00827-12] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
E proteins are a special class of basic helix-loop-helix (bHLH) proteins that heterodimerize with many bHLH activators to regulate developmental decisions, such as myogenesis and neurogenesis. Daughterless (Da) is the sole E protein in Drosophila and is ubiquitously expressed. We have characterized two transcription activation domains (TADs) in Da, called activation domain 1 (AD1) and loop-helix (LH), and have evaluated their roles in promoting peripheral neurogenesis. In this context, Da heterodimerizes with proneural proteins, such as Scute (Sc), which is dynamically expressed and also contributes a TAD. We found that either one of the Da TADs in the Da/Sc complex is sufficient to promote neurogenesis, whereas the Sc TAD is incapable of doing so. Besides its transcriptional activation role, the Da AD1 domain serves as an interaction platform for E(spl) proteins, bHLH-Orange family repressors which antagonize Da/Sc function. We show that the E(spl) Orange domain is needed for this interaction and strongly contributes to the antiproneural activity of E(spl) proteins. We present a mechanistic model on the interplay of these bHLH factors in the context of neural fate assignment.
Collapse
|
30
|
The SUMO pathway promotes basic helix-loop-helix proneural factor activity via a direct effect on the Zn finger protein senseless. Mol Cell Biol 2012; 32:2849-60. [PMID: 22586269 DOI: 10.1128/mcb.06595-11] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
During development, proneural transcription factors of the basic helix-loop-helix (bHLH) family are required to commit cells to a neural fate. In Drosophila neurogenesis, a key mechanism promoting sense organ precursor (SOP) fate is the synergy between proneural factors and their coactivator Senseless in transcriptional activation of target genes. Here we present evidence that posttranslational modification by SUMO enhances this synergy via an effect on Senseless protein. We show that Senseless is a direct target for SUMO modification and that mutagenesis of a predicted SUMOylation motif in Senseless reduces Senseless/proneural synergy both in vivo and in cell culture. We propose that SUMOylation of Senseless via lysine 509 promotes its synergy with proneural proteins during transcriptional activation and hence regulates an important step in neurogenesis leading to the formation and maturation of the SOPs.
Collapse
|
31
|
Kim SY, Kim JY, Malik S, Son W, Kwon KS, Kim C. Negative regulation of EGFR/MAPK pathway by Pumilio in Drosophila melanogaster. PLoS One 2012; 7:e34016. [PMID: 22514614 PMCID: PMC3326002 DOI: 10.1371/journal.pone.0034016] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2011] [Accepted: 02/21/2012] [Indexed: 12/19/2022] Open
Abstract
In Drosophila melanogaster, specification of wing vein cells and sensory organ precursor (SOP) cells, which later give rise to a bristle, requires EGFR signaling. Here, we show that Pumilio (Pum), an RNA-binding translational repressor, negatively regulates EGFR signaling in wing vein and bristle development. We observed that loss of Pum function yielded extra wing veins and additional bristles. Conversely, overexpression of Pum eliminated wing veins and bristles. Heterozygotes for Pum produced no phenotype on their own, but greatly enhanced phenotypes caused by the enhancement of EGFR signaling. Conversely, over-expression of Pum suppressed the effects of ectopic EGFR signaling. Components of the EGFR signaling pathway are encoded by mRNAs that have Nanos Response Element (NRE)–like sequences in their 3’UTRs; NREs are known to bind Pum to confer regulation in other mRNAs. We show that these NRE-like sequences bind Pum and confer repression on a luciferase reporter in heterologous cells. Taken together, our evidence suggests that Pum functions as a negative regulator of EGFR signaling by directly targeting components of the pathway in Drosophila.
Collapse
Affiliation(s)
- Sung Yun Kim
- Hormone Research Center, School of Biological Sciences and Technology, Chonnam National University, Yongbong-Dong, Gwangju, South Korea
| | - Ji Young Kim
- Hormone Research Center, School of Biological Sciences and Technology, Chonnam National University, Yongbong-Dong, Gwangju, South Korea
- Aging Research Center, Korea Research Institute of Bioscience and Biotechnology, Yuseong-gu, Daejeon, South Korea
| | - Sumira Malik
- Hormone Research Center, School of Biological Sciences and Technology, Chonnam National University, Yongbong-Dong, Gwangju, South Korea
| | - Wonseok Son
- Department of Biological Science, KAIST (Korea Advanced Institute of Science and Technology), Daejeon, South Korea
| | - Ki-Sun Kwon
- Aging Research Center, Korea Research Institute of Bioscience and Biotechnology, Yuseong-gu, Daejeon, South Korea
| | - Changsoo Kim
- Hormone Research Center, School of Biological Sciences and Technology, Chonnam National University, Yongbong-Dong, Gwangju, South Korea
- * E-mail:
| |
Collapse
|
32
|
Hainaut M, Sagnier T, Berenger H, Pradel J, Graba Y, Miotto B. The MYST-containing protein Chameau is required for proper sensory organ specification during Drosophila thorax morphogenesis. PLoS One 2012; 7:e32882. [PMID: 22412942 PMCID: PMC3295779 DOI: 10.1371/journal.pone.0032882] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Accepted: 02/04/2012] [Indexed: 12/15/2022] Open
Abstract
The adult thorax of Drosophila melanogaster is covered by a stereotyped pattern of mechanosensory bristles called macrochaetes. Here, we report that the MYST containing protein Chameau (Chm) contributes to the establishment of this pattern in the most dorsal part of the thorax. Chm mutant pupae present extra-dorsocentral (DC) and scutellar (SC) macrochaetes, but a normal number of the other macrochaetes. We provide evidences that chm restricts the singling out of sensory organ precursors from proneural clusters and genetically interacts with transcriptional regulators involved in the regulation of achaete and scute in the DC and SC proneural cluster. This function of chm likely relies on chromatin structure regulation since a protein with a mutation in the conserved catalytic site fails to rescue the formation of supernumerary DC and SC bristles in chm mutant flies. This is further supported by the finding that mutations in genes encoding chromatin modifiers and remodeling factors, including Polycomb group (PcG) and Trithorax group (TrxG) members, dominantly modulate the penetrance of chm extra bristle phenotype. These data support a critical role for chromatin structure modulation in the establishment of the stereotyped sensory bristle pattern in the fly thorax.
Collapse
Affiliation(s)
- Matthieu Hainaut
- Institut de Biologie du Développement de Marseille-Luminy, CNRS UMR6216/Université de la Méditerranée, Marseille, France
| | - Thierry Sagnier
- Institut de Biologie du Développement de Marseille-Luminy, CNRS UMR6216/Université de la Méditerranée, Marseille, France
| | - Hélène Berenger
- Institut de Biologie du Développement de Marseille-Luminy, CNRS UMR6216/Université de la Méditerranée, Marseille, France
| | - Jacques Pradel
- Institut de Biologie du Développement de Marseille-Luminy, CNRS UMR6216/Université de la Méditerranée, Marseille, France
| | - Yacine Graba
- Institut de Biologie du Développement de Marseille-Luminy, CNRS UMR6216/Université de la Méditerranée, Marseille, France
- * E-mail: (YG); (BM)
| | - Benoit Miotto
- Institut de Biologie du Développement de Marseille-Luminy, CNRS UMR6216/Université de la Méditerranée, Marseille, France
- * E-mail: (YG); (BM)
| |
Collapse
|
33
|
Rouault H, Hakim V. Different cell fates from cell-cell interactions: core architectures of two-cell bistable networks. Biophys J 2012; 102:417-26. [PMID: 22325263 DOI: 10.1016/j.bpj.2011.11.4022] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2011] [Accepted: 11/29/2011] [Indexed: 12/15/2022] Open
Abstract
The acquisition of different fates by cells that are initially in the same state is central to development. Here, we investigate the possible structures of bistable genetic networks that can allow two identical cells to acquire different fates through cell-cell interactions. Cell-autonomous bistable networks have been previously sampled using an evolutionary algorithm. We extend this evolutionary procedure to take into account interactions between cells. We obtain a variety of simple bistable networks that we classify into major subtypes. Some have long been proposed in the context of lateral inhibition through the Notch-Delta pathway, some have been more recently considered and others appear to be new and based on mechanisms not previously considered. The results highlight the role of posttranscriptional interactions and particularly of protein complexation and sequestration, which can replace cooperativity in transcriptional interactions. Some bistable networks are entirely based on posttranscriptional interactions and the simplest of these is found to lead, upon a single parameter change, to oscillations in the two cells with opposite phases. We provide qualitative explanations as well as mathematical analyses of the dynamical behaviors of various created networks. The results should help to identify and understand genetic structures implicated in cell-cell interactions and differentiation.
Collapse
Affiliation(s)
- Hervé Rouault
- Laboratoire de Physique Statistique, CNRS, Université P. et M. Curie, École Normale Supérieure, Paris, France
| | | |
Collapse
|
34
|
Yang M, Hatton-Ellis E, Simpson P. The kinase Sgg modulates temporal development of macrochaetes in Drosophila by phosphorylation of Scute and Pannier. Development 2011; 139:325-34. [PMID: 22159580 DOI: 10.1242/dev.074260] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Evolution of novel structures is often made possible by changes in the timing or spatial expression of genes regulating development. Macrochaetes, large sensory bristles arranged into species-specific stereotypical patterns, are an evolutionary novelty of cyclorraphous flies and are associated with changes in both the temporal and spatial expression of the proneural genes achaete (ac) and scute (sc). Changes in spatial expression are associated with the evolution of cis-regulatory sequences, but it is not known how temporal regulation is achieved. One factor required for ac-sc expression, the expression of which coincides temporally with that of ac-sc in the notum, is Wingless (Wg; also known as Wnt). Wingless downregulates the activity of the serine/threonine kinase Shaggy (Sgg; also known as GSK-3). We demonstrate that Scute is phosphorylated by Sgg on a serine residue and that mutation of this residue results in a form of Sc with heightened proneural activity that can rescue the loss of bristles characteristic of wg mutants. We suggest that the phosphorylated form of Sc has reduced transcriptional activity such that sc is unable to autoregulate, an essential function for the segregation of bristle precursors. Sgg also phosphorylates Pannier, a transcriptional activator of ac-sc, the activity of which is similarly dampened when in the phosphorylated state. Furthermore, we show that Wg signalling does not act directly via a cis-regulatory element of the ac-sc genes. We suggest that temporal control of ac-sc activity in cyclorraphous flies is likely to be regulated by permissive factors and might therefore not be encoded at the level of ac-sc gene sequences.
Collapse
Affiliation(s)
- Mingyao Yang
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| | | | | |
Collapse
|
35
|
Yamasaki Y, Lim YM, Niwa N, Hayashi S, Tsuda L. Robust specification of sensory neurons by dual functions of charlatan, a Drosophila NRSF/REST-like repressor of extramacrochaetae and hairy. Genes Cells 2011; 16:896-909. [PMID: 21762412 DOI: 10.1111/j.1365-2443.2011.01537.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Sensory bristle formation in Drosophila is a well-characterized system for studying sensory organ development at the molecular level. The master proneural genes of the achaete-scute (ac-sc) complex, which encode basic-helix-loop-helix (bHLH) transcription factors, are necessary and sufficient for sensory bristle formation. charlatan (chn) was originally identified as a transcriptional activator of ac-sc gene expression through interaction with its enhancer, an activity that promotes sensory bristle development. In contrast, Chn was also identified as a functional homologue of mammalian neuron-restrictive silencing factor or RE1 silencing transcription factor (NRSF/REST), an important transcriptional repressor during vertebrate neurogenesis and stem cell development that acts through epigenetic gene silencing. Here, we report that Chn acts as a repressor of extramacrochaetae (emc) and hairy, molecules that inhibit ac-sc expression. This double-negative mechanism, together with direct activation via the achaete enhancer, increases expression of achaete and ensures robust development of sensory neurons. A mutation in the C-terminal repressor motif of Chn, which causes Chn to lose its repression activity, converted Chn to an activator of emc and hairy, suggesting that Chn is a dual functional regulator of transcription. Because chn-like sequences are found among arthropods, regulation of neuronal development by Chn-like molecules may be widely conserved.
Collapse
Affiliation(s)
- Yasutoyo Yamasaki
- Animal Model of Aging, National Center for Geriatrics and Gerontology, Obu, Aichi 474-8511, Japan
| | | | | | | | | |
Collapse
|
36
|
Differential regulation of transcription through distinct Suppressor of Hairless DNA binding site architectures during Notch signaling in proneural clusters. Mol Cell Biol 2010; 31:22-9. [PMID: 21041480 DOI: 10.1128/mcb.00003-10] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
In Drosophila melanogaster, achaete (ac) and m8 are model basic helix-loop-helix activator (bHLH A) and repressor genes, respectively, that have the opposite cell expression pattern in proneural clusters during Notch signaling. Previous studies have shown that activation of m8 transcription in specific cells within proneural clusters by Notch signaling is programmed by a "combinatorial" and "architectural" DNA transcription code containing binding sites for the Su(H) and proneural bHLH A proteins. Here we show the novel result that the ac promoter contains a similar combinatorial code of Su(H) and bHLH A binding sites but contains a different Su(H) site architectural code that does not mediate activation during Notch signaling, thus programming a cell expression pattern opposite that of m8 in proneural clusters.
Collapse
|
37
|
An arthropod cis-regulatory element functioning in sensory organ precursor development dates back to the Cambrian. BMC Biol 2010; 8:127. [PMID: 20868489 PMCID: PMC2958161 DOI: 10.1186/1741-7007-8-127] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2010] [Accepted: 09/24/2010] [Indexed: 12/21/2022] Open
Abstract
Background An increasing number of publications demonstrate conservation of function of cis-regulatory elements without sequence similarity. In invertebrates such functional conservation has only been shown for closely related species. Here we demonstrate the existence of an ancient arthropod regulatory element that functions during the selection of neural precursors. The activity of genes of the achaete-scute (ac-sc) family endows cells with neural potential. An essential, conserved characteristic of proneural genes is their ability to restrict their own activity to single or a small number of progenitor cells from their initially broad domains of expression. This is achieved through a process called lateral inhibition. A regulatory element, the sensory organ precursor enhancer (SOPE), is required for this process. First identified in Drosophila, the SOPE contains discrete binding sites for four regulatory factors. The SOPE of the Drosophila asense gene is situated in the 5' UTR. Results Through a manual comparison of consensus binding site sequences we have been able to identify a SOPE in UTR sequences of asense-like genes in species belonging to all four arthropod groups (Crustacea, Myriapoda, Chelicerata and Insecta). The SOPEs of the spider Cupiennius salei and the insect Tribolium castaneum are shown to be functional in transgenic Drosophila. This would place the origin of this regulatory sequence as far back as the last common ancestor of the Arthropoda, that is, in the Cambrian, 550 million years ago. Conclusions The SOPE is not detectable by inter-specific sequence comparison, raising the possibility that other ancient regulatory modules in invertebrates might have escaped detection.
Collapse
|
38
|
Genome-wide identification of cis-regulatory motifs and modules underlying gene coregulation using statistics and phylogeny. Proc Natl Acad Sci U S A 2010; 107:14615-20. [PMID: 20671200 DOI: 10.1073/pnas.1002876107] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Cell fate determination depends in part on the establishment of specific transcriptional programs of gene expression. These programs result from the interpretation of the genomic cis-regulatory information by sequence-specific factors. Decoding this information in sequenced genomes is an important issue. Here, we developed statistical analysis tools to computationally identify the cis-regulatory elements that control gene expression in a set of coregulated genes. Starting with a small number of validated and/or predicted cis-regulatory modules (CRMs) in a reference species as a training set, but with no a priori knowledge of the factors acting in trans, we computationally predicted transcription factor binding sites (TFBSs) and genomic CRMs underlying coregulation. This method was applied to the gene expression program active in Drosophila melanogaster sensory organ precursor cells (SOPs), a specific type of neural progenitor cells. Mutational analysis showed that four, including one newly characterized, out of the five top-ranked families of predicted TFBSs were required for SOP-specific gene expression. Additionaly, 19 out of the 29 top-ranked predicted CRMs directed gene expression in neural progenitor cells, i.e., SOPs or larval brain neuroblasts, with a notable fraction active in SOPs (11/29). We further identified the lola gene as the target of two SOP-specific CRMs and found that the lola gene contributed to SOP specification. The statistics and phylogeny-based tools described here can be more generally applied to identify the cis-regulatory elements of specific gene regulatory networks in any family of related species with sequenced genomes.
Collapse
|
39
|
Bernard F, Krejci A, Housden B, Adryan B, Bray SJ. Specificity of Notch pathway activation: twist controls the transcriptional output in adult muscle progenitors. Development 2010; 137:2633-42. [PMID: 20610485 DOI: 10.1242/dev.053181] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Cell-cell signalling mediated by Notch regulates many different developmental and physiological processes and is involved in a variety of human diseases. Activation of Notch impinges directly on gene expression through the Suppressor of Hairless [Su(H)] DNA-binding protein. A major question that remains to be elucidated is how the same Notch signalling pathway can result in different transcriptional responses depending on the cellular context and environment. Here, we have investigated the factors required to confer this specific response in Drosophila adult myogenic progenitor-related cells. Our analysis identifies Twist (Twi) as a crucial co-operating factor. Enhancers from several direct Notch targets require a combination of Twi and Notch activities for expression in vivo; neither alone is sufficient. Twi is bound at target enhancers prior to Notch activation and enhances Su(H) binding to these regulatory regions. To determine the breadth of the combinatorial regulation we mapped Twi occupancy genome-wide in DmD8 myogenic progenitor-related cells by chromatin immunoprecipitation. Comparing the sites bound by Su(H) and by Twi in these cells revealed a strong association, identifying a large spectrum of co-regulated genes. We conclude that Twi is an essential Notch co-regulator in myogenic progenitor cells and has the potential to confer specificity on Notch signalling at over 170 genes, showing that a single factor can have a profound effect on the output of the pathway.
Collapse
Affiliation(s)
- Fred Bernard
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3DY, UK
| | | | | | | | | |
Collapse
|
40
|
Choi G, Park SH, Hwang S, Han SY, Hong YK, Lee MJ, Lee S, Cho KS. Interference in xbp1 gene expression induces defective cell differentiation and sensory organ development in Drosophila. Genes Genomics 2010. [DOI: 10.1007/s13258-010-0002-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
41
|
The pronotum LIM-HD gene tailup is both a positive and a negative regulator of the proneural genes achaete and scute of Drosophila. Mech Dev 2010; 127:393-406. [PMID: 20580820 DOI: 10.1016/j.mod.2010.05.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2010] [Revised: 05/10/2010] [Accepted: 05/14/2010] [Indexed: 01/14/2023]
Abstract
Early in the development of the imaginal wing disc of Drosophila, the LIM-HD gene tailup (islet), together with the HD genes of the iroquois complex, specify the notum territory of the disc. Later, tailup has been shown to act as a prepattern gene that antagonizes formation of sensory bristles on the notum of this fly. It has been proposed that Tailup downregulates the expression of the proneural genes achaete and scute by interfering with factors needed to activate these genes in the dorsocentral and scutellar regions of the disc. By means of a clonal analysis performed with tailup null alleles, here we show that, on the one hand, tailup is necessary to prevent formation of extra macrochaetae on most of the 11 sites where these landmark bristles arise on the fly notum. On the other hand, tailup is required to activate achaete and scute at the dorsocentral region, probably by acting as an hexameric complex with the cofactor Chip and the transcriptional activator Sspd on the dorsocentral enhancer of the achaete-scute complex. In contrast, in the scutellar region Tailup acts downstream of achaete-scute, antagonizing the proneural function of these genes probably in cooperation with Chip. We conclude that tailup acts on bristle development by several, even antagonistic, mechanisms.
Collapse
|
42
|
Bardin AJ, Perdigoto CN, Southall TD, Brand AH, Schweisguth F. Transcriptional control of stem cell maintenance in the Drosophila intestine. Development 2010; 137:705-14. [PMID: 20147375 DOI: 10.1242/dev.039404] [Citation(s) in RCA: 133] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Adult stem cells maintain tissue homeostasis by controlling the proper balance of stem cell self-renewal and differentiation. The adult midgut of Drosophila contains multipotent intestinal stem cells (ISCs) that self-renew and produce differentiated progeny. Control of ISC identity and maintenance is poorly understood. Here we find that transcriptional repression of Notch target genes by a Hairless-Suppressor of Hairless complex is required for ISC maintenance, and identify genes of the Enhancer of split complex [E(spl)-C] as the major targets of this repression. In addition, we find that the bHLH transcription factor Daughterless is essential to maintain ISC identity and that bHLH binding sites promote ISC-specific enhancer activity. We propose that Daughterless-dependent bHLH activity is important for the ISC fate and that E(spl)-C factors inhibit this activity to promote differentiation.
Collapse
|
43
|
Zhu H, Gunaratne PH, Roman GW, Gunaratne GH. A theory for the arrangement of sensory organs in Drosophila. CHAOS (WOODBURY, N.Y.) 2010; 20:013132. [PMID: 20370287 DOI: 10.1063/1.3368727] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
We study the arrangements of recurved bristles on the anterior wing margin of wild-type and mutant Drosophila. The epidermal or neural fate of a proneural cell depends on the concentrations of proteins of the achaete-scute complex. At puparium formation, concentrations of proteins are nearly identical in all cells of the anterior wing and each cell has the potential for neural fate. In wild-type flies, the action of regulatory networks drives the initial state to one where a bristle grows out of every fifth cell. Recent experiments have shown that the frequency of recurved bristles can be made to change by adjusting the mean concentrations of the zinc-finger transcription factor Senseless and the micro-RNA miR-9a. Specifically, mutant flies with reduced levels of miR-9a exhibit ectopic bristles, and those with lower levels of both miR-9a and Senseless show regular organization of recurved bristles, but with a lower periodicity of 4. We argue that these characteristics can be explained assuming an underlying Turing-type bifurcation whereby a periodic pattern spontaneously emerges from a uniform background. However, bristle patterns occur in a discrete array of cells, and are not mediated by diffusion. We argue that intracellular actions of transmembrane proteins such as Delta and Notch can play a role of diffusion in destabilizing the homogeneous state. In contrast to diffusion, intercellular actions can be activating or inhibiting; further, there can be lateral cross-species interactions. We introduce a phenomenological model to study bristle arrangements and make several model-independent predictions that can be tested in experiments. In our theory, miRNA-9a is one of the components of the underlying network and has no special regulatory role. The loss of periodicity in its absence is due to the transfer of the system to a bistable state.
Collapse
Affiliation(s)
- Huifeng Zhu
- Department of Physics, University of Houston, Houston, Texas 77204, USA
| | | | | | | |
Collapse
|
44
|
Buffin E, Gho M. Laser microdissection of sensory organ precursor cells of Drosophila microchaetes. PLoS One 2010; 5:e9285. [PMID: 20174573 PMCID: PMC2824816 DOI: 10.1371/journal.pone.0009285] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2009] [Accepted: 01/27/2010] [Indexed: 12/31/2022] Open
Abstract
Background In Drosophila, each external sensory organ originates from the division of a unique precursor cell (the sensory organ precursor cell or SOP). Each SOP is specified from a cluster of equivalent cells, called a proneural cluster, all of them competent to become SOP. Although, it is well known how SOP cells are selected from proneural clusters, little is known about the downstream genes that are regulated during SOP fate specification. Methodology/Principal Findings In order to better understand the mechanism involved in the specification of these precursor cells, we combined laser microdissection, toisolate SOP cells, with transcriptome analysis, to study their RNA profile. Using this procedure, we found that genes that exhibit a 2-fold or greater expression in SOPs versus epithelial cells were mainly associated with Gene Ontology (GO) terms related with cell fate determination and sensory organ specification. Furthermore, we found that several genes such as pebbled/hindsight, scabrous, miranda, senseless, or cut, known to be expressed in SOP cells by independent procedures, are particularly detected in laser microdissected SOP cells rather than in epithelial cells. Conclusions/Significance These results confirm the feasibility and the specificity of our laser microdissection based procedure. We anticipate that this analysis will give new insight into the selection and specification of neural precursor cells.
Collapse
Affiliation(s)
- Eulalie Buffin
- Université Pierre et Marie Curie-Paris 6, UMR 7622, Paris, France
- CNRS, UMR 7622, Paris, France
| | - Michel Gho
- Université Pierre et Marie Curie-Paris 6, UMR 7622, Paris, France
- CNRS, UMR 7622, Paris, France
- * E-mail:
| |
Collapse
|
45
|
Sobieszczuk DF, Poliakov A, Xu Q, Wilkinson DG. A feedback loop mediated by degradation of an inhibitor is required to initiate neuronal differentiation. Genes Dev 2010; 24:206-18. [PMID: 20080956 DOI: 10.1101/gad.554510] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Neuronal differentiation is regulated by proneural genes that promote neurogenesis and inhibitory mechanisms that maintain progenitors. This raises the question of how the up-regulation of proneural genes required to initiate neurogenesis occurs in the presence of such inhibition. We carried out loss and gain of gene function, an interaction screen for binding partners, and biochemical analyses to uncover the regulation, developmental role, and mechanism of action of a ubiquitination adaptor protein, Btbd6a (BTB domain containing 6a). We find that the proneural gene neurog1 up-regulates btbd6a, which in turn is required for up-regulation of neurog1. Btbd6a is an adaptor for the Cul3 ubiquitin ligase complex, and we find that it binds to the transcriptional repressor Plzf (promyelocytic leukemia zinc finger). Btbd6a promotes the relocation of Plzf from nucleus to cytoplasm and targets Plzf for ubiquitination and degradation. plzfa is expressed widely in the neural epithelium; when overexpressed, it inhibits neurogenesis, and this inhibition is reversed by btbd6a. The antagonism of endogenous plzfa by btbd6a is required for neurogenesis, since the block in neuronal differentiation caused by btbd6a knockdown is alleviated by plzfa knockdown. These findings reveal a feedback loop mediated by degradation of an inhibitor that is essential for progenitors to undergo the transition to neuronal differentiation.
Collapse
Affiliation(s)
- Dorothy F Sobieszczuk
- Division of Developmental Neurobiology, MRC National Institute for Medical Research, London NW7 1AA, United Kingdom
| | | | | | | |
Collapse
|
46
|
The complex tale of the achaete-scute complex: a paradigmatic case in the analysis of gene organization and function during development. Genetics 2009; 182:631-9. [PMID: 19622761 DOI: 10.1534/genetics.109.104083] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The achaete-scute gene complex (AS-C) contains four genes encoding transcription factors of the bHLH family, achaete, scute, lethal of scute, and asense located in 40 kb of DNA containing multiple cis-regulatory position-specific enhancers. These genes play a key role in the commitment of epidermal cells toward a neural fate, promoting the formation of both sensory organs in the peripheral nervous system (bristles) of the adult and of neuroblasts in the central nervous system of the embryo. The analysis of the AS-C initially focused on the variations in positional specificity of effects of achaete (ac) and scute (sc) alleles on macrochaete bristle pattern in the Drosophila adult epidermis, and from there it evolved as a key entry point into understanding the molecular bases of pattern formation and cell commitment. In this perspective, we describe how the study of the AS-C has contributed to the understanding of eukaryotic gene organization and the dissection of the developmental mechanisms underlying pattern formation.
Collapse
|
47
|
Nikolaou N, Watanabe-Asaka T, Gerety S, Distel M, Köster RW, Wilkinson DG. Lunatic fringe promotes the lateral inhibition of neurogenesis. Development 2009; 136:2523-33. [PMID: 19553285 DOI: 10.1242/dev.034736] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Previous studies have identified roles of the modulation of Notch activation by Fringe homologues in boundary formation and in regulating the differentiation of vertebrate thymocytes and Drosophila glial cells. We have investigated the role of Lunatic fringe (Lfng) expression during neurogenesis in the vertebrate neural tube. We find that in the zebrafish hindbrain, Lfng is expressed by progenitors in neurogenic regions and downregulated in cells that have initiated neuronal differentiation. Lfng is required cell autonomously in neural epithelial cells to limit the amount of neurogenesis and to maintain progenitors. By contrast, Lfng is not required for the role of Notch in interneuronal fate choice, which we show is mediated by Notch1a. The expression of Lfng does not require Notch activity, but rather is regulated downstream of proneural genes that are widely expressed by neural progenitors. These findings suggest that Lfng acts in a feedback loop downstream of proneural genes, which, by promoting Notch activation, maintains the sensitivity of progenitors to lateral inhibition and thus limits further proneural upregulation.
Collapse
Affiliation(s)
- Nikolas Nikolaou
- Division of Developmental Neurobiology, MRC National Institute for Medical Research, The Ridgeway, London, UK
| | | | | | | | | | | |
Collapse
|
48
|
Kang YH, Kirik V, Hulskamp M, Nam KH, Hagely K, Lee MM, Schiefelbein J. The MYB23 gene provides a positive feedback loop for cell fate specification in the Arabidopsis root epidermis. THE PLANT CELL 2009; 21:1080-94. [PMID: 19395683 PMCID: PMC2685616 DOI: 10.1105/tpc.108.063180] [Citation(s) in RCA: 121] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2008] [Revised: 03/19/2009] [Accepted: 04/10/2009] [Indexed: 05/18/2023]
Abstract
The specification of cell fates during development requires precise regulatory mechanisms to ensure robust cell type patterns. Theoretical models of pattern formation suggest that a combination of negative and positive feedback mechanisms are necessary for efficient specification of distinct fates in a field of differentiating cells. Here, we examine the role of the R2R3-MYB transcription factor gene, AtMYB23 (MYB23), in the establishment of the root epidermal cell type pattern in Arabidopsis thaliana. MYB23 is closely related to, and is positively regulated by, the WEREWOLF (WER) MYB gene during root epidermis development. Furthermore, MYB23 is able to substitute for the function of WER and to induce its own expression when controlled by WER regulatory sequences. We also show that the MYB23 protein binds to its own promoter, suggesting a MYB23 positive feedback loop. The localization of MYB23 transcripts and MYB23-green fluorescent protein (GFP) fusion protein, as well as the effect of a chimeric MYB23-SRDX repressor construct, links MYB23 function to the developing non-hair cell type. Using mutational analyses, we find that MYB23 is necessary for precise establishment of the root epidermal pattern, particularly under conditions that compromise the cell specification process. These results suggest that MYB23 participates in a positive feedback loop to reinforce cell fate decisions and ensure robust establishment of the cell type pattern in the Arabidopsis root epidermis.
Collapse
Affiliation(s)
- Yeon Hee Kang
- Department of Biology, Yonsei University, 134 Sinchon-dong, Seoul 120-749, Korea
| | | | | | | | | | | | | |
Collapse
|
49
|
Negre B, Simpson P. Evolution of the achaete-scute complex in insects: convergent duplication of proneural genes. Trends Genet 2009; 25:147-52. [PMID: 19285745 DOI: 10.1016/j.tig.2009.02.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2008] [Revised: 01/30/2009] [Accepted: 02/02/2009] [Indexed: 11/17/2022]
Abstract
Proneural genes encode transcriptional activators of the basic Helix-loop-helix class that are involved in neuronal specification and differentiation. We have used the recent availability of genome sequences of multiple distant insect species to study the evolution of a family of proneural genes, the achaete-scute genes, and to examine their genomic organization and evolution. We document independent evolution of multiple copies of achaete-scute homologues and argue that this might have contributed to morphological diversity in Diptera and Lepidoptera.
Collapse
Affiliation(s)
- Bárbara Negre
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| | | |
Collapse
|
50
|
Redundant mechanisms mediate bristle patterning on the Drosophila thorax. Proc Natl Acad Sci U S A 2008; 105:20112-7. [PMID: 19104061 DOI: 10.1073/pnas.0804282105] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The thoracic bristle pattern of Drosophila results from the spatially restricted expression of the achaete-scute (ac-sc) genes in clusters of cells, mediated by the activity of many discrete cis-regulatory sequences. However, ubiquitous expression of sc or asense (ase) achieved with a heterologous promoter, in the absence of endogenous ac-sc expression, and the activity of the cis-regulatory elements, allows the development of bristles positioned at wild-type locations. We demonstrate that the products of the genes stripe, hairy, and extramacrochaetae contribute to rescue by antagonizing the activity of Sc and Ase. The three genes are expressed in specific but overlapping spatial domains of expression that form a prepattern that allows precise positioning of bristles. The redundant mechanisms might contribute to the robustness of the pattern. We discuss the possibility that patterning in trans by antagonism is ancestral and that the positional cis-regulatory sequences might be of recent origin.
Collapse
|