1
|
Liu W, Deng L, Wang M, Liu X, Ouyang X, Wang Y, Miao N, Luo X, Wu X, Lu X, Xv X, Zhang T, Li Y, Ji J, Qiao Z, Wang S, Guan L, Li D, Dang Y, Liu C, Li W, Zhang Y, Wang Z, Chen FX, Chen C, Lin C, Goh WSS, Zhou W, Luo Z, Gao P, Li P, Yu Y. Pcf11/Spt5 condensates stall RNA polymerase II to facilitate termination and piRNA-guided heterochromatin formation. Mol Cell 2025; 85:929-947.e10. [PMID: 40015272 DOI: 10.1016/j.molcel.2025.01.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 10/18/2024] [Accepted: 01/22/2025] [Indexed: 03/01/2025]
Abstract
The PIWI-interacting RNA (piRNA) pathway plays a crucial role in protecting animal germ cells by repressing transposons. However, the mechanism of piRNA-guided heterochromatin formation and its relationship to transcriptional termination remains elusive. Through RNA interference screening, we discovered Pcf11 and PNUTS as essential for piRNA-guided silencing in Drosophila germ line. Enforced tethering of Pcf11 leads to co-transcriptional repression and RNA polymerase II (RNA Pol II) stalling, and both are dependent on an α-helical region of Pcf11 capable of forming condensates. An intrinsically disordered region can substitute for the α-helical region of Pcf11 in its silencing capacity and support animal development, arguing for a causal relationship between phase separation and Pcf11's function. Pcf11 stalls RNA Pol II by preferentially forming condensates with the unphosphorylated Spt5, promoted by the PP1/PNUTS phosphatase during termination. We propose that Pcf11/Spt5 condensates control termination by decelerating polymerase elongation, a property exploited by piRNAs to silence transposons and initiate RNA-mediated heterochromatin formation.
Collapse
Affiliation(s)
- Weiwei Liu
- Guangzhou Women and Children's Medical Center, GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macao Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Medical University, Guangzhou 510623, China
| | - Lijun Deng
- Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ming Wang
- Guangzhou Women and Children's Medical Center, GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macao Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Medical University, Guangzhou 510623, China
| | - Xiaojun Liu
- Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xuan Ouyang
- Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuan Wang
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Na Miao
- Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiu Luo
- Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xueming Wu
- Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiaohua Lu
- Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiangjin Xv
- Guangzhou Women and Children's Medical Center, GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macao Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Medical University, Guangzhou 510623, China; State Key Laboratory for Conservation and Utilization of Bio-Resources and Center for Life Science, School of Life Sciences, Yunnan University, Kunming 650091, Yunnan, China
| | - Tianyu Zhang
- Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yu Li
- Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinyao Ji
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Zhenghao Qiao
- Guangzhou Women and Children's Medical Center, GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macao Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Medical University, Guangzhou 510623, China
| | - Sheng Wang
- Oujiang Laboratory, Zhejiang Laboratory for Regenerative Medicine, Vision, and Brain Health, Eye Hospital, Wenzhou Medical University, Zhejiang 325035, Wenzhou, China
| | - Li Guan
- Guangzhou Women and Children's Medical Center, GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macao Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Medical University, Guangzhou 510623, China
| | - Dong Li
- Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yunkun Dang
- State Key Laboratory for Conservation and Utilization of Bio-Resources and Center for Life Science, School of Life Sciences, Yunnan University, Kunming 650091, Yunnan, China
| | - Chao Liu
- Guangzhou Women and Children's Medical Center, GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macao Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Medical University, Guangzhou 510623, China
| | - Wei Li
- Guangzhou Women and Children's Medical Center, GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macao Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Medical University, Guangzhou 510623, China
| | - Yadi Zhang
- School of Life Science and Technology, Southeast University, Nanjing 210096, China
| | - Zhenning Wang
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, Fudan University Shanghai, Shanghai 200032, China
| | - Fei Xavier Chen
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, Fudan University Shanghai, Shanghai 200032, China
| | - Chunlai Chen
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Chengqi Lin
- School of Life Science and Technology, Southeast University, Nanjing 210096, China
| | | | - Wenhao Zhou
- Guangzhou Women and Children's Medical Center, GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macao Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Medical University, Guangzhou 510623, China
| | - Zhuojuan Luo
- School of Life Science and Technology, Southeast University, Nanjing 210096, China.
| | - Pu Gao
- Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Pilong Li
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing 100084, China.
| | - Yang Yu
- Guangzhou Women and Children's Medical Center, GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macao Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Medical University, Guangzhou 510623, China; Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
2
|
Bejjani F, Ségéral E, Mosca K, Lecourieux A, Bakail M, Hamoudi M, Emiliani S. Overlapping and distinct functions of SPT6, PNUTS, and PCF11 in regulating transcription termination. Nucleic Acids Res 2025; 53:gkaf179. [PMID: 40103229 PMCID: PMC11915507 DOI: 10.1093/nar/gkaf179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 02/18/2025] [Accepted: 02/24/2025] [Indexed: 03/20/2025] Open
Abstract
The histone chaperone and transcription elongation factor SPT6 is integral to RNA polymerase II (RNAPII) activity. SPT6 also plays a crucial role in regulating transcription termination, although the mechanisms involved are largely unknown. In an attempt to identify the pathways employed by SPT6 in this regulation, we found that, while SPT6 and its partner IWS1 interact and co-localize with RNAPII, their functions diverge significantly at gene termination sites. Depletion of SPT6, but not of IWS1, results in extensive readthrough transcription, indicating that SPT6 independently regulates transcription termination. Further analysis identified that the cleavage and polyadenylation factor PCF11 and the phosphatase regulatory protein PNUTS collaborate with SPT6 in this process. These findings suggest that SPT6 may facilitate transcription termination by recruiting PNUTS and PCF11 to RNAPII. Additionally, SPT6 and PNUTS jointly restrict promoter upstream transcripts (PROMPTs), whereas PCF11 presence is essential for their accumulation in the absence of SPT6 at hundreds of genes. Thus, SPT6, PCF11, and PNUTS have both distinct and overlapping functions in transcription termination. Our data highlight the pivotal role of SPT6 in ensuring proper transcription termination at the 5' and 3'-ends of genes.
Collapse
Affiliation(s)
- Fabienne Bejjani
- Institut Cochin, Université Paris Cité, INSERM, CNRS, Paris F-75014, France
| | - Emmanuel Ségéral
- Institut Cochin, Université Paris Cité, INSERM, CNRS, Paris F-75014, France
| | - Kevin Mosca
- Institut Cochin, Université Paris Cité, INSERM, CNRS, Paris F-75014, France
| | - Adriana Lecourieux
- Institut Cochin, Université Paris Cité, INSERM, CNRS, Paris F-75014, France
| | - May Bakail
- Institut Cochin, Université Paris Cité, INSERM, CNRS, Paris F-75014, France
| | - Meriem Hamoudi
- Institut Cochin, Université Paris Cité, INSERM, CNRS, Paris F-75014, France
| | - Stéphane Emiliani
- Institut Cochin, Université Paris Cité, INSERM, CNRS, Paris F-75014, France
| |
Collapse
|
3
|
Lopez Martinez D, Svejstrup JQ. Mechanisms of RNA Polymerase II Termination at the 3'-End of Genes. J Mol Biol 2025; 437:168735. [PMID: 39098594 DOI: 10.1016/j.jmb.2024.168735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/23/2024] [Accepted: 07/30/2024] [Indexed: 08/06/2024]
Abstract
RNA polymerase II (RNAPII) is responsible for the synthesis of a diverse set of RNA molecules, including protein-coding messenger RNAs (mRNAs) and many short non-coding RNAs (ncRNAs). For this purpose, RNAPII relies on a multitude of factors that regulate the transcription cycle, from initiation and promoter-proximal pausing, through elongation and finally termination. RNAPII transcription termination at the end of genes ensures the release of RNAPII from the DNA template and its efficient recycling for further rounds of transcription. Termination of RNAPII is tightly coupled to 3'-end mRNA processing, which constitutes an important trigger for the subsequent transcription termination event. In this review, we discuss the current understanding of RNAPII termination mechanisms, focusing on 'canonical' termination at the 3'-end of genes. We also integrate the allosteric and 'torpedo' models into a unified model of termination, and describe the different termination factors that have been identified to date, paying special attention to the human factors and their mechanism of action at the molecular level. Indeed, in recent years the development of novel approaches in structural biology, biochemistry and cell biology have together led to a more detailed comprehension of the different mechanisms of RNAPII termination, and a better understanding of their importance in regulating gene expression, especially under cellular stress and pathological situations.
Collapse
Affiliation(s)
- David Lopez Martinez
- Centre for Gene Expression, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark.
| | - Jesper Q Svejstrup
- Centre for Gene Expression, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
4
|
Estell C, West S. ZC3H4/Restrictor Exerts a Stranglehold on Pervasive Transcription. J Mol Biol 2025; 437:168707. [PMID: 39002716 DOI: 10.1016/j.jmb.2024.168707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/06/2024] [Accepted: 07/09/2024] [Indexed: 07/15/2024]
Abstract
The regulation of transcription by RNA polymerase II (RNAPII) underpins all cellular processes and is perturbed in thousands of diseases. In humans, RNAPII transcribes ∼20000 protein-coding genes and engages in apparently futile non-coding transcription at thousands of other sites. Despite being so ubiquitous, this transcription is usually attenuated soon after initiation and the resulting products are immediately degraded by the nuclear exosome. We and others have recently described a new complex, "Restrictor", which appears to control such unproductive transcription. Underpinned by the RNA binding protein, ZC3H4, Restrictor curtails unproductive/pervasive transcription genome-wide. Here, we discuss these recent discoveries and speculate on some of the many unknowns regarding Restrictor function and mechanism.
Collapse
Affiliation(s)
- Chris Estell
- The Living Systems Institute, University of Exeter, Stocker Road, Exeter EX4 4QD, UK.
| | - Steven West
- The Living Systems Institute, University of Exeter, Stocker Road, Exeter EX4 4QD, UK.
| |
Collapse
|
5
|
Bentley DL. Multiple Forms and Functions of Premature Termination by RNA Polymerase II. J Mol Biol 2025; 437:168743. [PMID: 39127140 PMCID: PMC11649484 DOI: 10.1016/j.jmb.2024.168743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/05/2024] [Accepted: 08/06/2024] [Indexed: 08/12/2024]
Abstract
Eukaryotic genomes are widely transcribed by RNA polymerase II (pol II) both within genes and in intergenic regions. POL II elongation complexes comprising the polymerase, the DNA template and nascent RNA transcript must be extremely processive in order to transcribe the longest genes which are over 1 megabase long and take many hours to traverse. Dedicated termination mechanisms are required to disrupt these highly stable complexes. Transcription termination occurs not only at the 3' ends of genes once a full length transcript has been made, but also within genes and in promiscuously transcribed intergenic regions. Termination at these latter positions is termed "premature" because it is not triggered in response to a specific signal that marks the 3' end of a gene, like a polyA site. One purpose of premature termination is to remove polymerases from intergenic regions where they are "not wanted" because they may interfere with transcription of overlapping genes or the progress of replication forks. Premature termination has recently been appreciated to occur at surprisingly high rates within genes where it is speculated to serve regulatory or quality control functions. In this review I summarize current understanding of the different mechanisms of premature termination and its potential functions.
Collapse
Affiliation(s)
- David L Bentley
- Dept. Biochemistry and Molecular Genetics, RNA Bioscience Initiative, University of Colorado School of Medicine, PO Box 6511, Aurora, CO 80045, USA.
| |
Collapse
|
6
|
Grzechnik P, Mischo HE. Fateful Decisions of Where to Cut the Line: Pathology Associated with Aberrant 3' End Processing and Transcription Termination. J Mol Biol 2025; 437:168802. [PMID: 39321865 PMCID: PMC11870849 DOI: 10.1016/j.jmb.2024.168802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/17/2024] [Accepted: 09/19/2024] [Indexed: 09/27/2024]
Abstract
Aberrant gene expression lies at the heart of many pathologies. This review will point out how 3' end processing, the final mRNA-maturation step in the transcription cycle, is surprisingly prone to regulated as well as stochastic variations with a wide range of consequences. Whereas smaller variations contribute to the plasticity of gene expression, larger alternations to 3' end processing and coupled transcription termination can lead to pathological consequences. These can be caused by the local mutation of one gene or affect larger numbers of genes systematically, if aspects of the mechanisms of 3' end processing and transcription termination are altered.
Collapse
Affiliation(s)
- Pawel Grzechnik
- Division of Molecular and Cellular Function, School of Biological Sciences, University of Manchester, United Kingdom
| | - Hannah E Mischo
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, United Kingdom.
| |
Collapse
|
7
|
Vilstrup AP, Gupta A, Rasmussen AJ, Ebert A, Riedelbauch S, Lukassen MV, Hayashi R, Andersen P. A germline PAF1 paralog complex ensures cell type-specific gene expression. Genes Dev 2024; 38:866-886. [PMID: 39332828 PMCID: PMC11535153 DOI: 10.1101/gad.351930.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 08/27/2024] [Indexed: 09/29/2024]
Abstract
Animal germline development and fertility rely on paralogs of general transcription factors that recruit RNA polymerase II to ensure cell type-specific gene expression. It remains unclear whether gene expression processes downstream from such paralog-based transcription is distinct from that of canonical RNA polymerase II genes. In Drosophila, the testis-specific TBP-associated factors (tTAFs) activate over a thousand spermatocyte-specific gene promoters to enable meiosis and germ cell differentiation. Here, we show that efficient termination of tTAF-activated transcription relies on testis-specific paralogs of canonical polymerase-associated factor 1 complex (PAF1C) proteins, which form a testis-specific PAF1C (tPAF). Consequently, tPAF mutants show aberrant expression of hundreds of downstream genes due to read-in transcription. Furthermore, tPAF facilitates expression of Y-linked male fertility factor genes and thus serves to maintain spermatocyte-specific gene expression. Consistently, tPAF is required for the segregation of meiotic chromosomes and male fertility. Supported by comparative in vivo protein interaction assays, we provide a mechanistic model for the functional divergence of tPAF and the PAF1C and identify transcription termination as a developmentally regulated process required for germline-specific gene expression.
Collapse
Affiliation(s)
- Astrid Pold Vilstrup
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark
| | - Archica Gupta
- The Shine-Dalgarno Centre for RNA Innovation, The John Curtin School of Medical Research, The Australian National University, Acton, Australian Capital Territory 2601, Australia
| | - Anna Jon Rasmussen
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark
| | - Anja Ebert
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark
| | - Sebastian Riedelbauch
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark
| | | | - Rippei Hayashi
- The Shine-Dalgarno Centre for RNA Innovation, The John Curtin School of Medical Research, The Australian National University, Acton, Australian Capital Territory 2601, Australia;
| | - Peter Andersen
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark;
| |
Collapse
|
8
|
Ni Z, Ahmed N, Nabeel-Shah S, Guo X, Pu S, Song J, Marcon E, Burke G, Tong AH, Chan K, Ha KH, Blencowe B, Moffat J, Greenblatt J. Identifying human pre-mRNA cleavage and polyadenylation factors by genome-wide CRISPR screens using a dual fluorescence readthrough reporter. Nucleic Acids Res 2024; 52:4483-4501. [PMID: 38587191 PMCID: PMC11077057 DOI: 10.1093/nar/gkae240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 01/29/2024] [Accepted: 04/02/2024] [Indexed: 04/09/2024] Open
Abstract
Messenger RNA precursors (pre-mRNA) generally undergo 3' end processing by cleavage and polyadenylation (CPA), which is specified by a polyadenylation site (PAS) and adjacent RNA sequences and regulated by a large variety of core and auxiliary CPA factors. To date, most of the human CPA factors have been discovered through biochemical and proteomic studies. However, genetic identification of the human CPA factors has been hampered by the lack of a reliable genome-wide screening method. We describe here a dual fluorescence readthrough reporter system with a PAS inserted between two fluorescent reporters. This system enables measurement of the efficiency of 3' end processing in living cells. Using this system in combination with a human genome-wide CRISPR/Cas9 library, we conducted a screen for CPA factors. The screens identified most components of the known core CPA complexes and other known CPA factors. The screens also identified CCNK/CDK12 as a potential core CPA factor, and RPRD1B as a CPA factor that binds RNA and regulates the release of RNA polymerase II at the 3' ends of genes. Thus, this dual fluorescence reporter coupled with CRISPR/Cas9 screens reliably identifies bona fide CPA factors and provides a platform for investigating the requirements for CPA in various contexts.
Collapse
Affiliation(s)
- Zuyao Ni
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, ON M5S 3E1, Canada
| | - Nujhat Ahmed
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, ON M5S 3E1, Canada
- Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, ON M5A 1A8, Canada
| | - Syed Nabeel-Shah
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, ON M5S 3E1, Canada
- Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, ON M5A 1A8, Canada
| | - Xinghua Guo
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, ON M5S 3E1, Canada
| | - Shuye Pu
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, ON M5S 3E1, Canada
| | - Jingwen Song
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, ON M5S 3E1, Canada
| | - Edyta Marcon
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, ON M5S 3E1, Canada
| | - Giovanni L Burke
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, ON M5S 3E1, Canada
- Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, ON M5A 1A8, Canada
| | - Amy Hin Yan Tong
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, ON M5S 3E1, Canada
- Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, ON M5A 1A8, Canada
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON Canada
| | - Katherine Chan
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, ON M5S 3E1, Canada
- Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, ON M5A 1A8, Canada
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON Canada
| | - Kevin C H Ha
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, ON M5S 3E1, Canada
- Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, ON M5A 1A8, Canada
| | - Benjamin J Blencowe
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, ON M5S 3E1, Canada
- Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, ON M5A 1A8, Canada
| | - Jason Moffat
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, ON M5S 3E1, Canada
- Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, ON M5A 1A8, Canada
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON Canada
- Institute for Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON Canada
| | - Jack F Greenblatt
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, ON M5S 3E1, Canada
- Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, ON M5A 1A8, Canada
| |
Collapse
|
9
|
Song E, Han S, Hohng S, Kang C. Compatibility of termination mechanisms in bacterial transcription with inference on eukaryotic models. Biochem Soc Trans 2024; 52:887-897. [PMID: 38533838 DOI: 10.1042/bst20231229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/18/2024] [Accepted: 03/18/2024] [Indexed: 03/28/2024]
Abstract
Transcription termination has evolved to proceed through diverse mechanisms. For several classes of terminators, multiple models have been debatably proposed. Recent single-molecule studies on bacterial terminators have resolved several long-standing controversies. First, termination mode or outcome is twofold rather than single. RNA is released alone before DNA or together with DNA from RNA polymerase (RNAP), i.e. with RNA release for termination, RNAP retains on or dissociates off DNA, respectively. The concomitant release, described in textbooks, results in one-step decomposition of transcription complexes, and this 'decomposing termination' prevails at ρ factor-dependent terminators. Contrastingly, the sequential release was recently discovered abundantly from RNA hairpin-dependent intrinsic terminations. RNA-only release allows RNAP to diffuse on DNA in both directions and recycle for reinitiation. This 'recycling termination' enables one-dimensional reinitiation, which would be more expeditious than three-dimensional reinitiation by RNAP dissociated at decomposing termination. Second, while both recycling and decomposing terminations occur at a hairpin-dependent terminator, four termination mechanisms compatibly operate at a ρ-dependent terminator with ρ in alternative modes and even intrinsically without ρ. RNA-bound catch-up ρ mediates recycling termination first and decomposing termination later, while RNAP-prebound stand-by ρ invokes only decomposing termination slowly. Without ρ, decomposing termination occurs slightly and sluggishly. These four mechanisms operate on distinct timescales, providing orderly fail-safes. The stand-by mechanism is benefited by terminational pause prolongation and modulated by accompanying riboswitches more greatly than the catch-up mechanisms. Conclusively, any mechanism alone is insufficient to perfect termination, and multiple mechanisms operate compatibly to achieve maximum possible efficiency under separate controls.
Collapse
Affiliation(s)
- Eunho Song
- Department of Physics and Astronomy, and Institute of Applied Physics, Seoul National University, Seoul 08826, Republic of Korea
| | - Sun Han
- Department of Physics and Astronomy, and Institute of Applied Physics, Seoul National University, Seoul 08826, Republic of Korea
| | - Sungchul Hohng
- Department of Physics and Astronomy, and Institute of Applied Physics, Seoul National University, Seoul 08826, Republic of Korea
| | - Changwon Kang
- Department of Biological Sciences, and KAIST Stem Cell Center, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| |
Collapse
|
10
|
Zeng Y, Zhang HW, Wu XX, Zhang Y. Structural basis of exoribonuclease-mediated mRNA transcription termination. Nature 2024; 628:887-893. [PMID: 38538796 DOI: 10.1038/s41586-024-07240-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 02/26/2024] [Indexed: 04/06/2024]
Abstract
Efficient termination is required for robust gene transcription. Eukaryotic organisms use a conserved exoribonuclease-mediated mechanism to terminate the mRNA transcription by RNA polymerase II (Pol II)1-5. Here we report two cryogenic electron microscopy structures of Saccharomyces cerevisiae Pol II pre-termination transcription complexes bound to the 5'-to-3' exoribonuclease Rat1 and its partner Rai1. Our structures show that Rat1 displaces the elongation factor Spt5 to dock at the Pol II stalk domain. Rat1 shields the RNA exit channel of Pol II, guides the nascent RNA towards its active centre and stacks three nucleotides at the 5' terminus of the nascent RNA. The structures further show that Rat1 rotates towards Pol II as it shortens RNA. Our results provide the structural mechanism for the Rat1-mediated termination of mRNA transcription by Pol II in yeast and the exoribonuclease-mediated termination of mRNA transcription in other eukaryotes.
Collapse
MESH Headings
- Cryoelectron Microscopy
- Exoribonucleases/chemistry
- Exoribonucleases/metabolism
- Exoribonucleases/ultrastructure
- Models, Molecular
- Protein Binding
- RNA Polymerase II/chemistry
- RNA Polymerase II/metabolism
- RNA Polymerase II/ultrastructure
- RNA, Messenger/biosynthesis
- RNA, Messenger/chemistry
- RNA, Messenger/genetics
- RNA, Messenger/ultrastructure
- RNA-Binding Proteins/chemistry
- RNA-Binding Proteins/metabolism
- RNA-Binding Proteins/ultrastructure
- Saccharomyces cerevisiae/chemistry
- Saccharomyces cerevisiae/genetics
- Saccharomyces cerevisiae/metabolism
- Saccharomyces cerevisiae/ultrastructure
- Saccharomyces cerevisiae Proteins/chemistry
- Saccharomyces cerevisiae Proteins/metabolism
- Saccharomyces cerevisiae Proteins/ultrastructure
- Transcription Termination, Genetic
- Transcriptional Elongation Factors/chemistry
- Transcriptional Elongation Factors/metabolism
- Transcriptional Elongation Factors/ultrastructure
- Chromosomal Proteins, Non-Histone/chemistry
- Chromosomal Proteins, Non-Histone/metabolism
- Chromosomal Proteins, Non-Histone/ultrastructure
- Protein Domains
- RNA, Fungal/biosynthesis
- RNA, Fungal/chemistry
- RNA, Fungal/genetics
- RNA, Fungal/ultrastructure
Collapse
Affiliation(s)
- Yuan Zeng
- Key Laboratory of Synthetic Biology, National Key Laboratory of Plant Design, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Hong-Wei Zhang
- Key Laboratory of Synthetic Biology, National Key Laboratory of Plant Design, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiao-Xian Wu
- Key Laboratory of Synthetic Biology, National Key Laboratory of Plant Design, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Yu Zhang
- Key Laboratory of Synthetic Biology, National Key Laboratory of Plant Design, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
11
|
Zhou L, Li K, Hunt AG. Natural variation in the plant polyadenylation complex. FRONTIERS IN PLANT SCIENCE 2024; 14:1303398. [PMID: 38317838 PMCID: PMC10839035 DOI: 10.3389/fpls.2023.1303398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 12/22/2023] [Indexed: 02/07/2024]
Abstract
Messenger RNA polyadenylation, the process wherein the primary RNA polymerase II transcript is cleaved and a poly(A) tract added, is a key step in the expression of genes in plants. Moreover, it is a point at which gene expression may be regulated by determining the functionality of the mature mRNA. Polyadenylation is mediated by a complex (the polyadenylation complex, or PAC) that consists of between 15 and 20 subunits. While the general functioning of these subunits may be inferred by extending paradigms established in well-developed eukaryotic models, much remains to be learned about the roles of individual subunits in the regulation of polyadenylation in plants. To gain further insight into this, we conducted a survey of variability in the plant PAC. For this, we drew upon a database of naturally-occurring variation in numerous geographic isolates of Arabidopsis thaliana. For a subset of genes encoding PAC subunits, the patterns of variability included the occurrence of premature stop codons in some Arabidopsis accessions. These and other observations lead us to conclude that some genes purported to encode PAC subunits in Arabidopsis are actually pseudogenes, and that others may encode proteins with dispensable functions in the plant. Many subunits of the PAC showed patterns of variability that were consistent with their roles as essential proteins in the cell. Several other PAC subunits exhibit patterns of variability consistent with selection for new or altered function. We propose that these latter subunits participate in regulatory interactions important for differential usage of poly(A) sites.
Collapse
Affiliation(s)
| | | | - Arthur G. Hunt
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY, United States
| |
Collapse
|
12
|
Ait Said M, Bejjani F, Abdouni A, Ségéral E, Emiliani S. Premature transcription termination complex proteins PCF11 and WDR82 silence HIV-1 expression in latently infected cells. Proc Natl Acad Sci U S A 2023; 120:e2313356120. [PMID: 38015843 PMCID: PMC10710072 DOI: 10.1073/pnas.2313356120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 10/30/2023] [Indexed: 11/30/2023] Open
Abstract
Postintegration transcriptional silencing of HIV-1 leads to the establishment of a pool of latently infected cells. In these cells, mechanisms controlling RNA Polymerase II (RNAPII) pausing and premature transcription termination (PTT) remain to be explored. Here, we found that the cleavage and polyadenylation (CPA) factor PCF11 represses HIV-1 expression independently of the other subunits of the CPA complex or the polyadenylation signal located at the 5' LTR. We show that PCF11 interacts with the RNAPII-binding protein WDR82. Knock-down of PCF11 or WDR82 reactivated HIV-1 expression in latently infected cells. To silence HIV-1 transcription, PCF11 and WDR82 are specifically recruited at the promoter-proximal region of the provirus in an interdependent manner. Codepletion of PCF11 and WDR82 indicated that they act on the same pathway to repress HIV expression. These findings reveal PCF11/WDR82 as a PTT complex silencing HIV-1 expression in latently infected cells.
Collapse
Affiliation(s)
- Melissa Ait Said
- Université Paris Cité, Institut Cochin, INSERM, CNRS, ParisF-75014, France
| | - Fabienne Bejjani
- Université Paris Cité, Institut Cochin, INSERM, CNRS, ParisF-75014, France
| | - Ahmed Abdouni
- Université Paris Cité, Institut Cochin, INSERM, CNRS, ParisF-75014, France
| | - Emmanuel Ségéral
- Université Paris Cité, Institut Cochin, INSERM, CNRS, ParisF-75014, France
| | - Stéphane Emiliani
- Université Paris Cité, Institut Cochin, INSERM, CNRS, ParisF-75014, France
| |
Collapse
|
13
|
Han Z, Moore GA, Mitter R, Lopez Martinez D, Wan L, Dirac Svejstrup AB, Rueda DS, Svejstrup JQ. DNA-directed termination of RNA polymerase II transcription. Mol Cell 2023; 83:3253-3267.e7. [PMID: 37683646 PMCID: PMC7615648 DOI: 10.1016/j.molcel.2023.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 06/27/2023] [Accepted: 08/09/2023] [Indexed: 09/10/2023]
Abstract
RNA polymerase II (RNAPII) transcription involves initiation from a promoter, transcriptional elongation through the gene, and termination in the terminator region. In bacteria, terminators often contain specific DNA elements provoking polymerase dissociation, but RNAPII transcription termination is thought to be driven entirely by protein co-factors. We used biochemical reconstitution, single-molecule studies, and genome-wide analysis in yeast to study RNAPII termination. Transcription into natural terminators by pure RNAPII results in spontaneous termination at specific sequences containing T-tracts. Single-molecule analysis indicates that termination involves pausing without backtracking. The "torpedo" Rat1-Rai1 exonuclease (XRN2 in humans) greatly stimulates spontaneous termination but is ineffectual on other paused RNAPIIs. By contrast, elongation factor Spt4-Spt5 (DSIF) suppresses termination. Genome-wide analysis further indicates that termination occurs by transcript cleavage at the poly(A) site exposing a new 5' RNA-end that allows Rat1-Rai1 loading, which then catches up with destabilized RNAPII at specific termination sites to end transcription.
Collapse
Affiliation(s)
- Zhong Han
- Department of Cellular and Molecular Medicine, Panum Institute, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark; Mechanisms of Transcription Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - George A Moore
- Single Molecule Imaging group, MRC-London Institute of Medical Sciences, and Section of Virology, Department of Infectious Disease, Faculty of Medicine, Imperial College London, London W12 0NN, UK
| | - Richard Mitter
- Bioinformatics and Biostatistics, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - David Lopez Martinez
- Department of Cellular and Molecular Medicine, Panum Institute, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark; Mechanisms of Transcription Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Li Wan
- Mechanisms of Transcription Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - A Barbara Dirac Svejstrup
- Department of Cellular and Molecular Medicine, Panum Institute, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark; Mechanisms of Transcription Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - David S Rueda
- Single Molecule Imaging group, MRC-London Institute of Medical Sciences, and Section of Virology, Department of Infectious Disease, Faculty of Medicine, Imperial College London, London W12 0NN, UK
| | - Jesper Q Svejstrup
- Department of Cellular and Molecular Medicine, Panum Institute, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark; Mechanisms of Transcription Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK.
| |
Collapse
|
14
|
Abstract
Formation of the 3' end of a eukaryotic mRNA is a key step in the production of a mature transcript. This process is mediated by a number of protein factors that cleave the pre-mRNA, add a poly(A) tail, and regulate transcription by protein dephosphorylation. Cleavage and polyadenylation specificity factor (CPSF) in humans, or cleavage and polyadenylation factor (CPF) in yeast, coordinates these enzymatic activities with each other, with RNA recognition, and with transcription. The site of pre-mRNA cleavage can strongly influence the translation, stability, and localization of the mRNA. Hence, cleavage site selection is highly regulated. The length of the poly(A) tail is also controlled to ensure that every transcript has a similar tail when it is exported from the nucleus. In this review, we summarize new mechanistic insights into mRNA 3'-end processing obtained through structural studies and biochemical reconstitution and outline outstanding questions in the field.
Collapse
Affiliation(s)
- Vytautė Boreikaitė
- Medical Research Council Laboratory of Molecular Biology, Cambridge, United Kingdom;
| | - Lori A Passmore
- Medical Research Council Laboratory of Molecular Biology, Cambridge, United Kingdom;
| |
Collapse
|
15
|
de Felippes FF, Waterhouse PM. Plant terminators: the unsung heroes of gene expression. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:2239-2250. [PMID: 36477559 PMCID: PMC10082929 DOI: 10.1093/jxb/erac467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 11/25/2022] [Indexed: 06/06/2023]
Abstract
To be properly expressed, genes need to be accompanied by a terminator, a region downstream of the coding sequence that contains the information necessary for the maturation of the mRNA 3' end. The main event in this process is the addition of a poly(A) tail at the 3' end of the new transcript, a critical step in mRNA biology that has important consequences for the expression of genes. Here, we review the mechanism leading to cleavage and polyadenylation of newly transcribed mRNAs and how this process can affect the final levels of gene expression. We give special attention to an aspect often overlooked, the effect that different terminators can have on the expression of genes. We also discuss some exciting findings connecting the choice of terminator to the biogenesis of small RNAs, which are a central part of one of the most important mechanisms of regulation of gene expression in plants.
Collapse
Affiliation(s)
| | - Peter M Waterhouse
- Centre for Agriculture and the Bioeconomy, Institute for Future Environments, Queensland University of Technology (QUT), Brisbane, QLD, Australia
- ARC Centre of Excellence for Plant Success in Nature & Agriculture, QUT, Brisbane, QLD, Australia
| |
Collapse
|
16
|
Alternative Polyadenylation Is a Novel Strategy for the Regulation of Gene Expression in Response to Stresses in Plants. Int J Mol Sci 2023; 24:ijms24054727. [PMID: 36902157 PMCID: PMC10003127 DOI: 10.3390/ijms24054727] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/13/2023] [Accepted: 02/17/2023] [Indexed: 03/05/2023] Open
Abstract
Precursor message RNA requires processing to generate mature RNA. Cleavage and polyadenylation at the 3'-end in the maturation of mRNA is one of key processing steps in eukaryotes. The polyadenylation (poly(A)) tail of mRNA is an essential feature that is required to mediate its nuclear export, stability, translation efficiency, and subcellular localization. Most genes have at least two mRNA isoforms via alternative splicing (AS) or alternative polyadenylation (APA), which increases the diversity of transcriptome and proteome. However, most previous studies have focused on the role of alternative splicing on the regulation of gene expression. In this review, we summarize the recent advances concerning APA in the regulation of gene expression and in response to stresses in plants. We also discuss the mechanisms for the regulation of APA for plants in the adaptation to stress responses, and suggest that APA is a novel strategy for the adaptation to environmental changes and response to stresses in plants.
Collapse
|
17
|
Architectural and functional details of CF IA proteins involved in yeast 3'-end pre-mRNA processing and its significance for eukaryotes: A concise review. Int J Biol Macromol 2021; 193:387-400. [PMID: 34699898 DOI: 10.1016/j.ijbiomac.2021.10.129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 10/04/2021] [Accepted: 10/18/2021] [Indexed: 11/22/2022]
Abstract
In eukaryotes, maturation of pre-mRNA relies on its precise 3'-end processing. This processing involves co-transcriptional steps regulated by sequence elements and other proteins. Although, it holds tremendous importance, defect in the processing machinery will result in erroneous pre-mRNA maturation leading to defective translation. Remarkably, more than 20 proteins in humans and yeast share homology and execute this processing. The defects in this processing are associated with various diseases in humans. We shed light on the CF IA subunit of yeast Saccharomyces cerevisiae that contains four proteins (Pcf11, Clp1, Rna14 and Rna15) involved in this processing. Structural details of various domains of CF IA and their roles during 3'-end processing, like cleavage and polyadenylation at 3'-UTR of pre-mRNA and other cellular events are explained. Further, the chronological development and important discoveries associated with 3'-end processing are summarized. Moreover, the mammalian homologues of yeast CF IA proteins, along with their key roles are described. This knowledge would be helpful for better comprehension of the mechanism associated with this marvel; thus opening up vast avenues in this area.
Collapse
|
18
|
Singh P, Chaudhuri A, Banerjea M, Marathe N, Das B. Nrd1p identifies aberrant and natural exosomal target messages during the nuclear mRNA surveillance in Saccharomyces cerevisiae. Nucleic Acids Res 2021; 49:11512-11536. [PMID: 34664673 PMCID: PMC8599857 DOI: 10.1093/nar/gkab930] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 10/16/2021] [Indexed: 12/24/2022] Open
Abstract
Nuclear degradation of aberrant mRNAs in Saccharomyces cerevisiae is accomplished by the nuclear exosome and its cofactors TRAMP/CTEXT. Evidence from this investigation establishes a universal role of the Nrd1p-Nab3p-Sen1p (NNS) complex in the nuclear decay of all categories of aberrant mRNAs. In agreement with this, both nrd1-1 and nrd1-2 mutations impaired the decay of all classes of aberrant messages. This phenotype is similar to that displayed by GAL::RRP41 and rrp6-Δ mutant yeast strains. Remarkably, however, nrd1ΔCID mutation (lacking the C-terminal domain required for interaction of Nrd1p with RNAPII) only diminished the decay of aberrant messages with defects occurring during the early stage of mRNP biogenesis, without affecting other messages with defects generated later in the process. Co-transcriptional recruitment of Nrd1p on the aberrant mRNAs was vital for their concomitant decay. Strikingly, this recruitment on to mRNAs defective in the early phases of biogenesis is solely dependent upon RNAPII. In contrast, Nrd1p recruitment onto export-defective transcripts with defects occurring in the later stage of biogenesis is independent of RNAPII and dependent on the CF1A component, Pcf11p, which explains the observed characteristic phenotype of nrd1ΔCID mutation. Consistently, pcf11-2 mutation displayed a selective impairment in the degradation of only the export-defective messages.
Collapse
Affiliation(s)
- Pragyan Singh
- Department of Life Science and Biotechnology, Jadavpur University, Kolkata - 700032, West Bengal, India
| | - Anusha Chaudhuri
- Department of Life Science and Biotechnology, Jadavpur University, Kolkata - 700032, West Bengal, India
| | - Mayukh Banerjea
- Department of Life Science and Biotechnology, Jadavpur University, Kolkata - 700032, West Bengal, India
| | - Neeraja Marathe
- Department of Life Science and Biotechnology, Jadavpur University, Kolkata - 700032, West Bengal, India
| | - Biswadip Das
- Department of Life Science and Biotechnology, Jadavpur University, Kolkata - 700032, West Bengal, India
| |
Collapse
|
19
|
Wu J, Li X, Gao Z, Pang L, Liu X, Huang X, Wang Y, Wang Z. RNA kinase CLP1/Cbc regulates meiosis initiation in spermatogenesis. Hum Mol Genet 2021; 30:1569-1578. [PMID: 33864361 PMCID: PMC8369837 DOI: 10.1093/hmg/ddab107] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 04/08/2021] [Accepted: 04/08/2021] [Indexed: 11/14/2022] Open
Abstract
CLP1, TSEN complex, and VCP are evolutionarily conserved proteins whose mutations are associated with neurodegenerative diseases. In this study, we have found that they are also involved in germline differentiation. To optimize both quantity and quality in gametes production, germ cells expand themselves through limited mitotic cycles prior to meiosis. Stemming from our previous findings on the correlation between mRNA 3'-processing and meiosis entry, here we identify that the RNA kinase Cbc, the Drosophila member of the highly conserved CLP1 family, is a component of the program regulating the transition from mitosis to meiosis. Using genetic manipulations in Drosophila testis, we demonstrate that nuclear Cbc is required to promote meiosis entry. Combining biochemical and genetic methods, we reveal that Cbc physically and/or genetically intersects with Tsen54 and TER94 (VCP ortholog) in this process. The C-terminal half of Tsen54 is both necessary and sufficient for its binding with Cbc. Further, we illustrate the functional conservation between Cbc and mammalian CLP1 in the assays of subcellular localization and Drosophila fertility. As CLP1, TSEN complex, and VCP have also been identified in neurodegenerations of animal models, a mechanism involving these factors seems to be shared in gametogenesis and neurogenesis.
Collapse
Affiliation(s)
- Jianbo Wu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, BeiChenXiLu#1, Beijing 100101, P.R. China
- The University of Chinese Academy of Sciences, BeiChenXiLu#1, Beijing 100101, P.R. China
| | - Xin Li
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, BeiChenXiLu#1, Beijing 100101, P.R. China
| | - Zhiyang Gao
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, BeiChenXiLu#1, Beijing 100101, P.R. China
| | - Lin Pang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, BeiChenXiLu#1, Beijing 100101, P.R. China
- The University of Chinese Academy of Sciences, BeiChenXiLu#1, Beijing 100101, P.R. China
| | - Xian Liu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, BeiChenXiLu#1, Beijing 100101, P.R. China
- The University of Chinese Academy of Sciences, BeiChenXiLu#1, Beijing 100101, P.R. China
| | - Xiahe Huang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, BeiChenXiLu#1, Beijing 100101, P.R. China
| | - Yingchun Wang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, BeiChenXiLu#1, Beijing 100101, P.R. China
| | - Zhaohui Wang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, BeiChenXiLu#1, Beijing 100101, P.R. China
- The University of Chinese Academy of Sciences, BeiChenXiLu#1, Beijing 100101, P.R. China
| |
Collapse
|
20
|
Turner RE, Harrison PF, Swaminathan A, Kraupner-Taylor CA, Goldie BJ, See M, Peterson AL, Schittenhelm RB, Powell DR, Creek DJ, Dichtl B, Beilharz TH. Genetic and pharmacological evidence for kinetic competition between alternative poly(A) sites in yeast. eLife 2021; 10:65331. [PMID: 34232857 PMCID: PMC8263057 DOI: 10.7554/elife.65331] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 06/22/2021] [Indexed: 01/23/2023] Open
Abstract
Most eukaryotic mRNAs accommodate alternative sites of poly(A) addition in the 3’ untranslated region in order to regulate mRNA function. Here, we present a systematic analysis of 3’ end formation factors, which revealed 3’UTR lengthening in response to a loss of the core machinery, whereas a loss of the Sen1 helicase resulted in shorter 3’UTRs. We show that the anti-cancer drug cordycepin, 3’ deoxyadenosine, caused nucleotide accumulation and the usage of distal poly(A) sites. Mycophenolic acid, a drug which reduces GTP levels and impairs RNA polymerase II (RNAP II) transcription elongation, promoted the usage of proximal sites and reversed the effects of cordycepin on alternative polyadenylation. Moreover, cordycepin-mediated usage of distal sites was associated with a permissive chromatin template and was suppressed in the presence of an rpb1 mutation, which slows RNAP II elongation rate. We propose that alternative polyadenylation is governed by temporal coordination of RNAP II transcription and 3’ end processing and controlled by the availability of 3’ end factors, nucleotide levels and chromatin landscape.
Collapse
Affiliation(s)
- Rachael Emily Turner
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Australia
| | - Paul F Harrison
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Australia.,Monash Bioinformatics Platform, Monash University, Melbourne, Australia
| | - Angavai Swaminathan
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Australia
| | - Calvin A Kraupner-Taylor
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Australia
| | - Belinda J Goldie
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Australia
| | - Michael See
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Australia.,Monash Bioinformatics Platform, Monash University, Melbourne, Australia
| | - Amanda L Peterson
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
| | - Ralf B Schittenhelm
- Monash Proteomics & Metabolomics Facility, Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Australia
| | - David R Powell
- Monash Bioinformatics Platform, Monash University, Melbourne, Australia
| | - Darren J Creek
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
| | - Bernhard Dichtl
- School of Life and Environmental Sciences, Deakin University, Geelong, Australia
| | - Traude H Beilharz
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Australia
| |
Collapse
|
21
|
Turner RE, Henneken LM, Liem-Weits M, Harrison PF, Swaminathan A, Vary R, Nikolic I, Simpson KJ, Powell DR, Beilharz TH, Dichtl B. Requirement for cleavage factor II m in the control of alternative polyadenylation in breast cancer cells. RNA (NEW YORK, N.Y.) 2020; 26:969-981. [PMID: 32295865 PMCID: PMC7373993 DOI: 10.1261/rna.075226.120] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 04/09/2020] [Indexed: 06/11/2023]
Abstract
Alternative polyadenylation (APA) determines stability, localization and translation potential of the majority of mRNA in eukaryotic cells. The heterodimeric mammalian cleavage factor II (CF IIm) is required for pre-mRNA 3' end cleavage and is composed of the RNA kinase hClp1 and the termination factor hPcf11; the latter protein binds to RNA and the RNA polymerase II carboxy-terminal domain. Here, we used siRNA mediated knockdown and poly(A) targeted RNA sequencing to analyze the role of CF IIm in gene expression and APA in estrogen receptor positive MCF7 breast cancer cells. Identified gene ontology terms link CF IIm function to regulation of growth factor activity, protein heterodimerization and the cell cycle. An overlapping requirement for hClp1 and hPcf11 suggested that CF IIm protein complex was involved in the selection of proximal poly(A) sites. In addition to APA shifts within 3' untranslated regions (3'-UTRs), we observed shifts from promoter proximal regions to the 3'-UTR facilitating synthesis of full-length mRNAs. Moreover, we show that several truncated mRNAs that resulted from APA within introns in MCF7 cells cosedimented with ribosomal components in an EDTA sensitive manner suggesting that those are translated into protein. We propose that CF IIm contributes to the regulation of mRNA function in breast cancer.
Collapse
Affiliation(s)
- Rachael E Turner
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Victoria 3800, Australia
| | - Lee M Henneken
- School of Life and Environmental Sciences, Deakin University, Geelong, Victoria 3220, Australia
| | - Marije Liem-Weits
- School of Life and Environmental Sciences, Deakin University, Geelong, Victoria 3220, Australia
| | - Paul F Harrison
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Victoria 3800, Australia
- Monash Bioinformatics Platform, Monash University, Melbourne, Victoria 3800, Australia
| | - Angavai Swaminathan
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Victoria 3800, Australia
| | - Robert Vary
- Victorian Centre for Functional Genomics, Peter MacCallum Cancer Centre, Melbourne, Victoria 3000, Australia
| | - Iva Nikolic
- Victorian Centre for Functional Genomics, Peter MacCallum Cancer Centre, Melbourne, Victoria 3000, Australia
| | - Kaylene J Simpson
- Victorian Centre for Functional Genomics, Peter MacCallum Cancer Centre, Melbourne, Victoria 3000, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville 3010, Australia
| | - David R Powell
- Monash Bioinformatics Platform, Monash University, Melbourne, Victoria 3800, Australia
| | - Traude H Beilharz
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Victoria 3800, Australia
| | - Bernhard Dichtl
- School of Life and Environmental Sciences, Deakin University, Geelong, Victoria 3220, Australia
| |
Collapse
|
22
|
LaBella ML, Hujber EJ, Moore KA, Rawson RL, Merrill SA, Allaire PD, Ailion M, Hollien J, Bastiani MJ, Jorgensen EM. Casein Kinase 1δ Stabilizes Mature Axons by Inhibiting Transcription Termination of Ankyrin. Dev Cell 2020; 52:88-103.e18. [PMID: 31910362 DOI: 10.1016/j.devcel.2019.12.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 10/09/2019] [Accepted: 12/10/2019] [Indexed: 01/19/2023]
Abstract
After axon outgrowth and synapse formation, the nervous system transitions to a stable architecture. In C. elegans, this transition is marked by the appearance of casein kinase 1δ (CK1δ) in the nucleus. In CK1δ mutants, neurons continue to sprout growth cones into adulthood, leading to a highly ramified nervous system. Nervous system architecture in these mutants is completely restored by suppressor mutations in ten genes involved in transcription termination. CK1δ prevents termination by phosphorylating and inhibiting SSUP-72. SSUP-72 would normally remodel the C-terminal domain of RNA polymerase in anticipation of termination. The antitermination activity of CK1δ establishes the mature state of a neuron by promoting the expression of the long isoform of a single gene, the cytoskeleton protein Ankyrin.
Collapse
Affiliation(s)
- Matthew L LaBella
- Department of Biology, Howard Hughes Medical Institute, University of Utah, Salt Lake City, UT, USA
| | - Edward J Hujber
- Department of Biology, Howard Hughes Medical Institute, University of Utah, Salt Lake City, UT, USA
| | - Kristin A Moore
- Department of Biology, University of Utah, Salt Lake City, UT, USA
| | - Randi L Rawson
- Department of Biology, Howard Hughes Medical Institute, University of Utah, Salt Lake City, UT, USA
| | - Sean A Merrill
- Department of Biology, Howard Hughes Medical Institute, University of Utah, Salt Lake City, UT, USA
| | - Patrick D Allaire
- Department of Biology, Howard Hughes Medical Institute, University of Utah, Salt Lake City, UT, USA
| | - Michael Ailion
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Julie Hollien
- Department of Biology, University of Utah, Salt Lake City, UT, USA
| | | | - Erik M Jorgensen
- Department of Biology, Howard Hughes Medical Institute, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
23
|
Arribere JA, Kuroyanagi H, Hundley HA. mRNA Editing, Processing and Quality Control in Caenorhabditis elegans. Genetics 2020; 215:531-568. [PMID: 32632025 PMCID: PMC7337075 DOI: 10.1534/genetics.119.301807] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 05/03/2020] [Indexed: 02/06/2023] Open
Abstract
While DNA serves as the blueprint of life, the distinct functions of each cell are determined by the dynamic expression of genes from the static genome. The amount and specific sequences of RNAs expressed in a given cell involves a number of regulated processes including RNA synthesis (transcription), processing, splicing, modification, polyadenylation, stability, translation, and degradation. As errors during mRNA production can create gene products that are deleterious to the organism, quality control mechanisms exist to survey and remove errors in mRNA expression and processing. Here, we will provide an overview of mRNA processing and quality control mechanisms that occur in Caenorhabditis elegans, with a focus on those that occur on protein-coding genes after transcription initiation. In addition, we will describe the genetic and technical approaches that have allowed studies in C. elegans to reveal important mechanistic insight into these processes.
Collapse
Affiliation(s)
| | - Hidehito Kuroyanagi
- Laboratory of Gene Expression, Medical Research Institute, Tokyo Medical and Dental University, Tokyo 113-8510, Japan, and
| | - Heather A Hundley
- Medical Sciences Program, Indiana University School of Medicine-Bloomington, Indiana 47405
| |
Collapse
|
24
|
Peck SA, Hughes KD, Victorino JF, Mosley AL. Writing a wrong: Coupled RNA polymerase II transcription and RNA quality control. WILEY INTERDISCIPLINARY REVIEWS-RNA 2019; 10:e1529. [PMID: 30848101 PMCID: PMC6570551 DOI: 10.1002/wrna.1529] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 12/27/2018] [Accepted: 02/07/2019] [Indexed: 12/20/2022]
Abstract
Processing and maturation of precursor RNA species is coupled to RNA polymerase II transcription. Co-transcriptional RNA processing helps to ensure efficient and proper capping, splicing, and 3' end processing of different RNA species to help ensure quality control of the transcriptome. Many improperly processed transcripts are not exported from the nucleus, are restricted to the site of transcription, and are in some cases degraded, which helps to limit any possibility of aberrant RNA causing harm to cellular health. These critical quality control pathways are regulated by the highly dynamic protein-protein interaction network at the site of transcription. Recent work has further revealed the extent to which the processes of transcription and RNA processing and quality control are integrated, and how critically their coupling relies upon the dynamic protein interactions that take place co-transcriptionally. This review focuses specifically on the intricate balance between 3' end processing and RNA decay during transcription termination. This article is categorized under: RNA Turnover and Surveillance > Turnover/Surveillance Mechanisms RNA Processing > 3' End Processing RNA Processing > Splicing Mechanisms RNA Processing > Capping and 5' End Modifications.
Collapse
Affiliation(s)
- Sarah A Peck
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Katlyn D Hughes
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Jose F Victorino
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Amber L Mosley
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana
| |
Collapse
|
25
|
Kamieniarz-Gdula K, Gdula MR, Panser K, Nojima T, Monks J, Wiśniewski JR, Riepsaame J, Brockdorff N, Pauli A, Proudfoot NJ. Selective Roles of Vertebrate PCF11 in Premature and Full-Length Transcript Termination. Mol Cell 2019; 74:158-172.e9. [PMID: 30819644 PMCID: PMC6458999 DOI: 10.1016/j.molcel.2019.01.027] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 12/07/2018] [Accepted: 01/17/2019] [Indexed: 12/02/2022]
Abstract
The pervasive nature of RNA polymerase II (Pol II) transcription requires efficient termination. A key player in this process is the cleavage and polyadenylation (CPA) factor PCF11, which directly binds to the Pol II C-terminal domain and dismantles elongating Pol II from DNA in vitro. We demonstrate that PCF11-mediated termination is essential for vertebrate development. A range of genomic analyses, including mNET-seq, 3′ mRNA-seq, chromatin RNA-seq, and ChIP-seq, reveals that PCF11 enhances transcription termination and stimulates early polyadenylation genome-wide. PCF11 binds preferentially between closely spaced genes, where it prevents transcriptional interference and consequent gene downregulation. Notably, PCF11 is sub-stoichiometric to the CPA complex. Low levels of PCF11 are maintained by an auto-regulatory mechanism involving premature termination of its own transcript and are important for normal development. Both in human cell culture and during zebrafish development, PCF11 selectively attenuates the expression of other transcriptional regulators by premature CPA and termination. Human PCF11 enhances transcription termination and 3′ end processing, genome-wide PCF11 is substoichiometric to CPA complex due to autoregulation of its transcription PCF11 stimulates expression of closely spaced genes but attenuates other genes PCF11-mediated functions are conserved in vertebrates and essential in development
Collapse
Affiliation(s)
- Kinga Kamieniarz-Gdula
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK.
| | - Michal R Gdula
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Karin Panser
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Campus-Vienna-Biocenter 1, 1030 Vienna, Austria
| | - Takayuki Nojima
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Joan Monks
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Jacek R Wiśniewski
- Biochemical Proteomics Group, Department of Proteomics and Signal Transduction, Max-Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Joey Riepsaame
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Neil Brockdorff
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Andrea Pauli
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Campus-Vienna-Biocenter 1, 1030 Vienna, Austria.
| | - Nick J Proudfoot
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK.
| |
Collapse
|
26
|
Ertl NG, O'Connor WA, Elizur A. Molecular effects of a variable environment on Sydney rock oysters, Saccostrea glomerata: Thermal and low salinity stress, and their synergistic effect. Mar Genomics 2019; 43:19-32. [DOI: 10.1016/j.margen.2018.10.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Revised: 10/07/2018] [Accepted: 10/18/2018] [Indexed: 12/26/2022]
|
27
|
Biochemical methods to characterize RNA polymerase II elongation complexes. Methods 2019; 159-160:70-81. [PMID: 30684536 DOI: 10.1016/j.ymeth.2019.01.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 01/15/2019] [Accepted: 01/21/2019] [Indexed: 02/07/2023] Open
Abstract
Transcription of DNA into RNA is critical for all life, and RNA polymerases are enzymes tasked with this activity. In eukaryotes, RNA Polymerase II (RNAPII) is responsible for transcription of all protein coding genes and many non-coding RNAs. RNAPII carries out the remarkable feat of unwinding the stable double-stranded DNA template, synthesizing the transcript and re-forming the double helix behind it with great precision and speed. In vitro, RNAPII is capable of carrying out templated RNA chain elongation in the absence of any accessory proteins. However, in cells, the transcription of genes is influenced by several factors, including DNA structure, chromatin, co-transcriptional processes, and DNA binding proteins, which impede the smooth progression of RNAPII down the template. Many transcription elongation proteins have evolved to mitigate the complications and barriers encountered by polymerase during transcription. Many of these elongation factors physically interact with components of the RNAPII elongation complex, including the growing RNA transcript and the DNA template entering and exiting RNAPII. To better understand how transcription elongation factors (EFs) regulate RNAPII, elegant methods are required to probe the structure of the elongation complex. Here, we describe a collection of biochemical assays to interrogate the structure of the RNAPII elongation complex of Saccharomyces cerevisiae that are capable of providing insights into the function of EFs and the elongation process.
Collapse
|
28
|
Asadzadeh-Aghdaei H, Zadeh-Esmaeel MM, Esmaeili S, Rezaei Tavirani M, Rezaei Tavirani S, Mansouri V, Montazer F. Effects of high fat medium conditions on cellular gene expression profile: a network analysis approach. GASTROENTEROLOGY AND HEPATOLOGY FROM BED TO BENCH 2019; 12:S130-S135. [PMID: 32099613 PMCID: PMC7011064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
AIM This study aimed to evaluate high fat medium (HFM) effect on the gene expression profile of human Sk-hep1 cells and to determine critical differential proteins. BACKGROUND There is a correlation between high fat diet (HFD), obesity, and non-alcoholic fatty liver disease. Despite wide range of investigations, understanding molecular mechanism of HFD effect on onset and progression of NAFLD warrants further examination. In this study, network analysis is applied to obtain a clear perspective about HFD effects and NAFLD. METHODS Gene expression profiles of human Sk-hep1 cells treated with HFM versus controls were extracted from GEO. Data were analyzed by GEO2R where the significant and characterized DEGs were included in the PPI network. The top 10 nodes of query DEGs based on four centrality parameters were selected to determine central nodes. The common hub nodes with at least other one central group were identified as central nodes. Action map was provided for the introduced central nodes. RESULTS Heterogeneous nuclear ribonucleoprotein family including A1, A2/B1, D, R, and D-like, and five proteins (PRPF40A, SRSF1, PCF11, LSM8, and HSP90AA1) were introduced as differential proteins. CONCLUSION mRNA processing and several biological terms including hypoxia and oxidative stress, apoptosis, regulation of cell morphology and cytoskeletal organization, and differentiation of micro tubes were introduced as dysregulated terms under HFM condition.
Collapse
Affiliation(s)
- Hamid Asadzadeh-Aghdaei
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad-Mehdi Zadeh-Esmaeel
- Laser Application in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Somayeh Esmaeili
- Traditional Medicine and Materia Medica Research Center, Department of Traditional Pharmacy, School of Traditional Medicine,, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mostafa Rezaei Tavirani
- Proteomics Research Center, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sina Rezaei Tavirani
- Proteomics Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Vahid Mansouri
- Proteomics Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Montazer
- Firoozabadi Clinical Research Development Unit, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
29
|
Schäfer P, Tüting C, Schönemann L, Kühn U, Treiber T, Treiber N, Ihling C, Graber A, Keller W, Meister G, Sinz A, Wahle E. Reconstitution of mammalian cleavage factor II involved in 3' processing of mRNA precursors. RNA (NEW YORK, N.Y.) 2018; 24:1721-1737. [PMID: 30139799 PMCID: PMC6239180 DOI: 10.1261/rna.068056.118] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 08/17/2018] [Indexed: 05/05/2023]
Abstract
Cleavage factor II (CF II) is a poorly characterized component of the multiprotein complex catalyzing 3' cleavage and polyadenylation of mammalian mRNA precursors. We have reconstituted CF II as a heterodimer of hPcf11 and hClp1. The heterodimer is active in partially reconstituted cleavage reactions, whereas hClp1 by itself is not. Pcf11 moderately stimulates the RNA 5' kinase activity of hClp1; the kinase activity is dispensable for RNA cleavage. CF II binds RNA with nanomolar affinity. Binding is mediated mostly by the two zinc fingers in the C-terminal region of hPcf11. RNA is bound without pronounced sequence-specificity, but extended G-rich sequences appear to be preferred. We discuss the possibility that CF II contributes to the recognition of cleavage/polyadenylation substrates through interaction with G-rich far-downstream sequence elements.
Collapse
Affiliation(s)
- Peter Schäfer
- Institute of Biochemistry and Biotechnology, Charles Tanford Protein Center, Martin Luther University Halle-Wittenberg, 06099 Halle, Germany
| | - Christian Tüting
- Institute of Biochemistry and Biotechnology, Charles Tanford Protein Center, Martin Luther University Halle-Wittenberg, 06099 Halle, Germany
| | - Lars Schönemann
- Institute of Biochemistry and Biotechnology, Charles Tanford Protein Center, Martin Luther University Halle-Wittenberg, 06099 Halle, Germany
| | - Uwe Kühn
- Institute of Biochemistry and Biotechnology, Charles Tanford Protein Center, Martin Luther University Halle-Wittenberg, 06099 Halle, Germany
| | - Thomas Treiber
- Biochemistry Center Regensburg, Laboratory for RNA Biology, University of Regensburg, 93053 Regensburg, Germany
| | - Nora Treiber
- Biochemistry Center Regensburg, Laboratory for RNA Biology, University of Regensburg, 93053 Regensburg, Germany
| | - Christian Ihling
- Institute of Pharmacy, Charles Tanford Protein Center, Martin Luther University Halle-Wittenberg, 06099 Halle, Germany
| | - Anne Graber
- Institute of Biochemistry and Biotechnology, Charles Tanford Protein Center, Martin Luther University Halle-Wittenberg, 06099 Halle, Germany
- Biozentrum, University of Basel, CH-4056 Basel, Switzerland
| | - Walter Keller
- Biozentrum, University of Basel, CH-4056 Basel, Switzerland
| | - Gunter Meister
- Biochemistry Center Regensburg, Laboratory for RNA Biology, University of Regensburg, 93053 Regensburg, Germany
| | - Andrea Sinz
- Institute of Pharmacy, Charles Tanford Protein Center, Martin Luther University Halle-Wittenberg, 06099 Halle, Germany
| | - Elmar Wahle
- Institute of Biochemistry and Biotechnology, Charles Tanford Protein Center, Martin Luther University Halle-Wittenberg, 06099 Halle, Germany
| |
Collapse
|
30
|
Crickard JB, Lee J, Lee TH, Reese JC. The elongation factor Spt4/5 regulates RNA polymerase II transcription through the nucleosome. Nucleic Acids Res 2017; 45:6362-6374. [PMID: 28379497 PMCID: PMC5499766 DOI: 10.1093/nar/gkx220] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 03/23/2017] [Indexed: 01/04/2023] Open
Abstract
RNA polymerase II (RNAPII) passes through the nucleosome in a coordinated manner, generating several intermediate nucleosomal states as it breaks and then reforms histone–DNA contacts ahead of and behind it, respectively. Several studies have defined transcription-induced nucleosome intermediates using only RNA Polymerase. However, RNAPII is decorated with elongation factors as it transcribes the genome. One such factor, Spt4/5, becomes an integral component of the elongation complex, making direct contact with the ‘jaws’ of RNAPII and nucleic acids in the transcription scaffold. We have characterized the effect of incorporating Spt4/5 into the elongation complex on transcription through the 601R nucleosome. Spt4/5 suppressed RNAPII pausing at the major H3/H4-induced arrest point, resulting in downstream re-positioning of RNAPII further into the nucleosome. Using a novel single molecule FRET system, we found that Spt4/5 affected the kinetics of DNA re-wrapping and stabilized a nucleosomal intermediate with partially unwrapped DNA behind RNAPII. Comparison of nucleosomes of different sequence polarities suggest that the strength of the DNA–histone interactions behind RNAPII specifies the Spt4/5 requirement. We propose that Spt4/5 may be important to coordinate the mechanical movement of RNAPII through the nucleosome with co-transcriptional chromatin modifications during transcription, which is affected by the strength of histone–DNA interactions.
Collapse
Affiliation(s)
- John B Crickard
- Department of Biochemistry and Molecular Biology, Center for Eukaryotic Gene Regulation, Penn State University, University Park, PA 16802, USA
| | - Jaehyoun Lee
- Department of Chemistry, Penn State University, University Park, PA 16802, USA
| | - Tae-Hee Lee
- Department of Chemistry, Penn State University, University Park, PA 16802, USA
| | - Joseph C Reese
- Department of Biochemistry and Molecular Biology, Center for Eukaryotic Gene Regulation, Penn State University, University Park, PA 16802, USA
| |
Collapse
|
31
|
Miki TS, Carl SH, Großhans H. Two distinct transcription termination modes dictated by promoters. Genes Dev 2017; 31:1870-1879. [PMID: 29021241 PMCID: PMC5695088 DOI: 10.1101/gad.301093.117] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 09/15/2017] [Indexed: 02/06/2023]
Abstract
In this study, Miki et al. performed a genome-wide investigation of RNA polymerase II transcription termination in XRN2-deficient Caenorhabditis elegans and observed two distinct modes of termination. Their findings indicate that different termination mechanisms may work with different configurations of Pol II complexes dictated by promoters. Transcription termination determines the ends of transcriptional units and thereby ensures the integrity of the transcriptome and faithful gene regulation. Studies in yeast and human cells have identified the exoribonuclease XRN2 as a key termination factor for protein-coding genes. Here we performed a genome-wide investigation of RNA polymerase II (Pol II) transcription termination in XRN2-deficient Caenorhabditis elegans and observed two distinct modes of termination. Although a subset of genes requires XRN2, termination of other genes appears both independent of, and refractory to, XRN2. XRN2 independence is not merely a consequence of failure to recruit XRN2, since XRN2 is present on—and promotes Pol II accumulation near the polyadenylation sites of—both gene classes. Unexpectedly, promoters instruct the choice of termination mode, but XRN2-independent termination additionally requires a compatible region downstream from the 3′ end cleavage site. Hence, different termination mechanisms may work with different configurations of Pol II complexes dictated by promoters.
Collapse
Affiliation(s)
- Takashi S Miki
- Friedrich Miescher Institute for Biomedical Research, 4002 Basel, Switzerland
| | - Sarah H Carl
- Friedrich Miescher Institute for Biomedical Research, 4002 Basel, Switzerland.,Swiss Institute of Bioinformatics, 4002 Basel, Switzerland
| | - Helge Großhans
- Friedrich Miescher Institute for Biomedical Research, 4002 Basel, Switzerland
| |
Collapse
|
32
|
Larochelle M, Hunyadkürti J, Bachand F. Polyadenylation site selection: linking transcription and RNA processing via a conserved carboxy-terminal domain (CTD)-interacting protein. Curr Genet 2016; 63:195-199. [PMID: 27582274 DOI: 10.1007/s00294-016-0645-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 08/27/2016] [Indexed: 12/29/2022]
Abstract
Despite the fact that the process of mRNA polyadenylation has been known for more than 40 years, a detailed understating of the mechanism underlying polyadenylation site selection is still far from complete. As 3' end processing is intimately associated with RNA polymerase II (RNAPII) transcription, factors that can successively interact with the transcription machinery and recognize cis-acting sequences on the nascent pre-mRNA would be well suited to contribute to poly(A) site selection. Studies using the fission yeast Schizosaccharomyces pombe have recently identified Seb1, a protein that shares homology with Saccharomyces cerevisiae Nrd1 and human SCAF4/8, and that is critical for poly(A) site selection. Seb1 binds to the C-terminal domain (CTD) of RNAPII via a conserved CTD-interaction domain and recognizes specific sequence motifs clustered downstream of the polyadenylation site on the uncleaved pre-mRNA. In this short review, we summarize insights into Seb1-dependent poly(A) site selection and discuss some unanswered questions regarding its molecular mechanism and conservation.
Collapse
Affiliation(s)
- Marc Larochelle
- RNA Group, Department of Biochemistry, Université de Sherbrooke, 3201 Jean-Mignault, Sherbrooke, Québec, J1E 4K8, Canada
| | - Judit Hunyadkürti
- RNA Group, Department of Biochemistry, Université de Sherbrooke, 3201 Jean-Mignault, Sherbrooke, Québec, J1E 4K8, Canada
| | - François Bachand
- RNA Group, Department of Biochemistry, Université de Sherbrooke, 3201 Jean-Mignault, Sherbrooke, Québec, J1E 4K8, Canada.
| |
Collapse
|
33
|
Porrua O, Boudvillain M, Libri D. Transcription Termination: Variations on Common Themes. Trends Genet 2016; 32:508-522. [DOI: 10.1016/j.tig.2016.05.007] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2016] [Revised: 05/28/2016] [Accepted: 05/31/2016] [Indexed: 11/29/2022]
|
34
|
Abstract
Termination of RNA polymerase II (RNAPII) transcription is a fundamental step of gene expression that involves the release of the nascent transcript and dissociation of RNAPII from the DNA template. As transcription termination is intimately linked to RNA 3' end processing, termination pathways have a key decisive influence on the fate of the transcribed RNA. Quite remarkably, when reaching the 3' end of genes, a substantial fraction of RNAPII fail to terminate transcription, requiring the contribution of alternative or "fail-safe" mechanisms of termination to release the polymerase. This point of view covers redundant mechanisms of transcription termination and how they relate to conventional termination models. In particular, we expand on recent findings that propose a reverse torpedo model of termination, in which the 3'5' exonucleolytic activity of the RNA exosome targets transcription events associated with paused and backtracked RNAPII.
Collapse
Affiliation(s)
- Jean-François Lemay
- a Department of Biochemistry ; Faculté de Médecine et des Sciences de la Santé; Université de Sherbrooke; Pavillon de Recherche Appliquée sur le Cancer (PRAC) ; Sherbrooke, Quebec
| | - François Bachand
- a Department of Biochemistry ; Faculté de Médecine et des Sciences de la Santé; Université de Sherbrooke; Pavillon de Recherche Appliquée sur le Cancer (PRAC) ; Sherbrooke, Quebec
| |
Collapse
|
35
|
Crickard JB, Fu J, Reese JC. Biochemical Analysis of Yeast Suppressor of Ty 4/5 (Spt4/5) Reveals the Importance of Nucleic Acid Interactions in the Prevention of RNA Polymerase II Arrest. J Biol Chem 2016; 291:9853-70. [PMID: 26945063 DOI: 10.1074/jbc.m116.716001] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Indexed: 11/06/2022] Open
Abstract
RNA polymerase II (RNAPII) undergoes structural changes during the transitions from initiation, elongation, and termination, which are aided by a collection of proteins called elongation factors. NusG/Spt5 is the only elongation factor conserved in all domains of life. Although much information exists about the interactions between NusG/Spt5 and RNA polymerase in prokaryotes, little is known about how the binding of eukaryotic Spt4/5 affects the biochemical activities of RNAPII. We characterized the activities of Spt4/5 and interrogated the structural features of Spt5 required for it to interact with elongation complexes, bind nucleic acids, and promote transcription elongation. The eukaryotic specific regions of Spt5 containing the Kyrpides, Ouzounis, Woese domains are involved in stabilizing the association with the RNAPII elongation complex, which also requires the presence of the nascent transcript. Interestingly, we identify a region within the conserved NusG N-terminal (NGN) domain of Spt5 that contacts the non-template strand of DNA both upstream of RNAPII and in the transcription bubble. Mutating charged residues in this region of Spt5 did not prevent Spt4/5 binding to elongation complexes, but abrogated the cross-linking of Spt5 to DNA and the anti-arrest properties of Spt4/5, thus suggesting that contact between Spt5 (NGN) and DNA is required for Spt4/5 to promote elongation. We propose that the mechanism of how Spt5/NGN promotes elongation is fundamentally conserved; however, the eukaryotic specific regions of the protein evolved so that it can serve as a platform for other elongation factors and maintain its association with RNAPII as it navigates genomes packaged into chromatin.
Collapse
Affiliation(s)
- J Brooks Crickard
- From the Department of Biochemistry and Molecular Biology, Center for Eukaryotic Gene Regulation, Penn State University, University Park, Pennsylvania 16802 and
| | - Jianhua Fu
- the Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| | - Joseph C Reese
- From the Department of Biochemistry and Molecular Biology, Center for Eukaryotic Gene Regulation, Penn State University, University Park, Pennsylvania 16802 and
| |
Collapse
|
36
|
Tudek A, Candelli T, Libri D. Non-coding transcription by RNA polymerase II in yeast: Hasard or nécessité? Biochimie 2015; 117:28-36. [DOI: 10.1016/j.biochi.2015.04.020] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 04/27/2015] [Indexed: 12/17/2022]
|
37
|
Laitem C, Zaborowska J, Isa NF, Kufs J, Dienstbier M, Murphy S. CDK9 inhibitors define elongation checkpoints at both ends of RNA polymerase II-transcribed genes. Nat Struct Mol Biol 2015; 22:396-403. [PMID: 25849141 PMCID: PMC4424039 DOI: 10.1038/nsmb.3000] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 03/06/2015] [Indexed: 12/23/2022]
Abstract
Transcription through early-elongation checkpoints requires phosphorylation of negative transcription elongation factors (NTEFs) by the cyclin-dependent kinase (CDK) 9. Using CDK9 inhibitors and global run-on sequencing (GRO-seq), we have mapped CDK9 inhibitor-sensitive checkpoints genome wide in human cells. Our data indicate that early-elongation checkpoints are a general feature of RNA polymerase (pol) II-transcribed human genes and occur independently of polymerase stalling. Pol II that has negotiated the early-elongation checkpoint can elongate in the presence of inhibitors but, remarkably, terminates transcription prematurely close to the terminal polyadenylation (poly(A)) site. Our analysis has revealed an unexpected poly(A)-associated elongation checkpoint, which has major implications for the regulation of gene expression. Interestingly, the pattern of modification of the C-terminal domain of pol II terminated at this new checkpoint largely mirrors the pattern normally found downstream of the poly(A) site, thus suggesting common mechanisms of termination.
Collapse
Affiliation(s)
- Clélia Laitem
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | | | - Nur F Isa
- 1] Sir William Dunn School of Pathology, University of Oxford, Oxford, UK. [2] Department of Biotechnology, International Islamic University Malaysia, Pahang, Malaysia
| | - Johann Kufs
- Faculty of Science, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany
| | - Martin Dienstbier
- Computational Genomics Analysis and Training Programme, Medical Research Council Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Shona Murphy
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| |
Collapse
|
38
|
Dhir A, Dhir S, Proudfoot NJ, Jopling CL. Microprocessor mediates transcriptional termination of long noncoding RNA transcripts hosting microRNAs. Nat Struct Mol Biol 2015; 22:319-27. [PMID: 25730776 PMCID: PMC4492989 DOI: 10.1038/nsmb.2982] [Citation(s) in RCA: 110] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 02/05/2015] [Indexed: 12/13/2022]
Abstract
MicroRNAs (miRNAs) play a major part in the post-transcriptional regulation of gene expression. Mammalian miRNA biogenesis begins with cotranscriptional cleavage of RNA polymerase II (Pol II) transcripts by the Microprocessor complex. Although most miRNAs are located within introns of protein-coding transcripts, a substantial minority of miRNAs originate from long noncoding (lnc) RNAs, for which transcript processing is largely uncharacterized. We show, by detailed characterization of liver-specific lnc-pri-miR-122 and genome-wide analysis in human cell lines, that most lncRNA transcripts containing miRNAs (lnc-pri-miRNAs) do not use the canonical cleavage-and-polyadenylation pathway but instead use Microprocessor cleavage to terminate transcription. Microprocessor inactivation leads to extensive transcriptional readthrough of lnc-pri-miRNA and transcriptional interference with downstream genes. Consequently we define a new RNase III-mediated, polyadenylation-independent mechanism of Pol II transcription termination in mammalian cells.
Collapse
Affiliation(s)
- Ashish Dhir
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Somdutta Dhir
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Nick J Proudfoot
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | | |
Collapse
|
39
|
Meinel DM, Sträßer K. Co-transcriptional mRNP formation is coordinated within a molecular mRNP packaging station in S. cerevisiae. Bioessays 2015; 37:666-77. [PMID: 25801414 PMCID: PMC5054900 DOI: 10.1002/bies.201400220] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In eukaryotes, the messenger RNA (mRNA), the blueprint of a protein‐coding gene, is processed and packaged into a messenger ribonucleoprotein particle (mRNP) by mRNA‐binding proteins in the nucleus. The steps of mRNP formation – transcription, processing, packaging, and the orchestrated release of the export‐competent mRNP from the site of transcription for nuclear mRNA export – are tightly coupled to ensure a highly efficient and regulated process. The importance of highly accurate nuclear mRNP formation is illustrated by the fact that mutations in components of this pathway lead to cellular inviability or to severe diseases in metazoans. We hypothesize that efficient mRNP formation is realized by a molecular mRNP packaging station, which is built by several recruitment platforms and coordinates the individual steps of mRNP formation.
Collapse
Affiliation(s)
- Dominik M Meinel
- Bavarian Health and Food Safety Authority, Oberschleißheim, Germany
| | - Katja Sträßer
- Institute of Biochemistry, Justus Liebig University Giessen, Giessen, Germany
| |
Collapse
|
40
|
Porrua O, Libri D. Transcription termination and the control of the transcriptome: why, where and how to stop. Nat Rev Mol Cell Biol 2015; 16:190-202. [DOI: 10.1038/nrm3943] [Citation(s) in RCA: 201] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
41
|
Pearson E, Moore C. The evolutionarily conserved Pol II flap loop contributes to proper transcription termination on short yeast genes. Cell Rep 2014; 9:821-8. [PMID: 25437538 DOI: 10.1016/j.celrep.2014.10.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Revised: 09/18/2014] [Accepted: 10/01/2014] [Indexed: 01/19/2023] Open
Abstract
Current models of transcription termination factor recruitment to the RNA polymerase II (Pol II) transcription complex rely exclusively on the direct interaction between the termination factor and phosphorylated isoforms of the Pol II C-terminal domain (CTD). Here, we report that the Pol II flap loop is needed for physical interaction of Pol II with the Pcf11/Clp1 subcomplex of cleavage factor IA (CF IA), which functions in both 3? end processing and Pol II termination, and for proper termination of short RNAs in vitro and in vivo. Deletion of the flap loop reduces the in vivo interaction of Pol II with CF IA but increases the association of Nrd1 during stages of the transcription cycle when the CTD is predominantly Ser5 phosphorylated. We propose a model in which the flap loop coordinates a binding equilibrium between the competing termination factors Pcf11 and Nrd1 to Pol II during termination of short RNA synthesis.
Collapse
Affiliation(s)
- Erika Pearson
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Claire Moore
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111, USA.
| |
Collapse
|
42
|
Delineating the structural blueprint of the pre-mRNA 3'-end processing machinery. Mol Cell Biol 2014; 34:1894-910. [PMID: 24591651 DOI: 10.1128/mcb.00084-14] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Processing of mRNA precursors (pre-mRNAs) by polyadenylation is an essential step in gene expression. Polyadenylation consists of two steps, cleavage and poly(A) synthesis, and requires multiple cis elements in the pre-mRNA and a megadalton protein complex bearing the two essential enzymatic activities. While genetic and biochemical studies remain the major approaches in characterizing these factors, structural biology has emerged during the past decade to help understand the molecular assembly and mechanistic details of the process. With structural information about more proteins and higher-order complexes becoming available, we are coming closer to obtaining a structural blueprint of the polyadenylation machinery that explains both how this complex functions and how it is regulated and connected to other cellular processes.
Collapse
|
43
|
The Ess1 prolyl isomerase: traffic cop of the RNA polymerase II transcription cycle. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1839:316-33. [PMID: 24530645 DOI: 10.1016/j.bbagrm.2014.02.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2014] [Revised: 02/01/2014] [Accepted: 02/03/2014] [Indexed: 11/23/2022]
Abstract
Ess1 is a prolyl isomerase that regulates the structure and function of eukaryotic RNA polymerase II. Ess1 works by catalyzing the cis/trans conversion of pSer5-Pro6 bonds, and to a lesser extent pSer2-Pro3 bonds, within the carboxy-terminal domain (CTD) of Rpb1, the largest subunit of RNA pol II. Ess1 is conserved in organisms ranging from yeast to humans. In budding yeast, Ess1 is essential for growth and is required for efficient transcription initiation and termination, RNA processing, and suppression of cryptic transcription. In mammals, Ess1 (called Pin1) functions in a variety of pathways, including transcription, but it is not essential. Recent work has shown that Ess1 coordinates the binding and release of CTD-binding proteins that function as co-factors in the RNA pol II complex. In this way, Ess1 plays an integral role in writing (and reading) the so-called CTD code to promote production of mature RNA pol II transcripts including non-coding RNAs and mRNAs.
Collapse
|
44
|
Rataj K, Simpson GG. Message ends: RNA 3' processing and flowering time control. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:353-63. [PMID: 24363425 DOI: 10.1093/jxb/ert439] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Plants control the time at which they flower in order to ensure reproductive success. This control is underpinned by precision in gene regulation acting through genetically separable pathways. The genetic dissection of this process in the model plant Arabidopsis thaliana has led to the recurrent identification of plant-specific and highly conserved RNA 3' end processing factors required to control flowering by specifically controlling transcription of mRNA encoding the floral repressor FLOWERING LOCUS C (FLC). Here, we review the features of these RNA-processing and RNA-associated proteins, and the complex architecture of coding and non-coding RNA transcription at the FLC locus. We discuss alternative concepts that might explain how these RNA-processing events regulate FLC transcription and hence control flowering time.
Collapse
Affiliation(s)
- Katarzyna Rataj
- College of Life Sciences, University of Dundee, Dundee DD1 4HN, UK
| | | |
Collapse
|
45
|
Affiliation(s)
- Jiannan Guo
- Biochemistry Department, University of Iowa , Iowa City, Iowa 52242, United States
| | | |
Collapse
|
46
|
Corden JL. RNA polymerase II C-terminal domain: Tethering transcription to transcript and template. Chem Rev 2013; 113:8423-55. [PMID: 24040939 PMCID: PMC3988834 DOI: 10.1021/cr400158h] [Citation(s) in RCA: 136] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Jeffry L Corden
- Department of Molecular Biology and Genetics, The Johns Hopkins University School of Medicine , 725 North Wolfe Street, Baltimore Maryland 21205, United States
| |
Collapse
|
47
|
O'Reilly D, Kuznetsova OV, Laitem C, Zaborowska J, Dienstbier M, Murphy S. Human snRNA genes use polyadenylation factors to promote efficient transcription termination. Nucleic Acids Res 2013; 42:264-75. [PMID: 24097444 PMCID: PMC3874203 DOI: 10.1093/nar/gkt892] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
RNA polymerase II transcribes both protein coding and non-coding RNA genes and, in yeast, different mechanisms terminate transcription of the two gene types. Transcription termination of mRNA genes is intricately coupled to cleavage and polyadenylation, whereas transcription of small nucleolar (sno)/small nuclear (sn)RNA genes is terminated by the RNA-binding proteins Nrd1, Nab3 and Sen1. The existence of an Nrd1-like pathway in humans has not yet been demonstrated. Using the U1 and U2 genes as models, we show that human snRNA genes are more similar to mRNA genes than yeast snRNA genes with respect to termination. The Integrator complex substitutes for the mRNA cleavage and polyadenylation specificity factor complex to promote cleavage and couple snRNA 3′-end processing with termination. Moreover, members of the associated with Pta1 (APT) and cleavage factor I/II complexes function as transcription terminators for human snRNA genes with little, if any, role in snRNA 3′-end processing. The gene-specific factor, proximal sequence element-binding transcription factor (PTF), helps clear the U1 and U2 genes of nucleosomes, which provides an easy passage for pol II, and the negative elongation factor facilitates termination at the end of the genes where nucleosome levels increase. Thus, human snRNA genes may use chromatin structure as an additional mechanism to promote efficient transcription termination in vivo.
Collapse
Affiliation(s)
- Dawn O'Reilly
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK and CGAT, MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford OX1 3PT, UK
| | | | | | | | | | | |
Collapse
|
48
|
Xing D, Wang Y, Xu R, Ye X, Yang D, Li QQ. The regulatory role of Pcf11-similar-4 (PCFS4) in Arabidopsis development by genome-wide physical interactions with target loci. BMC Genomics 2013; 14:598. [PMID: 24004414 PMCID: PMC3844406 DOI: 10.1186/1471-2164-14-598] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Accepted: 08/27/2013] [Indexed: 11/29/2022] Open
Abstract
Background The yeast and human Pcf11 functions in both constitutive and regulated transcription and pre-mRNA processing. The constitutive roles of PCF11 are largely mediated by its direct interaction with RNA Polymerase II C-terminal domain and a polyadenylation factor, Clp1. However, little is known about the mechanism of the regulatory roles of Pcf11. Though similar to Pcf11 in multiple aspects, Arabidopsis Pcf11-similar-4 protein (PCFS4) plays only a regulatory role in Arabidopsis gene expression. Towards understanding how PCFS4 regulates the expression of its direct target genes in a genome level, ChIP-Seq approach was employed in this study to identify PCFS4 enrichment sites (ES) and the ES-linked genes within the Arabidopsis genome. Results A total of 892 PCFS4 ES sites linked to 839 genes were identified. Distribution analysis of the ES sites along the gene bodies suggested that PCFS4 is preferentially located on the coding sequences of the genes, consistent with its regulatory role in transcription and pre-mRNA processing. Gene ontology (GO) analysis revealed that the ES-linked genes were specifically enriched in a few GO terms, including those categories of known PCFS4 functions in Arabidopsis development. More interestingly, GO analysis suggested novel roles of PCFS4. An example is its role in circadian rhythm, which was experimentally verified herein. ES site sequences analysis identified some over-represented sequence motifs shared by subsets of ES sites. The motifs may explain the specificity of PCFS4 on its target genes and the PCFS4's functions in multiple aspects of Arabidopsis development and behavior. Conclusions Arabidopsis PCFS4 has been shown to specifically target on, and physically interact with, the subsets of genes. Its targeting specificity is likely mediated by cis-elements shared by the genes of each subset. The potential regulation on both transcription and mRNA processing levels of each subset of the genes may explain the functions of PCFS4 in multiple aspects of Arabidopsis development and behavior.
Collapse
Affiliation(s)
- Denghui Xing
- Department of Botany, Miami University, Oxford, OH 45056, USA.
| | | | | | | | | | | |
Collapse
|
49
|
Jeronimo C, Bataille AR, Robert F. The Writers, Readers, and Functions of the RNA Polymerase II C-Terminal Domain Code. Chem Rev 2013; 113:8491-522. [DOI: 10.1021/cr4001397] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Célia Jeronimo
- Institut de recherches cliniques de Montréal, Montréal, Québec,
Canada H2W 1R7
| | - Alain R. Bataille
- Institut de recherches cliniques de Montréal, Montréal, Québec,
Canada H2W 1R7
| | - François Robert
- Institut de recherches cliniques de Montréal, Montréal, Québec,
Canada H2W 1R7
- Département
de Médecine,
Faculté de Médecine, Université de Montréal, Montréal, Québec,
Canada H3T 1J4
| |
Collapse
|
50
|
Porrua O, Libri D. A bacterial-like mechanism for transcription termination by the Sen1p helicase in budding yeast. Nat Struct Mol Biol 2013; 20:884-91. [PMID: 23748379 DOI: 10.1038/nsmb.2592] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Accepted: 04/22/2013] [Indexed: 12/25/2022]
Abstract
Transcription termination is essential to generate functional RNAs and to prevent disruptive polymerase collisions resulting from concurrent transcription. The yeast Sen1p helicase is involved in termination of most noncoding RNAs transcribed by RNA polymerase II (RNAPII). However, the mechanism of termination and the role of this protein have remained enigmatic. Here we address the mechanism of Sen1p-dependent termination by using a highly purified in vitro system. We show that Sen1p is the key enzyme of the termination reaction and reveal features of the termination mechanism. Like the bacterial termination factor Rho, Sen1p recognizes the nascent RNA and hydrolyzes ATP to dissociate the elongation complex. Sen1p-dependent termination is highly specific and, notably, does not require the C-terminal domain of RNAPII. We also show that termination is inhibited by RNA-DNA hybrids. Our results elucidate the role of Sen1p in controlling pervasive transcription.
Collapse
Affiliation(s)
- Odil Porrua
- Centre de Génétique Moléculaire, Centre National de la Recherche Scientifique, Gif sur Yvette, France.
| | | |
Collapse
|