1
|
Merz LM, Winter K, Richter S, Kallendrusch S, Horn A, Grunewald S, Klöting N, Krause K, Kiess W, Le Duc D, Garten A. Effects of alpelisib treatment on murine Pten-deficient lipomas. Adipocyte 2025; 14:2468275. [PMID: 39962643 PMCID: PMC11844927 DOI: 10.1080/21623945.2025.2468275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 01/20/2025] [Accepted: 01/31/2025] [Indexed: 02/23/2025] Open
Abstract
Phosphatase and tensin homolog (PTEN) hamartoma tumour syndrome (PHTS) is a rare disorder caused by germline mutations in the tumour suppressor gene PTEN, a key negative regulator of phosphatidylinositol 3-kinase (PI3K)/AKT signalling. Children with PHTS often develop lipomas, for which only surgical resection is available as treatment. We investigated the effects of the selective PI3K-inhibitor alpelisib on Pten-deficient lipomas. After incubation with alpelisib or the non-selective PI3K inhibitor wortmannin, we analysed histology, gene expression, and Pi3k pathway in lipoma and control epididymal adipose tissue (epiWAT). Alpelisib increased adipocyte area in lipomas compared to epiWAT. Baseline gene expression showed higher levels of markers for proliferation (Pcna), fibrosis (Tgfb1), and adipogenesis (Pparg) in lipomas, while hormone-sensitive lipase expression was lower than in epiWAT. Following alpelisib incubation, target genes of Pi3k signalling and extracellular matrix factors were reduced. We confirmed Pi3k inhibition through detecting decreased Akt levels compared to control treatment. Human lipoma samples treated with alpelisib showed variable lipolysis responses, suggesting variability in therapeutic outcomes. We established an ex vivo model to study alpelisib effects on Pten-deficient lipomas. These results underscore the therapeutic potential of targeted PI3K inhibition in the treatment of PHTS-associated lipomas, particularly in cases that are inoperable.
Collapse
Affiliation(s)
- Lea M. Merz
- Center for Pediatric Research, University Hospital for Children & Adolescents, Leipzig University, Leipzig, Germany
| | - Karsten Winter
- Institute of Anatomy, Leipzig University, Leipzig, Germany
| | - Sandy Richter
- Center for Pediatric Research, University Hospital for Children & Adolescents, Leipzig University, Leipzig, Germany
| | - Sonja Kallendrusch
- Institute of Anatomy, Leipzig University, Leipzig, Germany
- Institute of Clinical Research and Systems Medicine, Health and Medical University Potsdam, Potsdam, Germany
| | - Andreas Horn
- Institute of Anatomy, Leipzig University, Leipzig, Germany
| | - Sonja Grunewald
- Department for Dermatology, Venereology and Allergology, University Hospital Leipzig, Leipzig, Germany
| | - Nora Klöting
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG), Helmholtz Center Munich at the University and University Hospital Leipzig, Leipzig, Germany
| | - Kerstin Krause
- Department of Endocrinology, Nephrology and Rheumatology, University Hospital Leipzig, Leipzig, Germany
| | - Wieland Kiess
- Center for Pediatric Research, University Hospital for Children & Adolescents, Leipzig University, Leipzig, Germany
| | - Diana Le Duc
- Institute of Human Genetics, University Hospital Leipzig, Leipzig, Germany
| | - Antje Garten
- Center for Pediatric Research, University Hospital for Children & Adolescents, Leipzig University, Leipzig, Germany
| |
Collapse
|
2
|
Zheng C, Zhang C, He Y, Lin S, Zhu Z, Wang H, Chen G. Cbfβ: A key regulator in skeletal stem cell differentiation, bone development, and disease. FASEB J 2025; 39:e70399. [PMID: 39996474 DOI: 10.1096/fj.202500030r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 02/03/2025] [Accepted: 02/06/2025] [Indexed: 02/26/2025]
Abstract
The skeletal system comprises closely related yet functionally distinct bone and cartilage tissues, regulated by a complex network of transcriptional factors and signaling molecules. Among these, core-binding factor subunit beta (Cbfβ) emerges as a critical co-transcriptional factor that stabilizes Runx proteins, playing indispensable roles in skeletal development and homeostasis. Emerging evidence from genetic mouse models has highlighted the essential role of Cbfβ in directing the lineage commitment of mesenchymal stem cells (MSCs) and their differentiation into osteoblasts and chondrocytes. Notably, Cbfβ deficiency is strongly associated with severe skeletal dysplasia, affecting both endochondral and intramembranous ossification during embryonic and postnatal development. In this review, we synthesize recent advancements in understanding the structural and molecular functions of Cbfβ, with a particular focus on its interactions with key signaling pathways, including BMP/TGF-β, Wnt/β-catenin, Hippo/YAP, and IHH/PTHrP. These pathways converge on the Cbfβ/RUNX2 complex, which orchestrates a gene expression program essential for osteogenesis, bone formation, and cartilage development. The integration of these signaling networks ensures the precise regulation of skeletal development, remodeling, and repair. Furthermore, the successful local delivery of Cbfβ to address bone abnormalities underscores its potential as a novel therapeutic target for skeletal disorders such as cleidocranial dysplasia, osteoarthritis, and bone metastases. By elucidating the molecular mechanisms underlying Cbfβ function and its interactions with key signaling pathways, these insights not only advance our understanding of skeletal biology but also offer promising avenues for clinical intervention, ultimately improving outcomes for patients with skeletal disorders.
Collapse
Affiliation(s)
- Chenggong Zheng
- Department of Biopharmaceutics, Zhejiang Provincial Engineering Research Center of New Technologies and Applications for Targeted Therapy of Major Diseases, College of Life Science and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Chenyang Zhang
- Department of Biopharmaceutics, Zhejiang Provincial Engineering Research Center of New Technologies and Applications for Targeted Therapy of Major Diseases, College of Life Science and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Yiliang He
- Department of Biopharmaceutics, Zhejiang Provincial Engineering Research Center of New Technologies and Applications for Targeted Therapy of Major Diseases, College of Life Science and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Sisi Lin
- Department of Biopharmaceutics, Zhejiang Provincial Engineering Research Center of New Technologies and Applications for Targeted Therapy of Major Diseases, College of Life Science and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Zhenya Zhu
- Department of Orthopedics, Jiaxing Hospital of Traditional Chinese Medicine, Jiaxing, China
| | - Haidong Wang
- Department of Orthopedics, Jiaxing Hospital of Traditional Chinese Medicine, Jiaxing, China
| | - Guiqian Chen
- Department of Biopharmaceutics, Zhejiang Provincial Engineering Research Center of New Technologies and Applications for Targeted Therapy of Major Diseases, College of Life Science and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| |
Collapse
|
3
|
Tlemsani C, Bougeard G, Gauthier-Villars M, Denizeau P, Winter S, Michot C, Baujat G, Bressac B, Adam de Beaumais T, Rouchaud A, Mihoubi-Bouvier F, Bourdeaut F, Brugières L, Leblanc T, Kasper E, Corradini N. Bone sarcomas and cancer predisposition syndromes. Bull Cancer 2025:S0007-4551(25)00017-7. [PMID: 39848894 DOI: 10.1016/j.bulcan.2024.10.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 10/03/2024] [Accepted: 10/05/2024] [Indexed: 01/25/2025]
Abstract
Bone sarcomas, constituting less than 1% of malignant neoplasms across all age groups, are rare tumours possibly associated with genetic susceptibility syndromes. This review aims to provide recommendations for the detection of cancer predisposition syndromes associated with bone sarcomas and managing affected patients. Recommendations were formulated by a multidisciplinary working and reviewing group from GROUPOS and SFCE oncogenetic's group, including geneticists, oncologists, and radiologists. For various bone sarcomas including osteosarcomas, chondrosarcomas and Ewing sarcomas, we delineate tumour presentation, management strategies, and follow-up within the context of cancer predisposition syndromes. The inherited predisposition syndrome, associated with germline TP53 variants, known as the Li-Fraumeni syndrome, is the most frequent implicated in osteosarcoma cases. Other cancer predisposition syndromes, such as RB1, RECQ or CDKN2A disorders in osteosarcomas and Ollier and Maffucci diseases in chondrosarcomas, are also recognized. Additionally, we discuss rarer cancer predisposition syndromes associated with bone sarcomas and suggest tailored treatment approaches in some cancer predisposition syndromes to mitigate severe toxicities or secondary oncological events. Furthermore, we emphasize the role of identification somatic molecular variations in identifying constitutional germline variants and describe national and international screening programs, reference networks and molecular tumour boards available for collegial and collaborative management discussion. This comprehensive review provides insights into the intricate interplay between genetic predisposition, tumour biology, and therapeutic interventions in bone sarcoma patients with cancer predisposition syndrome.
Collapse
Affiliation(s)
- Camille Tlemsani
- Department of Medical Oncology, Cochin Hospital, Paris Cancer Institute CARPEM, AP-HP, Université Paris Cité, Paris, France; Institut Cochin, Inserm U1016, CNRS UMR8104, CARPEM, Université Paris Cité, Paris, France
| | - Gaëlle Bougeard
- Department of Genetics, Inserm U1245, CHU de Rouen, Normandie Université, Université Rouen Normandie, 76000 Rouen, France
| | | | - Philippe Denizeau
- Department of Medical Genetic, Centre Hospitalier Universitaire de Rennes, Rennes, France
| | - Sarah Winter
- SIREDO Oncology Center (Care, Innovation and Research for Children, Adolescents and Young Adults with Cancer) Institut Curie, PSL University, Paris, France
| | - Caroline Michot
- Reference Center for Skeletal Dysplasia, Necker-Enfants-Malades Hospital, AP-HP, 75015 Paris, France
| | - Geneviève Baujat
- Reference Center for Skeletal Dysplasia, Necker-Enfants-Malades Hospital, AP-HP, 75015 Paris, France
| | - Brigitte Bressac
- Biopathology Department, Inserm U1279, Gustave-Roussy, Paris-Saclay University, 94805 Villejuif, France
| | | | - Aymeric Rouchaud
- Department of Radiology (IMVOC), Clinique du Val d'Ouest, Écully, France
| | - Fadila Mihoubi-Bouvier
- Department of Diagnostic and Interventional Musculoskeletal Radiology, Cochin Hospital, Paris Cancer Institute CARPEM, AP-HP. Centre, Université Paris Cité, Paris, France
| | - Franck Bourdeaut
- SIREDO Oncology Center (Care, Innovation and Research for Children, Adolescents and Young Adults with Cancer) Institut Curie, PSL University, Paris, France
| | - Laurence Brugières
- Department of Children and Adolescents Oncology, Gustave-Roussy Cancer, Paris-Saclay University, Villejuif, France
| | - Thierry Leblanc
- Service d'Immunologie et d'Hématologie Pédiatrique, Hôpital Universitaire Robert-Debré, AP-HP, Université Paris Cité, Paris, France
| | - Edwige Kasper
- Department of Genetics, Inserm U1245, CHU de Rouen, Normandie Université, Université Rouen Normandie, 76000 Rouen, France
| | - Nadège Corradini
- Department of Paediatric Oncology, Institut d'Haematologie et d'Oncologie Pédiatrique, Centre Léon-Bérard, Lyon, France.
| |
Collapse
|
4
|
Ostoich PV. The Significance of the Response: Beyond the Mechanics of DNA Damage and Repair-Physiological, Genetic, and Systemic Aspects of Radiosensitivity in Higher Organisms. Int J Mol Sci 2024; 26:257. [PMID: 39796112 PMCID: PMC11719969 DOI: 10.3390/ijms26010257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 12/21/2024] [Accepted: 12/29/2024] [Indexed: 01/13/2025] Open
Abstract
Classical radiation biology as we understand it clearly identifies genomic DNA as the primary target of ionizing radiation. The evidence appears rock-solid: ionizing radiation typically induces DSBs with a yield of ~30 per cell per Gy, and unrepaired DSBs are a very cytotoxic lesion. We know very well the kinetics of induction and repair of different types of DNA damage in different organisms and cell lines. And yet, higher organisms differ in their radiation sensitivity-humans can be unpredictably radiosensitive during radiotherapy; this can be due to genetic defects (e.g., ataxia telangiectasia (AT), Fanconi anemia, Nijmegen breakage syndrome (NBS), and the xeroderma pigmentosum spectrum, among others) but most often is unexplained. Among other mammals, goats (Capra hircus) appear to be very radiosensitive (LD50 = 2.4 Gy), while Mongolian gerbils (Meriones unguiculatus) are radioresistant and withstand quadruple that dose (LD50 = 10 Gy). Primary radiation lethality in mammals is due most often to hematopoietic insufficiency, which is, in the words of Dr. Theodor Fliedner, one of the pioneers of radiation hematology, "a disturbance in cellular kinetics". And yet, what makes one cell type, or one particular organism, more sensitive to ionizing radiation? The origins of radiosensitivity go above and beyond the empirical evidence and models of DNA damage and repair-as scientists, we must consider other phenomena: the radiation-induced bystander effect (RIBE), abscopal effects, and, of course, genomic instability and immunomodulation. It seems that radiosensitivity is not entirely determined by the mathematics of DNA damage and repair, and it is conceivable that radiation biology may benefit from an informed enquiry into physiology and organism-level signaling affecting radiation responses. The current article is a review of several key aspects of radiosensitivity beyond DNA damage induction and repair; it presents evidence supporting new potential venues of research for radiation biologists.
Collapse
Affiliation(s)
- Peter V Ostoich
- Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| |
Collapse
|
5
|
Wu A, Yang ZK, Kong P, Yu P, Li YT, Xu JL, Bian SS, Teng JW. Exploring osteosarcoma based on the tumor microenvironment. Front Immunol 2024; 15:1423194. [PMID: 39654890 PMCID: PMC11625786 DOI: 10.3389/fimmu.2024.1423194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 11/07/2024] [Indexed: 12/12/2024] Open
Abstract
Osteosarcoma is a cancerous bone tumor that develops from mesenchymal cells and is characterized by early metastasis, easy drug resistance, high disability, and mortality. Immunological characteristics of the tumor microenvironment (TME) have attracted attention for the prognosis and treatment of osteosarcoma, and there is a need to explore a signature with high sensitivity for prognosis. In the present study, a total of 84 samples of osteosarcoma were acquired from the UCSC Xena database, analyzed for immune infiltration and classified into two categories depending on their immune properties, and then screened for DEGs between the two groups and analyzed for enrichment, with the majority of DEGs enriched in the immune domain. To further analyze their immune characteristics, the immune-related genes were obtained from the TIMER database. We performed an intersection analysis to identify immune-related differentially expressed genes (IR-DEGs), which were analyzed using a univariate COX regression, and LASSO analysis was used to obtain the ideal genes to construct the risk model, and to uncover the prognostic distinctions between high-risk scoring group and low-risk scoring group, a survival analysis was conducted. The risk assessment model developed in this study revealed a notable variation in survival analysis outcomes between the high-risk and low-risk scoring groups, and the conclusions reached by the model are consistent with the findings of previous scholars. They also yield meaningful results when analyzing immune checkpoints. The risk assessment model developed in this study is precise and dependable for forecasting outcomes and analyzing characteristics of osteosarcoma.
Collapse
Affiliation(s)
- Ao Wu
- The First Clinical College of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Zhi-kai Yang
- Hand and Foot Orthopaedic Department, Changle County People’s Hospital, Weifang, Shandong, China
| | - Peng Kong
- Department of Minimally Invasive Orthopedics, Affiliated Hospital of Shandong Traditional Chinese Medicine University, Jinan, Shandong, China
| | - Peng Yu
- The First Clinical College of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - You-tong Li
- The First Clinical College of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Jia-le Xu
- The First Clinical College of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Si-shan Bian
- Department of Traumatology and Orthopaedics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Jia-wen Teng
- Department of Traumatology and Orthopaedics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| |
Collapse
|
6
|
Ucci A, Giacchi L, Rucci N. Primary Bone Tumors and Breast Cancer-Induced Bone Metastases: In Vivo Animal Models and New Alternative Approaches. Biomedicines 2024; 12:2451. [PMID: 39595017 PMCID: PMC11591690 DOI: 10.3390/biomedicines12112451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 10/21/2024] [Accepted: 10/23/2024] [Indexed: 11/28/2024] Open
Abstract
Bone is the preferential site of metastasis for the most common tumors, including breast cancer. On the other hand, osteosarcoma is the primary bone cancer that most commonly occurs and causes bone cancer-related deaths in children. Several treatment strategies have been developed so far, with little or no efficacy for patient survival and with the development of side effects. Therefore, there is an urgent need to develop more effective therapies for bone primary tumors and bone metastatic disease. This almost necessarily requires the use of in vivo animal models that better mimic human pathology and at the same time follow the ethical principles for the humane use of animal testing. In this review we aim to illustrate the main and more suitable in vivo strategies employed to model bone metastases and osteosarcoma. We will also take a look at the recent technologies implemented for a partial replacement of animal testing.
Collapse
Affiliation(s)
| | | | - Nadia Rucci
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (A.U.); (L.G.)
| |
Collapse
|
7
|
Young EP, Marinoff AE, Lopez-Fuentes E, Sweet-Cordero EA. Osteosarcoma through the Lens of Bone Development, Signaling, and Microenvironment. Cold Spring Harb Perspect Med 2024; 14:a041635. [PMID: 38565264 PMCID: PMC11444254 DOI: 10.1101/cshperspect.a041635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
In this work, we review the multifaceted connections between osteosarcoma (OS) biology and normal bone development. We summarize and critically analyze existing research, highlighting key areas that merit further exploration. The review addresses several topics in OS biology and their interplay with normal bone development processes, including OS cell of origin, genomics, tumor microenvironment, and metastasis. We examine the potential cellular origins of OS and how their roles in normal bone growth may contribute to OS pathogenesis. We survey the genomic landscape of OS, highlighting the developmental roles of genes frequently altered in OS. We then discuss the OS microenvironment, emphasizing the transformation of the bone niche in OS to facilitate tumor growth and metastasis. The role of stromal and immune cells is examined, including their impact on tumor progression and therapeutic response. We further provide insights into potential development-informed opportunities for novel therapeutic strategies.
Collapse
Affiliation(s)
- Elizabeth P Young
- Division of Pediatric Oncology, Department of Pediatrics, University of California San Francisco, San Francisco, California 94158, USA
| | - Amanda E Marinoff
- Division of Pediatric Oncology, Department of Pediatrics, University of California San Francisco, San Francisco, California 94158, USA
| | - Eunice Lopez-Fuentes
- Division of Pediatric Oncology, Department of Pediatrics, University of California San Francisco, San Francisco, California 94158, USA
| | - E Alejandro Sweet-Cordero
- Division of Pediatric Oncology, Department of Pediatrics, University of California San Francisco, San Francisco, California 94158, USA
| |
Collapse
|
8
|
Ueno T, Otani S, Date Y, Katsuma Y, Nagayoshi Y, Ito T, Ii H, Kageyama S, Nakata S, Ito K. Myc upregulates Ggct, γ-glutamylcyclotransferase to promote development of p53-deficient osteosarcoma. Cancer Sci 2024; 115:2961-2971. [PMID: 38924236 PMCID: PMC11462974 DOI: 10.1111/cas.16255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/05/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024] Open
Abstract
Osteosarcoma (OS) in humans is characterized by alterations in the TP53 gene. In mice, loss of p53 triggers OS development, for which c-Myc (Myc) oncogenicity is indispensable. However, little is known about which genes are targeted by Myc to promote tumorigenesis. Here, we examined the role of γ-glutamylcyclotransferase (Ggct) which is a component enzyme of the γ-glutamyl cycle essential for glutathione homeostasis, in human and mouse OS development. We found that GGCT is a poor prognostic factor for human OS, and that deletion of Ggct suppresses p53-deficient osteosarcomagenesis in mice. Myc upregulates Ggct directly by binding to the Ggct promoter, and deletion of a Myc binding site therein by genome editing attenuated the tumorigenic potential of p53-deficient OS cells. Taken together, these results show a rationale that GGCT is widely upregulated in cancer cells and solidify its suitability as a target for anticancer drugs.
Collapse
Affiliation(s)
- Tomoya Ueno
- Department of Molecular Tumor Biology, Graduate School of Biomedical SciencesNagasaki UniversityNagasakiJapan
| | - Shohei Otani
- Department of Molecular Tumor Biology, Graduate School of Biomedical SciencesNagasaki UniversityNagasakiJapan
| | - Yuki Date
- Department of Molecular Tumor Biology, Graduate School of Biomedical SciencesNagasaki UniversityNagasakiJapan
| | - Yu Katsuma
- Department of Molecular Tumor Biology, Graduate School of Biomedical SciencesNagasaki UniversityNagasakiJapan
| | - Yuma Nagayoshi
- Department of Molecular Tumor Biology, Graduate School of Biomedical SciencesNagasaki UniversityNagasakiJapan
| | - Tomoko Ito
- Department of Molecular Tumor Biology, Graduate School of Biomedical SciencesNagasaki UniversityNagasakiJapan
| | - Hiromi Ii
- Department of Clinical OncologyKyoto Pharmaceutical UniversityKyotoJapan
| | - Susumu Kageyama
- Department of UrologyShiga University of Medical ScienceOtsuJapan
| | - Susumu Nakata
- Department of Clinical OncologyKyoto Pharmaceutical UniversityKyotoJapan
| | - Kosei Ito
- Department of Molecular Tumor Biology, Graduate School of Biomedical SciencesNagasaki UniversityNagasakiJapan
| |
Collapse
|
9
|
Fatema K, Wang Y, Pavek A, Larson Z, Nartker C, Plyler S, Jeppesen A, Mehling B, Capecchi MR, Jones KB, Barrott JJ. Arid1a Loss Enhances Disease Progression in a Murine Model of Osteosarcoma. Cancers (Basel) 2024; 16:2725. [PMID: 39123453 PMCID: PMC11311538 DOI: 10.3390/cancers16152725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/25/2024] [Accepted: 07/28/2024] [Indexed: 08/12/2024] Open
Abstract
Osteosarcoma is an aggressive bone malignancy, molecularly characterized by acquired genome complexity and frequent loss of TP53 and RB1. Obtaining a molecular understanding of the initiating mutations of osteosarcomagenesis has been challenged by the difficulty of parsing between passenger and driver mutations in genes. Here, a forward genetic screen in a genetic mouse model of osteosarcomagenesis initiated by Trp53 and Rb1 conditional loss in pre-osteoblasts identified that Arid1a loss contributes to OS progression. Arid1a is a member of the canonical BAF (SWI/SNF) complex and a known tumor suppressor gene in other cancers. We hypothesized that the loss of Arid1a increases the rate of tumor progression and metastasis. Phenotypic evaluation upon in vitro and in vivo deletion of Arid1a validated this hypothesis. Gene expression and pathway analysis revealed a correlation between Arid1a loss and genomic instability, and the subsequent dysregulation of genes involved in DNA DSB or SSB repair pathways. The most significant of these transcriptional changes was a concomitant decrease in DCLRE1C. Our findings suggest that Arid1a plays a role in genomic instability in aggressive osteosarcoma and a better understanding of this correlation can help with clinical prognoses and personalized patient care.
Collapse
Affiliation(s)
- Kaniz Fatema
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, Idaho State University, Pocatello, ID 83209, USA; (K.F.); (A.P.); (C.N.); (S.P.); (A.J.); (B.M.)
| | - Yanliang Wang
- Department of Oncological Sciences, University of Utah School of Medicine, Salt Lake City, UT 84132, USA;
- Department of Orthopaedics, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
- Huntsman Cancer Institute, Salt Lake City, UT 84112, USA
| | - Adriene Pavek
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, Idaho State University, Pocatello, ID 83209, USA; (K.F.); (A.P.); (C.N.); (S.P.); (A.J.); (B.M.)
| | - Zachary Larson
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, Idaho State University, Pocatello, ID 83209, USA; (K.F.); (A.P.); (C.N.); (S.P.); (A.J.); (B.M.)
| | - Christopher Nartker
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, Idaho State University, Pocatello, ID 83209, USA; (K.F.); (A.P.); (C.N.); (S.P.); (A.J.); (B.M.)
| | - Shawn Plyler
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, Idaho State University, Pocatello, ID 83209, USA; (K.F.); (A.P.); (C.N.); (S.P.); (A.J.); (B.M.)
| | - Amanda Jeppesen
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, Idaho State University, Pocatello, ID 83209, USA; (K.F.); (A.P.); (C.N.); (S.P.); (A.J.); (B.M.)
| | - Breanna Mehling
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, Idaho State University, Pocatello, ID 83209, USA; (K.F.); (A.P.); (C.N.); (S.P.); (A.J.); (B.M.)
| | - Mario R. Capecchi
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT 84132, USA;
| | - Kevin B. Jones
- Department of Oncological Sciences, University of Utah School of Medicine, Salt Lake City, UT 84132, USA;
- Department of Orthopaedics, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
- Huntsman Cancer Institute, Salt Lake City, UT 84112, USA
| | - Jared J. Barrott
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, Idaho State University, Pocatello, ID 83209, USA; (K.F.); (A.P.); (C.N.); (S.P.); (A.J.); (B.M.)
- Department of Oncological Sciences, University of Utah School of Medicine, Salt Lake City, UT 84132, USA;
- Department of Orthopaedics, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
- Huntsman Cancer Institute, Salt Lake City, UT 84112, USA
- Department of Cell Biology and Physiology, Brigham Young University, Provo, UT 84602, USA
- Simmons Center for Cancer Research, Provo, UT 84602, USA
| |
Collapse
|
10
|
Petrescu DI, Yustein JT, Dasgupta A. Preclinical models for the study of pediatric solid tumors: focus on bone sarcomas. Front Oncol 2024; 14:1388484. [PMID: 39091911 PMCID: PMC11291195 DOI: 10.3389/fonc.2024.1388484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 07/01/2024] [Indexed: 08/04/2024] Open
Abstract
Sarcomas comprise between 10-15% of all pediatric malignancies. Osteosarcoma and Ewing sarcoma are the two most common pediatric bone tumors diagnosed in children and young adults. These tumors are commonly treated with surgery and/or radiation therapy and combination chemotherapy. However, there is a strong need for the development and utilization of targeted therapeutic methods to improve patient outcomes. Towards accomplishing this goal, pre-clinical models for these unique malignancies are of particular importance to design and test experimental therapeutic strategies prior to being introduced to patients due to their origination site and propensity to metastasize. Pre-clinical models offer several advantages for the study of pediatric sarcomas with unique benefits and shortcomings dependent on the type of model. This review addresses the types of pre-clinical models available for the study of pediatric solid tumors, with special attention to the bone sarcomas osteosarcoma and Ewing sarcoma.
Collapse
Affiliation(s)
- D. Isabel Petrescu
- Aflac Cancer and Blood Disorders Center, Emory University, Atlanta, GA, United States
| | - Jason T. Yustein
- Aflac Cancer and Blood Disorders Center, Emory University, Atlanta, GA, United States
| | - Atreyi Dasgupta
- The Faris D. Virani Ewing Sarcoma Center, Baylor College of Medicine, Texas Children’s Cancer and Hematology Centers, Houston, TX, United States
| |
Collapse
|
11
|
Ferrena A, Zhang R, Wang J, Zheng XY, Göker B, Borjihan H, Chae SS, Lo Y, Zhao H, Schwartz E, Loeb D, Yang R, Geller D, Zheng D, Hoang B. Comprehensive single cell transcriptomics analysis of murine osteosarcoma uncovers Skp2 function in metastasis, genomic instability and immune activation and reveals additional target pathways. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.04.597347. [PMID: 38895216 PMCID: PMC11185585 DOI: 10.1101/2024.06.04.597347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Osteosarcoma (OS) is the most common primary pediatric bone malignancy. One promising new therapeutic target is SKP2, encoding a substrate recognition factor of the SCF E3 ubiquitin ligase responsible for ubiquitination and proteasome degradation of substrate p27, thus driving cellular proliferation. We have shown previously that knockout of Skp2 in an immunocompetent transgenic mouse model of OS improved survival, drove apoptosis, and induced tumor inflammation. Here, we applied single-cell RNA-sequencing (scRNA-seq) to study primary OS tumors derived from Osx-Cre driven conditional knockout of Rb1 and Trp53. We showed that murine OS models recapitulate the tumor heterogeneity and microenvironment complexity observed in patient tumors. We further compared this model with OS models with functional disruption of Skp2: one with Skp2 knockout and the other with the Skp2-p27 interaction disrupted (resulting in p27 overexpression). We found reduction of T cell exhaustion and upregulation of interferon activation, along with evidence of replicative and endoplasmic reticulum-related stress in the Skp2 disruption models, and showed that interferon induction was correlated with improved survival in OS patients. Additionally, our scRNA-seq analysis uncovered decreased activities of metastasis-related gene signatures in the Skp2-disrupted OS, which we validated by observation of a strong reduction in lung metastasis in the Skp2 knockout mice. Finally, we report several potential mechanisms of escape from targeting Skp2 in OS, including upregulation of Myc targets, DNA copy number amplification and overexpression of alternative E3 ligase genes, and potential alternative lineage activation. These mechanistic insights into OS tumor biology and Skp2 function suggest novel targets for new, synergistic therapies, while the data and our comprehensive analysis may serve as a public resource for further big data-driven OS research.
Collapse
Affiliation(s)
- Alexander Ferrena
- Institute for Clinical and Translational Research, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Ranxin Zhang
- Department of Orthopedic Surgery, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
- Musculoskeletal Tumor Center, Beijing Key Laboratory for Musculoskeletal Tumors, Peking University People’s Hospital, Beijing, China
| | - Jichuan Wang
- Department of Orthopedic Surgery, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
- Musculoskeletal Tumor Center, Beijing Key Laboratory for Musculoskeletal Tumors, Peking University People’s Hospital, Beijing, China
| | - Xiang Yu Zheng
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Barlas Göker
- Department of Orthopedic Surgery, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Hasibagan Borjihan
- Department of Orthopedic Surgery, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Sung-Suk Chae
- Department of Orthopedic Surgery, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Yungtai Lo
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Hongling Zhao
- Department of Developmental & Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Edward Schwartz
- Department of Oncology, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - David Loeb
- Department of Developmental & Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Rui Yang
- Department of Orthopedic Surgery, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - David Geller
- Department of Orthopedic Surgery, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Deyou Zheng
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Neurology, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Bang Hoang
- Department of Orthopedic Surgery, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|
12
|
Han T, Zhu T, Lu Y, Wang Q, Bian H, Chen J, Qiao L, He TC, Zheng Q. Collagen type X expression and chondrocyte hypertrophic differentiation during OA and OS development. Am J Cancer Res 2024; 14:1784-1801. [PMID: 38726262 PMCID: PMC11076255 DOI: 10.62347/jwgw7377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 03/15/2024] [Indexed: 05/12/2024] Open
Abstract
Chondrocyte hypertrophy and the expression of its specific marker, the collagen type X gene (COL10A1), constitute key terminal differentiation stages during endochondral ossification in long bone development. Mutations in the COL10A1 gene are known to cause schmid type metaphyseal chondrodysplasia (SMCD) and spondyloepiphyseal dyschondrodysplasia (SMD). Moreover, abnormal COL10A1 expression and aberrant chondrocyte hypertrophy are strongly correlated with skeletal diseases, notably osteoarthritis (OA) and osteosarcoma (OS). Throughout the progression of OA, articular chondrocytes undergo substantial changes in gene expression and phenotype, including a transition to a hypertrophic-like state characterized by the expression of collagen type X, matrix metalloproteinase-13, and alkaline phosphatase. This state is similar to the process of endochondral ossification during cartilage development. OS, the most common pediatric bone cancer, exhibits characteristics of abnormal bone formation alongside the presence of tumor tissue containing cartilaginous components. This observation suggests a potential role for chondrogenesis in the development of OS. A deeper understanding of the shifts in collagen X expression and chondrocyte hypertrophy phenotypes in OA or OS may offer novel insights into their pathogenesis, thereby paving the way for potential therapeutic interventions. This review systematically summarizes the findings from multiple OA models (e.g., transgenic, surgically-induced, mechanically-loaded, and chemically-induced OA models), with a particular focus on their chondrogenic and/or hypertrophic phenotypes and possible signaling pathways. The OS phenotypes and pathogenesis in relation to chondrogenesis, collagen X expression, chondrocyte (hypertrophic) differentiation, and their regulatory mechanisms were also discussed. Together, this review provides novel insights into OA and OS therapeutics, possibly by intervening the process of abnormal endochondral-like pathway with altered collagen type X expression.
Collapse
Affiliation(s)
- Tiaotiao Han
- Department of Hematological Laboratory Science, Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu UniversityZhenjiang 212013, Jiangsu, China
| | - Tianxiang Zhu
- Department of Hematological Laboratory Science, Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu UniversityZhenjiang 212013, Jiangsu, China
| | - Yaojuan Lu
- Department of Hematological Laboratory Science, Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu UniversityZhenjiang 212013, Jiangsu, China
- Shenzhen Walgenron Bio-Pharm Co., Ltd.Shenzhen 518118, Guangdong, China
| | - Qian Wang
- Department of Hematological Laboratory Science, Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu UniversityZhenjiang 212013, Jiangsu, China
- Department of Human Anatomy, School of Medicine, Jiangsu UniversityZhenjiang 212013, Jiangsu, China
| | - Huiqin Bian
- Department of Hematological Laboratory Science, Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu UniversityZhenjiang 212013, Jiangsu, China
| | - Jinnan Chen
- Department of Hematological Laboratory Science, Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu UniversityZhenjiang 212013, Jiangsu, China
| | - Longwei Qiao
- The Affiliated Suzhou Hospital of Nanjing Medical UniversitySuzhou 215000, Jiangsu, China
| | - Tong-Chuan He
- The Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical CenterChicago, IL 60637, USA
| | - Qiping Zheng
- Department of Hematological Laboratory Science, Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu UniversityZhenjiang 212013, Jiangsu, China
- Shenzhen Walgenron Bio-Pharm Co., Ltd.Shenzhen 518118, Guangdong, China
- The Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical CenterChicago, IL 60637, USA
| |
Collapse
|
13
|
Wang J, Ferrena A, Zhang R, Singh S, Viscarret V, Al-Harden W, Aldahamsheh O, Borjihan H, Singla A, Yaguare S, Tingling J, Zi X, Lo Y, Gorlick R, Schwartz EL, Zhao H, Yang R, Geller DS, Zheng D, Hoang BH. Targeted inhibition of SCF SKP2 confers anti-tumor activities resulting in a survival benefit in osteosarcoma. Oncogene 2024; 43:962-975. [PMID: 38355807 PMCID: PMC10959747 DOI: 10.1038/s41388-024-02942-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/21/2023] [Accepted: 01/08/2024] [Indexed: 02/16/2024]
Abstract
Osteosarcoma(OS) is a highly aggressive bone cancer for which treatment has remained essentially unchanged for decades. Although OS is characterized by extensive genomic heterogeneity and instability, RB1 and TP53 have been shown to be the most commonly inactivated tumor suppressors in OS. We previously generated a mouse model with a double knockout (DKO) of Rb1 and Trp53 within cells of the osteoblastic lineage, which largely recapitulates human OS with nearly complete penetrance. SKP2 is a repression target of pRb and serves as a substrate recruiting subunit of the SCFSKP2 complex. In addition, SKP2 plays a central role in regulating the cell cycle by ubiquitinating and promoting the degradation of p27. We previously reported the DKOAA transgenic model, which harbored a knock-in mutation in p27 that impaired its binding to SKP2. Here, we generated a novel p53-Rb1-SKP2 triple-knockout model (TKO) to examine SKP2 function and its potential as a therapeutic target in OS. First, we observed that OS tumorigenesis was significantly delayed in TKO mice and their overall survival was markedly improved. In addition, the loss of SKP2 also promoted an apoptotic microenvironment and reduced the stemness of DKO tumors. Furthermore, we found that small-molecule inhibitors of SKP2 exhibited anti-tumor activities in vivo and in OS organoids as well as synergistic effects when combined with a standard chemotherapeutic agent. Taken together, our results suggest that SKP2 inhibitors may reduce the stemness plasticity of OS and should be leveraged as next-generation adjuvants in this cancer.
Collapse
Affiliation(s)
- Jichuan Wang
- Department of Orthopedic Surgery, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
- Musculoskleletal Tumor Center, Beijing Key Laboratory for Musculoskeletal Tumors, Peking University People's Hospital, Beijing, China
| | - Alexander Ferrena
- Department of Orthopedic Surgery, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
- Institute for Clinical and Translational Research, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Ranxin Zhang
- Department of Orthopedic Surgery, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Swapnil Singh
- Department of Orthopedic Surgery, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Valentina Viscarret
- Department of Orthopedic Surgery, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Waleed Al-Harden
- Department of Orthopedic Surgery, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Osama Aldahamsheh
- Department of Orthopedic Surgery, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
- Orthopedic Department, Al-Balqa Applied University, As-Salt, Jordan
| | - Hasibagan Borjihan
- Department of Orthopedic Surgery, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Amit Singla
- Department of Orthopedic Surgery, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Simon Yaguare
- Department of Orthopedic Surgery, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Janet Tingling
- Department of Orthopedic Surgery, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Xiaolin Zi
- Department of Urology, University of California, Irvine Medical Center, Orange, CA, USA
| | - Yungtai Lo
- Department of Epidemiology & Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Richard Gorlick
- Division of Pediatrics, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Edward L Schwartz
- Departments of Oncology, Molecular Pharmacology, and Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Hongling Zhao
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Rui Yang
- Department of Orthopedic Surgery, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - David S Geller
- Department of Orthopedic Surgery, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Deyou Zheng
- Departments of Genetics, Neurology and Neuroscience. Albert Einstein College of Medicine, Bronx, NY, USA.
| | - Bang H Hoang
- Department of Orthopedic Surgery, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
14
|
Pu F, Guo H, Shi D, Chen F, Peng Y, Huang X, Liu J, Zhang Z, Shao Z. The generation and use of animal models of osteosarcoma in cancer research. Genes Dis 2024; 11:664-674. [PMID: 37692517 PMCID: PMC10491873 DOI: 10.1016/j.gendis.2022.12.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 12/16/2022] [Indexed: 09/12/2023] Open
Abstract
Osteosarcoma is the most common malignant bone tumor affecting children and adolescents. Currently, the most common treatment is surgery combined with neoadjuvant chemotherapy. Although the survival rate of patients with osteosarcoma has improved in recent years, it remains poor when the tumor(s) progress and distant metastases develop. Therefore, better animal models that more accurately replicate the natural progression of the disease are needed to develop improved prognostic and diagnostic markers, as well as targeted therapies for both primary and metastatic osteosarcoma. The present review described animal models currently being used in research investigating osteosarcoma, and their characteristics, advantages, and disadvantages. These models may help elucidate the pathogenic mechanism(s) of osteosarcoma and provide evidence to support and develop clinical treatment strategies.
Collapse
Affiliation(s)
- Feifei Pu
- Department of Orthopedics, Wuhan Hospital of Traditional Chinese and Western Medicine (Wuhan No.1 Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Haoyu Guo
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Deyao Shi
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Fengxia Chen
- Department of Radiation and Medical Oncology, Zhongnan Hospital, Wuhan University, Wuhan, Hubei 430071, China
- Hubei Cancer Clinical Study Center, Zhongnan Hospital, Wuhan University, Wuhan, Hubei 430071, China
| | - Yizhong Peng
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Xin Huang
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Jianxiang Liu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Zhicai Zhang
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Zengwu Shao
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| |
Collapse
|
15
|
Ferrena A, Wang J, Zhang R, Karadal-Ferrena B, Al-Hardan W, Singh S, Borjihan H, Schwartz EL, Zhao H, Oktay MH, Yang R, Geller DS, Hoang BH, Zheng D. SKP2 Knockout in Rb1/p53-Deficient Mouse Models of Osteosarcoma Induces Immune Infiltration and Drives a Transcriptional Program with a Favorable Prognosis. Mol Cancer Ther 2024; 23:223-234. [PMID: 37871911 PMCID: PMC10842346 DOI: 10.1158/1535-7163.mct-23-0173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 08/27/2023] [Accepted: 10/17/2023] [Indexed: 10/25/2023]
Abstract
Osteosarcoma is an aggressive bone malignancy with a poor prognosis. One putative proto-oncogene in osteosarcoma is SKP2, encoding a substrate recognition factor of the SCF E3 ubiquitin ligase. We previously demonstrated that Skp2 knockout in murine osteosarcoma improved survival and delayed tumorigenesis. Here, we performed RNA sequencing (RNA-seq) on tumors from a transgenic osteosarcoma mouse model with conditional Trp53 and Rb1 knockouts in the osteoblast lineage ("DKO": Osx1-Cre;Rb1lox/lox;p53lox/lox) and a triple-knockout model with additional Skp2 germline knockout ("TKO": Osx1-Cre;Rb1lox/lox;p53lox/lox;Skp2-/-), followed by qPCR and immunohistochemistry validation. To investigate the clinical implications of our results, we analyzed a human osteosarcoma patient cohort ("NCI-TARGET OS") with RNA-seq and clinical data. We found large differences in gene expression after SKP2 knockout. Surprisingly, we observed increased expression of genes related to immune microenvironment infiltration in TKO tumors, especially the signature genes for macrophages and to a lesser extent, T cells, B cells, and vascular cells. We also uncovered a set of relevant transcription factors that may mediate these changes. In osteosarcoma patient cohorts, high expression of genes upregulated in TKO was correlated with favorable overall survival, which was largely explained by the macrophage gene signatures. This relationship was further supported by our finding that SKP2 expression was negatively correlated with macrophage infiltration in the NCI-TARGET osteosarcoma and the TCGA Sarcoma cohorts. Overall, our findings indicate that SKP2 may mediate immune exclusion from the osteosarcoma tumor microenvironment, suggesting that SKP2 modulation in osteosarcoma may induce antitumor immune activation.
Collapse
Affiliation(s)
- Alexander Ferrena
- Institute for Clinical and Translational Research, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Jichuan Wang
- Department of Orthopedic Surgery, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Ranxin Zhang
- Department of Orthopedic Surgery, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | | | - Waleed Al-Hardan
- Department of Orthopedic Surgery, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Swapnil Singh
- Department of Orthopedic Surgery, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Hasibagan Borjihan
- Department of Orthopedic Surgery, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Edward L. Schwartz
- Department of Oncology, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Hongling Zhao
- Department of Developmental & Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Maja H. Oktay
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Surgery, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
- Gruss-Lipper Biophotonics Center, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
- Integrated Imaging Program, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Rui Yang
- Department of Orthopedic Surgery, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - David S Geller
- Department of Orthopedic Surgery, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Bang H Hoang
- Department of Orthopedic Surgery, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Deyou Zheng
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Neurology, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|
16
|
Lorenz J, Richter S, Kirstein AS, Kolbig F, Nebe M, Schulze M, Kiess W, Spitzbarth I, Klöting N, Le Duc D, Baschant U, Garten A. Pten knockout in mouse preosteoblasts leads to changes in bone turnover and strength. JBMR Plus 2024; 8:ziad016. [PMID: 38505222 PMCID: PMC10945711 DOI: 10.1093/jbmrpl/ziad016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 11/30/2023] [Accepted: 12/07/2023] [Indexed: 03/21/2024] Open
Abstract
Bone development and remodeling are controlled by the phosphoinositide-3-kinase (Pi3k) signaling pathway. We investigated the effects of downregulation of phosphatase and tensin homolog (Pten), a negative regulator of Pi3k signaling, in a mouse model of Pten deficiency in preosteoblasts. We aimed to identify mechanisms that are involved in the regulation of bone turnover and are linked to bone disorders. Femora, tibiae, and bone marrow stromal cells (BMSCs) isolated from mice with a conditional deletion of Pten (Pten cKO) in Osterix/Sp7-expressing osteoprogenitor cells were compared to Cre-negative controls. Bone phenotyping was performed by μCT measurements, bone histomorphometry, quantification of bone turnover markers CTX and procollagen type 1 N propeptide (P1NP), and three-point bending test. Proliferation of BMSCs was measured by counting nuclei and Ki-67-stained cells. In vitro, osteogenic differentiation capacity was determined by ALP staining, as well as by detecting gene expression of osteogenic markers. BMSCs from Pten cKO mice were functionally different from control BMSCs. Osteogenic markers were increased in BMSCs derived from Pten cKO mice, while Pten protein expression was lower and Akt phosphorylation was increased. We detected a higher trabecular bone volume and an altered cortical bone morphology in Pten cKO bones with a progressive decrease in bone and tissue mineral density. Pten cKO bones displayed fewer osteoclasts and more osteoblasts (P = .00095) per trabecular bone surface and a higher trabecular bone formation rate. Biomechanical analysis revealed a significantly higher bone strength (P = .00012 for males) and elasticity of Pten cKO femora. On the cellular level, both proliferation and osteogenic differentiation capacity of Pten cKO BMSCs were significantly increased compared to controls. Our findings suggest that Pten knockout in osteoprogenitor cells increases bone stability and elasticity by increasing trabecular bone mass and leads to increased proliferation and osteogenic differentiation of BMSCs.
Collapse
Affiliation(s)
- Judith Lorenz
- Pediatric Research Center, Leipzig University, University Hospital for Children and Adolescents, Department for Child and Adolescent Medicine, 04103 Leipzig, Germany
| | - Sandy Richter
- Pediatric Research Center, Leipzig University, University Hospital for Children and Adolescents, Department for Child and Adolescent Medicine, 04103 Leipzig, Germany
| | - Anna S Kirstein
- Pediatric Research Center, Leipzig University, University Hospital for Children and Adolescents, Department for Child and Adolescent Medicine, 04103 Leipzig, Germany
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Florentien Kolbig
- Pediatric Research Center, Leipzig University, University Hospital for Children and Adolescents, Department for Child and Adolescent Medicine, 04103 Leipzig, Germany
| | - Michèle Nebe
- Pediatric Research Center, Leipzig University, University Hospital for Children and Adolescents, Department for Child and Adolescent Medicine, 04103 Leipzig, Germany
| | - Marco Schulze
- Saxon Incubator for Clinical Translation (SIKT), Leipzig University, 04103 Leipzig, Germany
| | - Wieland Kiess
- Pediatric Research Center, Leipzig University, University Hospital for Children and Adolescents, Department for Child and Adolescent Medicine, 04103 Leipzig, Germany
| | - Ingo Spitzbarth
- Faculty of Veterinary Medicine, Institute of Veterinary Pathology, Leipzig University, 04103 Leipzig, Germany
| | - Nora Klöting
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München, Leipzig University and University Hospital Leipzig, 04103 Leipzig, Germany
| | - Diana Le Duc
- Institute of Human Genetics, Leipzig University, 04103 Leipzig, Germany
| | - Ulrike Baschant
- Department of Medicine III, Technische Universität Dresden, 01309 Dresden, Germany
| | - Antje Garten
- Pediatric Research Center, Leipzig University, University Hospital for Children and Adolescents, Department for Child and Adolescent Medicine, 04103 Leipzig, Germany
| |
Collapse
|
17
|
Akkawi R, Hidmi O, Haj-Yahia A, Monin J, Diment J, Drier Y, Stein GS, Aqeilan RI. WWOX promotes osteosarcoma development via upregulation of Myc. Cell Death Dis 2024; 15:13. [PMID: 38182577 PMCID: PMC10770339 DOI: 10.1038/s41419-023-06378-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/02/2023] [Accepted: 12/05/2023] [Indexed: 01/07/2024]
Abstract
Osteosarcoma is an aggressive bone tumor that primarily affects children and adolescents. This malignancy is highly aggressive, associated with poor clinical outcomes, and primarily metastasizes to the lungs. Due to its rarity and biological heterogeneity, limited studies on its molecular basis exist, hindering the development of effective therapies. The WW domain-containing oxidoreductase (WWOX) is frequently altered in human osteosarcoma. Combined deletion of Wwox and Trp53 using Osterix1-Cre transgenic mice has been shown to accelerate osteosarcoma development. In this study, we generated a traceable osteosarcoma mouse model harboring the deletion of Trp53 alone (single-knockout) or combined deletion of Wwox/Trp53 (double-knockout) and expressing a tdTomato reporter. By tracking Tomato expression at different time points, we detected the early presence of tdTomato-positive cells in the bone marrow mesenchymal stem cells of non-osteosarcoma-bearing mice (young BM). We found that double-knockout young BM cells, but not single-knockout young BM cells, exhibited tumorigenic traits both in vitro and in vivo. Molecular and cellular characterization of these double-knockout young BM cells revealed their resemblance to osteosarcoma tumor cells. Interestingly, one of the observed significant transcriptomic changes in double-knockout young BM cells was the upregulation of Myc and its target genes compared to single-knockout young BM cells. Intriguingly, Myc-chromatin immunoprecipitation sequencing revealed its increased enrichment on Myc targets, which were upregulated in double-knockout young BM cells. Restoration of WWOX in double-knockout young BM cells reduced Myc protein levels. As a prototype target, we demonstrated the upregulation of MCM7, a known Myc target, in double-knockout young BM relative to single-knockout young BM cells. Inhibition of MCM7 expression using simvastatin resulted in reduced proliferation and tumor cell growth of double-knockout young BM cells. Our findings reveal BM mesenchymal stem cells as a platform to study osteosarcoma and Myc and its targets as WWOX effectors and early molecular events during osteosarcomagenesis.
Collapse
Affiliation(s)
- Rania Akkawi
- The Concern Foundation Laboratories, The Lautenberg Center for Immunology and Cancer Research, Department of Immunology and Cancer Research, IMRIC, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Osama Hidmi
- The Concern Foundation Laboratories, The Lautenberg Center for Immunology and Cancer Research, Department of Immunology and Cancer Research, IMRIC, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ameen Haj-Yahia
- The Concern Foundation Laboratories, The Lautenberg Center for Immunology and Cancer Research, Department of Immunology and Cancer Research, IMRIC, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Jonathon Monin
- The Concern Foundation Laboratories, The Lautenberg Center for Immunology and Cancer Research, Department of Immunology and Cancer Research, IMRIC, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Judith Diment
- Department of Pathology, Hadassah University Medical Center, Jerusalem, Israel
| | - Yotam Drier
- The Concern Foundation Laboratories, The Lautenberg Center for Immunology and Cancer Research, Department of Immunology and Cancer Research, IMRIC, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Gary S Stein
- Department of Biochemistry, Larner College of Medicine, UVM Cancer Center, University of Vermont, Burlington, VT, USA
| | - Rami I Aqeilan
- The Concern Foundation Laboratories, The Lautenberg Center for Immunology and Cancer Research, Department of Immunology and Cancer Research, IMRIC, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel.
- Cyprus Cancer Research Institute (CCRI), Nicosia, Cyprus.
| |
Collapse
|
18
|
Zhang W, Shao Z. Research trends and hotspots in the immune microenvironment related to osteosarcoma and tumor cell aging: a bibliometric and visualization study. Front Endocrinol (Lausanne) 2023; 14:1289319. [PMID: 38027171 PMCID: PMC10663373 DOI: 10.3389/fendo.2023.1289319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 10/25/2023] [Indexed: 12/01/2023] Open
Abstract
Background It is well known that cancers have a common feature that even if the environment is extremely poor in nutrients, they can still make good use of them to maintain viability as well as to produce new biomass, which is one of the reasons why tumor cells are powerfully less susceptible to senescence and death. The microenvironment has a profound impact on the senescence as well as the growth and development of tumor cells, and it is also the focus of scientists' research because it may even affect the discovery of the treatment and pathogenesis of cancer. And so the study of the microenvironment in the tumor cells is of great significance to the analysis of the tumor cells as well as to the impact of their senescence. Similarly, the microenvironment of osteosarcoma is also crucial for its impact, but to our knowledge, there is no bibliometric study that systematically analyzes and describes the trends and future hotspots in this field of research as we do, and we are going to fill this gap in this study. Methods We searched the Web Science Core Collection 2010-2023 in WOS on August 1, 2023. Based on the criteria needed for the search, we retained articles that matched the topic, excluded studies other than articles and reviews, and selected only studies whose language was English. We performed an intuitive visualization and bibliometric approach to analyze the research content in this field and a systematic visualization of global trends and hotspots in the research of osteosarcoma and the microenvironment, for which we used multiple specialized For this purpose, we used several specialized software packages, such as VOSviewer and the Bibliometrix package for R software. Because research in this area of osteosarcoma and the microenvironment has begun to gain popularity in the last 10 years or so, and is a very novel piece of research, there were almost no studies in this area prior to 2010 and they were not very informative, and in the end, we chose to look at studies from after 2010. Results Based on the criteria needed for the search, resulting in a final selection of 821 articles. In the research area related to osteosarcoma and microenvironment, we found that China in Asia and the United States in North America and Italy in Europe were the three countries or regions with the highest number of published articles. In addition, the institution that published the most research in this area was Shanghai Jiao Tong University. In terms of publications in the field of osteosarcoma and microenvironmental research, Baldini, Heymann, and Avnet are among the top 3 authors. The terms "cancer", "cells" and "expression" are found to be more commonly employed. Conclusion Using a variety of highly specialized software, we have undertaken a visual and bibliometric study of the current state of research and potential future hotspots in the field of osteosarcoma and microenvironment research. The microenvironment has a profound impact on the senescence and growth and development of cells in tumors, including osteosarcoma, and may even influence the discovery of cancer treatment and pathogenesis, and is also a hotspot and focus that scientists have begun to gradually study in recent years. This analysis and visualization will help guide future research in the field.
Collapse
Affiliation(s)
- Wenlong Zhang
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhuce Shao
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
19
|
Vaghjiani VG, Cochrane CR, Jayasekara WSN, Chong WC, Szczepny A, Kumar B, Martelotto LG, McCaw A, Carey K, Kansara M, Thomas DM, Walkley C, Mudge S, Gough DJ, Downie PA, Peacock CD, Matsui W, Watkins DN, Cain JE. Ligand-dependent hedgehog signaling maintains an undifferentiated, malignant osteosarcoma phenotype. Oncogene 2023; 42:3529-3541. [PMID: 37845394 PMCID: PMC10656285 DOI: 10.1038/s41388-023-02864-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 09/26/2023] [Accepted: 10/04/2023] [Indexed: 10/18/2023]
Abstract
TP53 and RB1 loss-of-function mutations are common in osteosarcoma. During development, combined loss of TP53 and RB1 function leads to downregulation of autophagy and the aberrant formation of primary cilia, cellular organelles essential for the transmission of canonical Hedgehog (Hh) signaling. Excess cilia formation then leads to hypersensitivity to Hedgehog (Hh) ligand signaling. In mouse and human models, we now show that osteosarcomas with mutations in TP53 and RB1 exhibit enhanced ligand-dependent Hh pathway activation through Smoothened (SMO), a transmembrane signaling molecule required for activation of the canonical Hh pathway. This dependence is mediated by hypersensitivity to Hh ligand and is accompanied by impaired autophagy and increased primary cilia formation and expression of Hh ligand in vivo. Using a conditional genetic mouse model of Trp53 and Rb1 inactivation in osteoblast progenitors, we further show that deletion of Smo converts the highly malignant osteosarcoma phenotype to benign, well differentiated bone tumors. Conversely, conditional overexpression of SHH ligand, or a gain-of-function SMO mutant in committed osteoblast progenitors during development blocks terminal bone differentiation. Finally, we demonstrate that the SMO antagonist sonidegib (LDE225) induces growth arrest and terminal differentiation in vivo in osteosarcomas that express primary cilia and Hh ligand combined with mutations in TP53. These results provide a mechanistic framework for aberrant Hh signaling in osteosarcoma based on defining mutations in the tumor suppressor, TP53.
Collapse
Affiliation(s)
| | - Catherine R Cochrane
- Hudson Institute of Medical Research, Clayton, VIC, 3168, Australia
- Department of Molecular and Translational Medicine, School of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC, 3800, Australia
| | | | - Wai Chin Chong
- Hudson Institute of Medical Research, Clayton, VIC, 3168, Australia
- Department of Molecular and Translational Medicine, School of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC, 3800, Australia
| | - Anette Szczepny
- Hudson Institute of Medical Research, Clayton, VIC, 3168, Australia
| | - Beena Kumar
- Department of Pathology, Monash Medical Centre, Clayton, VIC, 3168, Australia
| | - Luciano G Martelotto
- Department of Molecular and Translational Medicine, School of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC, 3800, Australia
| | - Andrew McCaw
- Hudson Institute of Medical Research, Clayton, VIC, 3168, Australia
| | - Kirstyn Carey
- Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Maya Kansara
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Darlinghurst, NSW, 2010, Australia
| | - David M Thomas
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Darlinghurst, NSW, 2010, Australia
- St.Vincent's Clinical School, Faculty of Medicine, UNSW, Sydney, NSW, 1466, Australia
| | - Carl Walkley
- St. Vincent's Institute, Fitzroy, VIC, 3065, Australia
- Department of Medicine, St. Vincent's Hospital, University of Melbourne, Fitzroy, VIC, 3065, Australia
| | - Stuart Mudge
- Mayne Pharma International Pty Ltd, Salisbury Sth, SA, 5106, Australia
| | - Daniel J Gough
- Hudson Institute of Medical Research, Clayton, VIC, 3168, Australia
- Department of Molecular and Translational Medicine, School of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC, 3800, Australia
| | - Peter A Downie
- Monash Children's Cancer Centre, Monash Children's Hospital, Monash Health, Clayton, VIC, 3168, Australia
- Department of Paediatrics, Monash University, Clayton, VIC, 3168, Australia
| | - Craig D Peacock
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Case Comprehensive Cancer Center, Cleveland, OH, 44106, USA
| | - William Matsui
- Department of Oncology and Livestrong Cancer Institutes, Dell Medical School, University of Texas at Austin, Austin, TX, 78712, USA
| | - D Neil Watkins
- Research Institute in Oncology and Hematology, CancerCare Manitoba, Winnipeg, MB, R3E-0V9, Canada.
- Department of Internal Medicine, Rady Faculty of Heath Sciences, University of Manitoba, Winnipeg, MB, R3A-1R9, Canada.
| | - Jason E Cain
- Hudson Institute of Medical Research, Clayton, VIC, 3168, Australia.
- Department of Molecular and Translational Medicine, School of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC, 3800, Australia.
- Department of Paediatrics, Monash University, Clayton, VIC, 3168, Australia.
| |
Collapse
|
20
|
Omori K, Otani S, Date Y, Ueno T, Ito T, Umeda M, Ito K. C/ebpα represses the oncogenic Runx3-Myc axis in p53-deficient osteosarcoma development. Oncogene 2023; 42:2485-2494. [PMID: 37402881 DOI: 10.1038/s41388-023-02761-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 06/14/2023] [Accepted: 06/22/2023] [Indexed: 07/06/2023]
Abstract
Osteosarcoma (OS) is characterized by TP53 mutations in humans. In mice, loss of p53 triggers OS development, and osteoprogenitor-specific p53-deleted mice are widely used to study the process of osteosarcomagenesis. However, the molecular mechanisms underlying the initiation or progression of OS following or parallel to p53 inactivation remain largely unknown. Here, we examined the role of transcription factors involved in adipogenesis (adipo-TFs) in p53-deficient OS and identified a novel tumor suppressive molecular mechanism mediated by C/ebpα. C/ebpα specifically interacts with Runx3, a p53 deficiency-dependent oncogene, and, in the same manner as p53, decreases the activity of the oncogenic axis of OS, Runx3-Myc, by inhibiting Runx3 DNA binding. The identification of a novel molecular role for C/ebpα in p53-deficient osteosarcomagenesis underscores the importance of the Runx-Myc oncogenic axis as a therapeutic target for OS.
Collapse
Affiliation(s)
- Keisuke Omori
- Department of Molecular Bone Biology, Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki, 852-8588, Japan
- Department of Clinical Oral Oncology, Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki, 852-8588, Japan
| | - Shohei Otani
- Department of Molecular Bone Biology, Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki, 852-8588, Japan
| | - Yuki Date
- Department of Molecular Bone Biology, Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki, 852-8588, Japan
| | - Tomoya Ueno
- Department of Molecular Bone Biology, Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki, 852-8588, Japan
| | - Tomoko Ito
- Department of Molecular Bone Biology, Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki, 852-8588, Japan
| | - Masahiro Umeda
- Department of Clinical Oral Oncology, Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki, 852-8588, Japan
| | - Kosei Ito
- Department of Molecular Bone Biology, Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki, 852-8588, Japan.
| |
Collapse
|
21
|
Hammond T, Sage J. Monitoring the Cell Cycle of Tumor Cells in Mouse Models of Human Cancer. Cold Spring Harb Perspect Med 2023; 13:a041383. [PMID: 37460156 PMCID: PMC10691483 DOI: 10.1101/cshperspect.a041383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
Cell division is obligatory to tumor growth. However, both cancer cells and noncancer cells in tumors can be found in distinct stages of the cell cycle, which may inform the growth potential of these tumors, their propensity to metastasize, and their response to therapy. Hence, it is of utmost importance to monitor the cell cycle of tumor cells. Here we discuss well-established methods and new genetic advances to track the cell cycle of tumor cells in mouse models of human cancer. We also review recent genetic studies investigating the role of the cell-cycle machinery in the growth of tumors in vivo, with a focus on the machinery regulating the G1/S transition of the cell cycle.
Collapse
Affiliation(s)
- Taylar Hammond
- Department of Pediatrics, Stanford University, Stanford, California 94305, USA
- Department of Biology, and Stanford University, Stanford, California 94305, USA
| | - Julien Sage
- Department of Pediatrics, Stanford University, Stanford, California 94305, USA
- Department of Genetics, Stanford University, Stanford, California 94305, USA
| |
Collapse
|
22
|
Chachad D, Patel LR, Recio CV, Pourebrahim R, Whitley EM, Wang W, Su X, Xu A, Lee DF, Lozano G. Unique Transcriptional Profiles Underlie Osteosarcomagenesis Driven by Different p53 Mutants. Cancer Res 2023; 83:2297-2311. [PMID: 37205631 PMCID: PMC10524763 DOI: 10.1158/0008-5472.can-22-3464] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 04/07/2023] [Accepted: 05/17/2023] [Indexed: 05/21/2023]
Abstract
Missense mutations in the DNA binding domain of p53 are characterized as structural or contact mutations based on their effect on the conformation of the protein. These mutations show gain-of-function (GOF) activities, such as promoting increased metastatic incidence compared with p53 loss, often mediated by the interaction of mutant p53 with a set of transcription factors. These interactions are largely context specific. To understand the mechanisms by which p53 DNA binding domain mutations drive osteosarcoma progression, we created mouse models, in which either the p53 structural mutant p53R172H or the contact mutant p53R245W are expressed specifically in osteoblasts, yielding osteosarcoma tumor development. Survival significantly decreased and metastatic incidence increased in mice expressing p53 mutants compared with p53-null mice, suggesting GOF. RNA sequencing of primary osteosarcomas revealed vastly different gene expression profiles between tumors expressing the missense mutants and p53-null tumors. Further, p53R172H and p53R245W each regulated unique transcriptomes and pathways through interactions with a distinct repertoire of transcription factors. Validation assays showed that p53R245W, but not p53R172H, interacts with KLF15 to drive migration and invasion in osteosarcoma cell lines and promotes metastasis in allogeneic transplantation models. In addition, analyses of p53R248W chromatin immunoprecipitation peaks showed enrichment of KLF15 motifs in human osteoblasts. Taken together, these data identify unique mechanisms of action of the structural and contact mutants of p53. SIGNIFICANCE The p53 DNA binding domain contact mutant p53R245W, but not the structural mutant p53R172H, interacts with KLF15 to drive metastasis in somatic osteosarcoma, providing a potential vulnerability in tumors expressing p53R245W mutation.
Collapse
Affiliation(s)
- Dhruv Chachad
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, Texas, 77030, USA
- Department of Genetics, University District Hospital, San Juan, Puerto Rico (current)
| | - Lalit R. Patel
- Department of Genetics, University District Hospital, San Juan, Puerto Rico (current)
| | - Carlos Vera Recio
- Department of Internal Medicine, University District Hospital, San Juan, Puerto Rico (current)
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center
| | - Rasoul Pourebrahim
- Department of Leukemia, The University of Texas MD Anderson Cancer Center
| | - Elizabeth M. Whitley
- Department of Veterinary Medicine and Surgery, The University of Texas MD Anderson Cancer Center
- Pathogenesis L.L.C., Ocala, Florida (current)
| | - Wenyi Wang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center
| | - Xiaoping Su
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center
| | - An Xu
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston
| | - Dung-Fang Lee
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, Texas, 77030, USA
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston
| | - Guillermina Lozano
- Department of Genetics, University District Hospital, San Juan, Puerto Rico (current)
| |
Collapse
|
23
|
Vimalraj S, Sekaran S. RUNX Family as a Promising Biomarker and a Therapeutic Target in Bone Cancers: A Review on Its Molecular Mechanism(s) behind Tumorigenesis. Cancers (Basel) 2023; 15:3247. [PMID: 37370857 DOI: 10.3390/cancers15123247] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/10/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
The transcription factor runt-related protein (RUNX) family is the major transcription factor responsible for the formation of osteoblasts from bone marrow mesenchymal stem cells, which are involved in bone formation. Accumulating evidence implicates the RUNX family for its role in tumor biology and cancer progression. The RUNX family has been linked to osteosarcoma via its regulation of many tumorigenicity-related factors. In the regulatory network of cancers, with numerous upstream signaling pathways and its potential target molecules downstream, RUNX is a vital molecule. Hence, a pressing need exists to understand the precise process underpinning the occurrence and prognosis of several malignant tumors. Until recently, RUNX has been regarded as one of the therapeutic targets for bone cancer. Therefore, in this review, we have provided insights into various molecular mechanisms behind the tumorigenic role of RUNX in various important cancers. RUNX is anticipated to grow into a novel therapeutic target with the in-depth study of RUNX family-related regulatory processes, aid in the creation of new medications, and enhance clinical efficacy.
Collapse
Affiliation(s)
- Selvaraj Vimalraj
- Department of Prosthodontics, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai 600077, Tamil Nadu, India
| | - Saravanan Sekaran
- Department of Prosthodontics, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai 600077, Tamil Nadu, India
| |
Collapse
|
24
|
Wade EM, Goodin EA, Wang Y, Morgan T, Callon KE, Watson M, Daniel PB, Cornish J, McCulloch CA, Robertson SP. FLNA-filaminopathy skeletal phenotypes are not due to an osteoblast autonomous loss-of-function. Bone Rep 2023; 18:101668. [PMID: 36909664 PMCID: PMC9995945 DOI: 10.1016/j.bonr.2023.101668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 02/23/2023] [Accepted: 02/26/2023] [Indexed: 03/04/2023] Open
Abstract
Mutations in FLNA, which encodes the cytoskeletal protein FLNA, cause a spectrum of sclerosing skeletal dysplasias. Although many of these genetic variants are recurrent and cluster within the gene, the pathogenic mechanism that underpins the development of these skeletal phenotypes is unknown. To determine if the skeletal dysplasia in FLNA-related conditions is due to a cell-autonomous loss-of-function localising to osteoblasts and/or osteocytes, we utilised mouse models to conditionally remove Flna from this cellular lineage. Flna was conditionally knocked out from mature osteocytes using the Dmp1-promoter driven Cre-recombinase expressing mouse, as well as the committed osteoblast lineage using the Osx-Cre or Col1a1-Cre expressing lines. We measured skeletal parameters with μCT and histological methods, as well as gene expression in the mineralised skeleton. We found no measureable differences between the conditional Flna knockout mice, and their control littermate counterparts. Moreover, all of the conditional Flna knockout mice, developed and aged normally. From this we concluded that the skeletal dysplasia phenotype associated with pathogenic variants in FLNA is not caused by a cell-autonomous loss-of-function in the osteoblast-osteocyte lineage, adding more evidence to the hypothesis that these phenotypes are due to gain-of-function in FLNA.
Collapse
Affiliation(s)
- Emma M. Wade
- Department of Women's and Children's Health, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Elizabeth A. Goodin
- Department of Women's and Children's Health, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Yongqiang Wang
- Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| | - Tim Morgan
- Department of Women's and Children's Health, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Karen E. Callon
- Bone and Joint Research Group, Department of Medicine, School of Medicine, The University of Auckland, Auckland, New Zealand
| | - Maureen Watson
- Bone and Joint Research Group, Department of Medicine, School of Medicine, The University of Auckland, Auckland, New Zealand
| | - Philip B. Daniel
- Department of Women's and Children's Health, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Jillian Cornish
- Bone and Joint Research Group, Department of Medicine, School of Medicine, The University of Auckland, Auckland, New Zealand
| | | | - Stephen P. Robertson
- Department of Women's and Children's Health, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
- Corresponding author.
| |
Collapse
|
25
|
Mendez Ruiz S, Chalk AM, Goradia A, Heraud-Farlow J, Walkley C. Over-expression of ADAR1 in mice does not initiate or accelerate cancer formation in vivo. NAR Cancer 2023; 5:zcad023. [PMID: 37275274 PMCID: PMC10233902 DOI: 10.1093/narcan/zcad023] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/27/2023] [Accepted: 05/16/2023] [Indexed: 06/07/2023] Open
Abstract
Adenosine to inosine editing (A-to-I) in regions of double stranded RNA (dsRNA) is mediated by adenosine deaminase acting on RNA 1 (ADAR1) or ADAR2. ADAR1 and A-to-I editing levels are increased in many human cancers. Inhibition of ADAR1 has emerged as a high priority oncology target, however, whether ADAR1 overexpression enables cancer initiation or progression has not been directly tested. We established a series of in vivo models to allow overexpression of full-length ADAR1, or its individual isoforms, to test if increased ADAR1 expression was oncogenic. Widespread over-expression of ADAR1 or the p110 or p150 isoforms individually as sole lesions was well tolerated and did not result in cancer initiation. Therefore, ADAR1 overexpression alone is not sufficient to initiate cancer. We demonstrate that endogenous ADAR1 and A-to-I editing increased upon immortalization in murine cells, consistent with the observations from human cancers. We tested if ADAR1 over-expression could co-operate with cancer initiated by loss of tumour suppressors using a model of osteosarcoma. We did not see a disease potentiating or modifying effect of overexpressing ADAR1 or its isoforms in the models assessed. We conclude that increased ADAR1 expression and A-to-I editing in cancers is most likely a consequence of tumor formation.
Collapse
Affiliation(s)
- Shannon Mendez Ruiz
- St Vincent's Institute of Medical Research, Fitzroy, Victoria 3065, Australia
- Department of Medicine, Eastern Hill Precinct, Melbourne Medical School, University of Melbourne, Fitzroy, Victoria 3065, Australia
| | - Alistair M Chalk
- St Vincent's Institute of Medical Research, Fitzroy, Victoria 3065, Australia
- Department of Medicine, Eastern Hill Precinct, Melbourne Medical School, University of Melbourne, Fitzroy, Victoria 3065, Australia
| | - Ankita Goradia
- St Vincent's Institute of Medical Research, Fitzroy, Victoria 3065, Australia
| | | | - Carl R Walkley
- To whom correspondence should be addressed. Tel: +61 3 9231 2480;
| |
Collapse
|
26
|
Xu H, Wang W, Liu X, Huang W, Zhu C, Xu Y, Yang H, Bai J, Geng D. Targeting strategies for bone diseases: signaling pathways and clinical studies. Signal Transduct Target Ther 2023; 8:202. [PMID: 37198232 DOI: 10.1038/s41392-023-01467-8] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 04/02/2023] [Accepted: 04/19/2023] [Indexed: 05/19/2023] Open
Abstract
Since the proposal of Paul Ehrlich's magic bullet concept over 100 years ago, tremendous advances have occurred in targeted therapy. From the initial selective antibody, antitoxin to targeted drug delivery that emerged in the past decades, more precise therapeutic efficacy is realized in specific pathological sites of clinical diseases. As a highly pyknotic mineralized tissue with lessened blood flow, bone is characterized by a complex remodeling and homeostatic regulation mechanism, which makes drug therapy for skeletal diseases more challenging than other tissues. Bone-targeted therapy has been considered a promising therapeutic approach for handling such drawbacks. With the deepening understanding of bone biology, improvements in some established bone-targeted drugs and novel therapeutic targets for drugs and deliveries have emerged on the horizon. In this review, we provide a panoramic summary of recent advances in therapeutic strategies based on bone targeting. We highlight targeting strategies based on bone structure and remodeling biology. For bone-targeted therapeutic agents, in addition to improvements of the classic denosumab, romosozumab, and PTH1R ligands, potential regulation of the remodeling process targeting other key membrane expressions, cellular crosstalk, and gene expression, of all bone cells has been exploited. For bone-targeted drug delivery, different delivery strategies targeting bone matrix, bone marrow, and specific bone cells are summarized with a comparison between different targeting ligands. Ultimately, this review will summarize recent advances in the clinical translation of bone-targeted therapies and provide a perspective on the challenges for the application of bone-targeted therapy in the clinic and future trends in this area.
Collapse
Affiliation(s)
- Hao Xu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu, 215006, P. R. China
| | - Wentao Wang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu, 215006, P. R. China
| | - Xin Liu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu, 215006, P. R. China
| | - Wei Huang
- Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230031, Anhui, China
| | - Chen Zhu
- Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230031, Anhui, China
| | - Yaozeng Xu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu, 215006, P. R. China
| | - Huilin Yang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu, 215006, P. R. China.
- Orthopaedic Institute, Medical College, Soochow University, Suzhou, 215006, Jiangsu, China.
| | - Jiaxiang Bai
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu, 215006, P. R. China.
- Orthopaedic Institute, Medical College, Soochow University, Suzhou, 215006, Jiangsu, China.
| | - Dechun Geng
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu, 215006, P. R. China.
- Orthopaedic Institute, Medical College, Soochow University, Suzhou, 215006, Jiangsu, China.
| |
Collapse
|
27
|
Ferrena A, Wang J, Zhang R, Karadal-Ferrena B, Al-Hardan W, Singh S, Borjihan H, Schwartz E, Zhao H, Yang R, Geller D, Hoang B, Zheng D. SKP2 knockout in Rb1/p53 deficient mouse models of osteosarcoma induces immune infiltration and drives a transcriptional program with a favorable prognosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.09.540053. [PMID: 37214958 PMCID: PMC10197654 DOI: 10.1101/2023.05.09.540053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Purpose Osteosarcoma (OS) is an aggressive bone malignancy with a poor prognosis. One putative proto-oncogene in OS is SKP2, encoding a substrate recognition factor of the SCF E3 ubiquitin ligase. We previously demonstrated that SKP2 knockout in murine OS improved survival and delayed tumorigenesis. Here we aim to define the SKP2 drives transcriptional program and its clinical implication in OS. Experimental Design We performed RNA-sequencing (RNA-seq) on tumors from a transgenic OS mouse model with conditional Trp53 and Rb1 knockouts in the osteoblast lineage ("DKO": Osx1-Cre;Rb1lox/lox;p53lox/lox) and a triple-knockout model with additional Skp2 germline knockout ("TKO": Osx1-Cre;Rb1lox/lox;p53lox/lox;SKP2-/-). We validated our RNA-seq findings using qPCR and immunohistochemistry. To investigate the clinical implications of our results, we analyzed a human OS patient cohort ("NCI-TARGET OS") with RNA-seq and clinical data. Results We found large differences in gene expression after SKP2 knockout. Strikingly, we observed increased expression of genes related to immune microenvironment infiltration in TKO tumors. We observed significant increases in signature genes for macrophages and to a lesser extent, T cells, B cells and vascular cells. We also uncovered a set of relevant transcription factors that may mediate the changes. In OS patient cohorts, high expression of genes upregulated in TKO was correlated with favorable overall survival, which was largely explained by the macrophage gene signatures. This relationship was further supported by our finding that SKP2 expression was negatively correlated with macrophage infiltration in the NCI-TARGET OS and the TCGA Sarcoma cohort. Conclusion Our findings indicate that SKP2 may mediate immune exclusion from the OS tumor microenvironment, suggesting that SKP2 modulation in OS may induce anti-tumor immune activation.
Collapse
Affiliation(s)
- Alexander Ferrena
- Institute for Clinical and Translational Research, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Jichuan Wang
- Department of Orthopedic Surgery, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Ranxin Zhang
- Department of Orthopedic Surgery, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | | | - Waleed Al-Hardan
- Department of Orthopedic Surgery, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Swapnil Singh
- Department of Orthopedic Surgery, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Hasibagan Borjihan
- Department of Orthopedic Surgery, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Edward Schwartz
- Department of Oncology, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Hongling Zhao
- Department of Developmental & Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Rui Yang
- Department of Orthopedic Surgery, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - David Geller
- Department of Orthopedic Surgery, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Bang Hoang
- Department of Orthopedic Surgery, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Deyou Zheng
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Neurology, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|
28
|
Otani S, Ohnuma M, Ito K, Matsushita Y. Cellular dynamics of distinct skeletal cells and the development of osteosarcoma. Front Endocrinol (Lausanne) 2023; 14:1181204. [PMID: 37229448 PMCID: PMC10203529 DOI: 10.3389/fendo.2023.1181204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 04/21/2023] [Indexed: 05/27/2023] Open
Abstract
Bone contributes to the maintenance of vital biological activities. At the cellular level, multiple types of skeletal cells, including skeletal stem and progenitor cells (SSPCs), osteoblasts, chondrocytes, marrow stromal cells, and adipocytes, orchestrate skeletal events such as development, aging, regeneration, and tumorigenesis. Osteosarcoma (OS) is a primary malignant tumor and the main form of bone cancer. Although it has been proposed that the cellular origins of OS are in osteogenesis-related skeletal lineage cells with cancer suppressor gene mutations, its origins have not yet been fully elucidated because of a poor understanding of whole skeletal cell diversity and dynamics. Over the past decade, the advent and development of single-cell RNA sequencing analyses and mouse lineage-tracing approaches have revealed the diversity of skeletal stem and its lineage cells. Skeletal stem cells (SSCs) in the bone marrow endoskeletal region have now been found to efficiently generate OS and to be robust cells of origin under p53 deletion conditions. The identification of SSCs may lead to a more limited redefinition of bone marrow mesenchymal stem/stromal cells (BM-MSCs), and this population has been thought to contain cells from which OS originates. In this mini-review, we discuss the cellular diversity and dynamics of multiple skeletal cell types and the origin of OS in the native in vivo environment in mice. We also discuss future challenges in the study of skeletal cells and OS.
Collapse
Affiliation(s)
- Shohei Otani
- Department of Molecular Bone Biology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Mizuho Ohnuma
- Department of Cell Biology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
- Department of Clinical Oral Oncology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Kosei Ito
- Department of Molecular Bone Biology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Yuki Matsushita
- Department of Cell Biology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| |
Collapse
|
29
|
Matsushita Y, Liu J, Chu AKY, Tsutsumi-Arai C, Nagata M, Arai Y, Ono W, Yamamoto K, Saunders TL, Welch JD, Ono N. Bone marrow endosteal stem cells dictate active osteogenesis and aggressive tumorigenesis. Nat Commun 2023; 14:2383. [PMID: 37185464 PMCID: PMC10130060 DOI: 10.1038/s41467-023-38034-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 04/11/2023] [Indexed: 05/17/2023] Open
Abstract
The bone marrow contains various populations of skeletal stem cells (SSCs) in the stromal compartment, which are important regulators of bone formation. It is well-described that leptin receptor (LepR)+ perivascular stromal cells provide a major source of bone-forming osteoblasts in adult and aged bone marrow. However, the identity of SSCs in young bone marrow and how they coordinate active bone formation remains unclear. Here we show that bone marrow endosteal SSCs are defined by fibroblast growth factor receptor 3 (Fgfr3) and osteoblast-chondrocyte transitional (OCT) identities with some characteristics of bone osteoblasts and chondrocytes. These Fgfr3-creER-marked endosteal stromal cells contribute to a stem cell fraction in young stages, which is later replaced by Lepr-cre-marked stromal cells in adult stages. Further, Fgfr3+ endosteal stromal cells give rise to aggressive osteosarcoma-like lesions upon loss of p53 tumor suppressor through unregulated self-renewal and aberrant osteogenic fates. Therefore, Fgfr3+ endosteal SSCs are abundant in young bone marrow and provide a robust source of osteoblasts, contributing to both normal and aberrant osteogenesis.
Collapse
Affiliation(s)
- Yuki Matsushita
- University of Texas Health Science Center at Houston School of Dentistry, Houston, TX, USA
- Department of Cell Biology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Jialin Liu
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Angel Ka Yan Chu
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Chiaki Tsutsumi-Arai
- University of Texas Health Science Center at Houston School of Dentistry, Houston, TX, USA
| | - Mizuki Nagata
- University of Texas Health Science Center at Houston School of Dentistry, Houston, TX, USA
| | - Yuki Arai
- University of Texas Health Science Center at Houston School of Dentistry, Houston, TX, USA
| | - Wanida Ono
- University of Texas Health Science Center at Houston School of Dentistry, Houston, TX, USA
| | - Kouhei Yamamoto
- Department of Comprehensive Pathology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Thomas L Saunders
- Transgenic Animal Model Core, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Joshua D Welch
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA.
| | - Noriaki Ono
- University of Texas Health Science Center at Houston School of Dentistry, Houston, TX, USA.
| |
Collapse
|
30
|
Ito K, Otani S, Date Y. p53 Deficiency-Dependent Oncogenicity of Runx3. Cells 2023; 12:cells12081122. [PMID: 37190031 DOI: 10.3390/cells12081122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 04/01/2023] [Accepted: 04/07/2023] [Indexed: 05/17/2023] Open
Abstract
The RUNX transcription factors are frequently dysregulated in human cancers, suggesting their potential as attractive targets for drug treatment. However, all three transcription factors have been described as both tumor suppressors and oncogenes, indicating the need to determine their molecular mechanisms of action. Although RUNX3 has long been considered a tumor suppressor in human cancers, several recent studies have shown that RUNX3 is upregulated during the development or progression of various malignant tumors, suggesting it may act as a "conditional" oncogene. Resolving this paradox and understanding how a single gene can exhibit both oncogenic and tumor-suppressive properties is essential for successful drug targeting of RUNX. This review describes the evidence for the activities of RUNX3 in human cancer and proposes an explanation for the duality of RUNX3 involving the status of p53. In this model, p53 deficiency causes RUNX3 to become oncogenic, leading to aberrant upregulation of MYC.
Collapse
Affiliation(s)
- Kosei Ito
- Department of Molecular Bone Biology, Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki 852-8588, Japan
| | - Shohei Otani
- Department of Molecular Bone Biology, Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki 852-8588, Japan
| | - Yuki Date
- Department of Molecular Bone Biology, Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki 852-8588, Japan
- Japan Society for the Promotion of Science, 5-3-1 Kojimachi, Chiyoda-ku, Tokyo 102-0083, Japan
| |
Collapse
|
31
|
Zhao Y, Su S, Li X. Parathyroid Hormone-Related Protein/Parathyroid Hormone Receptor 1 Signaling in Cancer and Metastasis. Cancers (Basel) 2023; 15:cancers15071982. [PMID: 37046642 PMCID: PMC10093484 DOI: 10.3390/cancers15071982] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/24/2023] [Accepted: 03/24/2023] [Indexed: 03/29/2023] Open
Abstract
PTHrP exerts its effects by binding to its receptor, PTH1R, a G protein-coupled receptor (GPCR), activating the downstream cAMP signaling pathway. As an autocrine, paracrine, or intracrine factor, PTHrP has been found to stimulate cancer cell proliferation, inhibit apoptosis, and promote tumor-induced osteolysis of bone. Despite these findings, attempts to develop PTHrP and PTH1R as drug targets have not produced successful results in the clinic. Nevertheless, the efficacy of blocking PTHrP and PTH1R has been shown in various types of cancer, suggesting its potential for therapeutic applications. In light of these conflicting data, we conducted a comprehensive review of the studies of PTHrP/PTH1R in cancer progression and metastasis and highlighted the strengths and limitations of targeting PTHrP or PTH1R in cancer therapy. This review also offers our perspectives for future research in this field.
Collapse
|
32
|
NOTCH Signaling in Osteosarcoma. Curr Issues Mol Biol 2023; 45:2266-2283. [PMID: 36975516 PMCID: PMC10047431 DOI: 10.3390/cimb45030146] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/05/2023] [Accepted: 03/06/2023] [Indexed: 03/11/2023] Open
Abstract
The combination of neoadjuvant chemotherapy and surgery has been promoted for the treatment of osteosarcoma; however, the local recurrence and lung metastasis rates remain high. Therefore, it is crucial to explore new therapeutic targets and strategies that are more effective. The NOTCH pathway is not only involved in normal embryonic development but also plays an important role in the development of cancers. The expression level and signaling functional status of the NOTCH pathway vary in different histological types of cancer as well as in the same type of cancer from different patients, reflecting the distinct roles of the Notch pathway in tumorigenesis. Studies have reported abnormal activation of the NOTCH signaling pathway in most clinical specimens of osteosarcoma, which is closely related to a poor prognosis. Similarly, studies have reported that NOTCH signaling affected the biological behavior of osteosarcoma through various molecular mechanisms. NOTCH-targeted therapy has shown potential for the treatment of osteosarcoma in clinical research. After the introduction of the composition and biological functions of the NOTCH signaling pathway, the review paper discussed the clinical significance of dysfunction in osteosarcoma. Then the paper reviewed the recent relevant research progress made both in the cell lines and in the animal models of osteosarcoma. Finally, the paper explored the potential of the clinical application of NOTCH-targeted therapy for the treatment of osteosarcoma.
Collapse
|
33
|
Sun Y, Zhang C, Fang Q, Zhang W, Liu W. Abnormal signal pathways and tumor heterogeneity in osteosarcoma. J Transl Med 2023; 21:99. [PMID: 36759884 PMCID: PMC9912612 DOI: 10.1186/s12967-023-03961-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 02/01/2023] [Indexed: 02/11/2023] Open
Abstract
BACKGROUND Osteosarcoma (OS) is the most frequent and aggressive primary malignant sarcoma among adolescents and chemotherapy has not substantially progressed for decades. New insights into OS development and therapeutic strategies are urgently needed. METHODS We analyzed integrated single-cell transcriptomes, bulk RNA-seq, and microarray data from Gene Expression Omnibus (GEO) datasets. We also used Weighted Gene Co-expression Network Analysis (WGCNA), Gene set enrichment analysis (GSEA), and Gene set variation analysis (GSVA), along with Simple ClinVar and Enrichr web servers. RESULTS The findings of integrated single-cell analysis showed that OS arises from imperfect osteogenesis during development. Novel abnormalities comprised deficient TGFβ and P53 signal pathways, and cell cycle pathway activation, and a potentially new driver mutation in the interferon induced transmembrane protein 5 (IFITM5) that might function as a pathogenic factor in OS. Osteosarcoma is characterized by oncocyte heterogeneity, especially in immunogenic and adipocyte-like subtypes that respectively promote and hamper OS treatment. Etoposide is a promising chemotherapeutic that provides palliation by affecting the subtype of OS and correcting the abnormal pathways. CONCLUSION Various abnormal signal pathways play indispensable roles in OS development. We explored the heterogeneity and underlying mechanisms of OS and generated findings that will assist with OS assessment and selecting optimal therapies.
Collapse
Affiliation(s)
- Yifeng Sun
- grid.452422.70000 0004 0604 7301Department of Orthopedic Surgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Jinan, 250014 Shandong People’s Republic of China ,grid.410712.10000 0004 0473 882XDepartment of Surgery, Ulm University Hospital, Ulm University, Ulm, Germany
| | - Chunming Zhang
- grid.452422.70000 0004 0604 7301Department of Orthopedic Surgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Jinan, 250014 Shandong People’s Republic of China
| | - Qiongxuan Fang
- grid.11135.370000 0001 2256 9319MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, 100871 China
| | - Wenqiang Zhang
- grid.452422.70000 0004 0604 7301Department of Orthopedic Surgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Jinan, 250014 Shandong People’s Republic of China
| | - Wei Liu
- Department of Orthopedic Surgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Jinan, 250014, Shandong, People's Republic of China.
| |
Collapse
|
34
|
Loss of RanGAP1 drives chromosome instability and rapid tumorigenesis of osteosarcoma. Dev Cell 2023; 58:192-210.e11. [PMID: 36696903 DOI: 10.1016/j.devcel.2022.12.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 09/27/2022] [Accepted: 12/29/2022] [Indexed: 01/26/2023]
Abstract
Chromothripsis is a catastrophic event of chromosomal instability that involves intensive fragmentation and rearrangements within localized chromosomal regions. However, its cause remains unclear. Here, we show that reduction and inactivation of Ran GTPase-activating protein 1 (RanGAP1) commonly occur in human osteosarcoma, which is associated with a high rate of chromothripsis. In rapidly expanding mouse osteoprogenitors, RanGAP1 deficiency causes chromothripsis in chr1q, instant inactivation of Rb1 and degradation of p53, consequent failure in DNA damage repair, and ultrafast osteosarcoma tumorigenesis. During mitosis, RanGAP1 anchors to the kinetochore, where it recruits PP1-γ to counteract the activity of the spindle-assembly checkpoint (SAC) and prevents TOP2A degradation, thus safeguarding chromatid decatenation. Loss of RanGAP1 causes SAC hyperactivation and chromatid decatenation failure. These findings demonstrate that RanGAP1 maintains mitotic chromosome integrity and that RanGAP1 loss drives tumorigenesis through its direct effects on SAC and decatenation and secondary effects on DNA damage surveillance.
Collapse
|
35
|
The Role of Tumor Microenvironment in Regulating the Plasticity of Osteosarcoma Cells. Int J Mol Sci 2022; 23:ijms232416155. [PMID: 36555795 PMCID: PMC9788144 DOI: 10.3390/ijms232416155] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/07/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
Osteosarcoma (OS) is a malignancy that is becoming increasingly common in adolescents. OS stem cells (OSCs) form a dynamic subset of OS cells that are responsible for malignant progression and chemoradiotherapy resistance. The unique properties of OSCs, including self-renewal, multilineage differentiation and metastatic potential, 149 depend closely on their tumor microenvironment. In recent years, the likelihood of its dynamic plasticity has been extensively studied. Importantly, the tumor microenvironment appears to act as the main regulatory component of OS cell plasticity. For these reasons aforementioned, novel strategies for OS treatment focusing on modulating OS cell plasticity and the possibility of modulating the composition of the tumor microenvironment are currently being explored. In this paper, we review recent studies describing the phenomenon of OSCs and factors known to influence phenotypic plasticity. The microenvironment, which can regulate OSC plasticity, has great potential for clinical exploitation and provides different perspectives for drug and treatment design for OS.
Collapse
|
36
|
Tarone L, Mareschi K, Tirtei E, Giacobino D, Camerino M, Buracco P, Morello E, Cavallo F, Riccardo F. Improving Osteosarcoma Treatment: Comparative Oncology in Action. LIFE (BASEL, SWITZERLAND) 2022; 12:life12122099. [PMID: 36556464 PMCID: PMC9783386 DOI: 10.3390/life12122099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/05/2022] [Accepted: 12/08/2022] [Indexed: 12/15/2022]
Abstract
Osteosarcoma (OSA) is the most common pediatric malignant bone tumor. Although surgery together with neoadjuvant/adjuvant chemotherapy has improved survival for localized OSA, most patients develop recurrent/metastatic disease with a dismally poor outcome. Therapeutic options have not improved for these OSA patients in recent decades. As OSA is a rare and "orphan" tumor, with no distinct targetable driver antigens, the development of new efficient therapies is still an unmet and challenging clinical need. Appropriate animal models are therefore critical for advancement in the field. Despite the undoubted relevance of pre-clinical mouse models in cancer research, they present some intrinsic limitations that may be responsible for the low translational success of novel therapies from the pre-clinical setting to the clinic. From this context emerges the concept of comparative oncology, which has spurred the study of pet dogs as a uniquely valuable model of spontaneous OSA that develops in an immune-competent system with high biological and clinical similarities to corresponding human tumors, including in its metastatic behavior and resistance to conventional therapies. For these reasons, the translational power of studies conducted on OSA-bearing dogs has seen increasing recognition. The most recent and relevant veterinary investigations of novel combinatorial approaches, with a focus on immune-based strategies, that can most likely benefit both canine and human OSA patients have been summarized in this commentary.
Collapse
Affiliation(s)
- Lidia Tarone
- Molecular Biotechnology Center “Guido Tarone”, Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, 10126 Torino, Italy
| | - Katia Mareschi
- Department of Public Health and Paediatrics, University of Torino, Piazza Polonia 94, 10126 Torino, Italy
- Stem Cell Transplantation and Cellular Therapy Laboratory, Paediatric Onco-Haematology Department, Regina Margherita Children’s Hospital, City of Health and Science of Torino, 10126 Torino, Italy
| | - Elisa Tirtei
- Department of Public Health and Paediatrics, University of Torino, Piazza Polonia 94, 10126 Torino, Italy
- Stem Cell Transplantation and Cellular Therapy Laboratory, Paediatric Onco-Haematology Department, Regina Margherita Children’s Hospital, City of Health and Science of Torino, 10126 Torino, Italy
| | - Davide Giacobino
- Department of Veterinary Sciences, University of Torino, Largo Paolo Braccini 2, Grugliasco, 10095 Torino, Italy
| | - Mariateresa Camerino
- Department of Veterinary Sciences, University of Torino, Largo Paolo Braccini 2, Grugliasco, 10095 Torino, Italy
| | - Paolo Buracco
- Department of Veterinary Sciences, University of Torino, Largo Paolo Braccini 2, Grugliasco, 10095 Torino, Italy
| | - Emanuela Morello
- Department of Veterinary Sciences, University of Torino, Largo Paolo Braccini 2, Grugliasco, 10095 Torino, Italy
| | - Federica Cavallo
- Molecular Biotechnology Center “Guido Tarone”, Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, 10126 Torino, Italy
- Correspondence: (F.C.); (F.R.)
| | - Federica Riccardo
- Molecular Biotechnology Center “Guido Tarone”, Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, 10126 Torino, Italy
- Correspondence: (F.C.); (F.R.)
| |
Collapse
|
37
|
Simpson S, Rizvanov AA, Jeyapalan JN, de Brot S, Rutland CS. Canine osteosarcoma in comparative oncology: Molecular mechanisms through to treatment discovery. Front Vet Sci 2022; 9:965391. [PMID: 36570509 PMCID: PMC9773846 DOI: 10.3389/fvets.2022.965391] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 11/23/2022] [Indexed: 12/13/2022] Open
Abstract
Cancer is a leading cause of non-communicable morbidity and mortality throughout the world, similarly, in dogs, the most frequent cause of mortality is tumors. Some types of cancer, including osteosarcoma (OSA), occur at much higher rates in dogs than people. Dogs therefore not only require treatment themselves but can also act as an effective parallel patient population for the human disease equivalent. It should be noted that although there are many similarities between canine and human OSA, there are also key differences and it is important to research and highlight these features. Despite progress using chorioallantoic membrane models, 2D and 3D in vitro models, and rodent OSA models, many more insights into the molecular and cellular mechanisms, drug development, and treatment are being discovered in a variety of canine OSA patient populations.
Collapse
Affiliation(s)
- Siobhan Simpson
- Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Science, University of Nottingham, Nottingham, United Kingdom
| | - Albert A. Rizvanov
- Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Science, University of Nottingham, Nottingham, United Kingdom
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Jennie N. Jeyapalan
- Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Science, University of Nottingham, Nottingham, United Kingdom
- Faculty of Medicine and Health Science, Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | - Simone de Brot
- Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Science, University of Nottingham, Nottingham, United Kingdom
- Comparative Pathology Platform (COMPATH), Institute of Animal Pathology, University of Bern, Bern, Switzerland
| | - Catrin S. Rutland
- Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Science, University of Nottingham, Nottingham, United Kingdom
| |
Collapse
|
38
|
Li Y, Yang S, Yang S. Rb1 negatively regulates bone formation and remodeling through inhibiting transcriptional regulation of YAP in Glut1 and OPG expression and glucose metabolism in male mice. Mol Metab 2022; 66:101630. [PMID: 36343919 PMCID: PMC9672361 DOI: 10.1016/j.molmet.2022.101630] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 10/31/2022] [Accepted: 11/02/2022] [Indexed: 11/06/2022] Open
Abstract
OBJECTIVE Bone is a highly dynamic organ that undergoes constant bone formation and remodeling, and glucose as a major nutrient is necessary for bone formation and remodeling. Retinoblastoma (Rb1) is a critical regulator of mesenchymal stem cells (MSCs) fate, but how Rb1 regulates bone formation and remodeling is poorly understood. METHODS We generated MSCs- and osteoprogenitors-specific Rb1 knockout mouse models and utilized these models to explore the function and mechanism of Rb1 in regulating bone formation and remodeling in vivo and in vitro primary cell culture. RESULTS Rb1 deficiency in MSCs significantly increased bone mass and impaired osteoclastogenesis. Consistently, depletion of Rb1 in osteoprogenitors significantly promoted bone formation. Mechanistically, loss of Rb1 in MSCs elevated YAP nuclear translocation and transcriptional activity of YAP/TEAD1 complex, thereby increasing the transcriptional expression of Glut1 and OPG. Moreover Prx1-Cre; Rb1f/f mice displayed hypoglycemia with increased systemic glucose tolerance instead of increased insulin level. In vitro data revealed that Rb1-mutant MSCs enhanced glucose uptake and lactate and ATP production. Increased osteogenesis caused by increased glucose metabolism and decreased osteoclastogenesis caused by increased expression of OPG eventually resulted in increased bone formation and remodeling. CONCLUSIONS Collectively, these findings demonstrated that Rb1 in MSCs inhibits YAP-medicated Glut1 and OPG expression to control glucose metabolism, osteogenesis and osteoclastogenesis during bone formation and remodeling, which provide new insights that controlling Rb1 signaling may be a potential strategy for osteopetrosis.
Collapse
Affiliation(s)
- Yang Li
- Department of Basic & Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Orthopaedic Surgery, School of Medicine, Johns Hopkins University Baltimore, MD, USA
| | - Shuting Yang
- Department of Basic & Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Shuying Yang
- Department of Basic & Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA; The Center for Innovation & Precision Dentistry, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA; The Penn Center for Musculoskeletal Disorders, School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
39
|
Depletion of R270C Mutant p53 in Osteosarcoma Attenuates Cell Growth but Does Not Prevent Invasion and Metastasis In Vivo. Cells 2022; 11:cells11223614. [PMID: 36429043 PMCID: PMC9688353 DOI: 10.3390/cells11223614] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 11/06/2022] [Accepted: 11/12/2022] [Indexed: 11/18/2022] Open
Abstract
Novel therapeutic targets are needed to better treat osteosarcoma, which is the most common bone malignancy. We previously developed mouse osteosarcoma cells, designated AX (accelerated bone formation) cells from bone marrow stromal cells. AX cells harbor both wild-type and mutant forms of p53 (R270C in the DNA-binding domain, which is equivalent to human R273C). In this study, we showed that mutant p53 did not suppress the transcriptional activation function of wild-type p53 in AX cells. Notably, AXT cells, which are cells derived from tumors originating from AX cells, lost wild-type p53 expression, were devoid of the intact transcription activation function, and were resistant to doxorubicin. ChIP-seq analyses revealed that this mutant form of p53 bound to chromatin in the vicinity of the transcription start sites of various genes but exhibited a different binding profile from wild-type p53. The knockout of mutant p53 in AX and AXT cells by CRISPR-Cas9 attenuated tumor growth but did not affect the invasion of these cells. In addition, depletion of mutant p53 did not prevent metastasis in vivo. Therefore, the therapeutic potency targeting R270C (equivalent to human R273C) mutant p53 is limited in osteosarcoma. However, considering the heterogeneous nature of osteosarcoma, it is important to further evaluate the biological and clinical significance of mutant p53 in various cases.
Collapse
|
40
|
Yang J, Fu Q, Jiang H, Li Y, Liu M. Progress of phototherapy for osteosarcoma and application prospect of blue light photobiomodulation therapy. Front Oncol 2022; 12:1022973. [PMID: 36313662 PMCID: PMC9606592 DOI: 10.3389/fonc.2022.1022973] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 09/20/2022] [Indexed: 12/02/2022] Open
Abstract
Osteosarcoma (OS) is the most common primary malignant bone tumor that mainly affects the pediatric and adolescent population; limb salvage treatment has become one of the most concerned and expected outcomes of OS patients recently. Phototherapy (PT), as a novel, non-invasive, and efficient antitumor therapeutic approach including photodynamic therapy (PDT), photothermal therapy (PTT), and photobiomodulation therapy (PBMT), has been widely applied in superficial skin tumor research and clinical treatment. OS is the typical deep tumor, and its phototherapy research faces great limitations and challenges. Surprisingly, pulse mode LED light can effectively improve tissue penetration and reduce skin damage caused by high light intensity and has great application potential in deep tumor research. In this review, we discussed the research progress and related molecular mechanisms of phototherapy in the treatment of OS, mainly summarized the status quo of blue light PBMT in the scientific research and clinical applications of tumor treatment, and outlooked the application prospect of pulsed blue LED light in the treatment of OS, so as to further improve clinical survival rate and prognosis of OS treatment and explore corresponding cellular mechanisms.
Collapse
Affiliation(s)
- Jiali Yang
- School of Information Science and Technology, Fudan University, Shanghai, China
| | - Qiqi Fu
- School of Information Science and Technology, Fudan University, Shanghai, China
| | - Hui Jiang
- Academy for Engineering and Technology, Fudan University, Shanghai, China
| | - Yinghua Li
- Shanghai Fifth People’s Hospital, Fudan University, Shanghai, China
- *Correspondence: Yinghua Li, ; Muqing Liu,
| | - Muqing Liu
- School of Information Science and Technology, Fudan University, Shanghai, China
- Zhongshan Fudan Joint Innovation Center, Zhongshan, China
- *Correspondence: Yinghua Li, ; Muqing Liu,
| |
Collapse
|
41
|
Bartholf DeWitt S, Hoskinson Plumlee S, Brighton HE, Sivaraj D, Martz E, Zand M, Kumar V, Sheth MU, Floyd W, Spruance JV, Hawkey N, Varghese S, Ruan J, Kirsch DG, Somarelli JA, Alman B, Eward WC. Loss of ATRX promotes aggressive features of osteosarcoma with increased NF-κB signaling and integrin binding. JCI Insight 2022; 7:e151583. [PMID: 36073547 PMCID: PMC9536280 DOI: 10.1172/jci.insight.151583] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 06/21/2022] [Indexed: 11/17/2022] Open
Abstract
Osteosarcoma (OS) is a lethal disease with few known targeted therapies. Here, we show that decreased ATRX expression is associated with more aggressive tumor cell phenotypes, including increased growth, migration, invasion, and metastasis. These phenotypic changes correspond with activation of NF-κB signaling, extracellular matrix remodeling, increased integrin αvβ3 expression, and ETS family transcription factor binding. Here, we characterize these changes in vitro, in vivo, and in a data set of human OS patients. This increased aggression substantially sensitizes ATRX-deficient OS cells to integrin signaling inhibition. Thus, ATRX plays an important tumor-suppression role in OS, and loss of function of this gene may underlie new therapeutic vulnerabilities. The relationship between ATRX expression and integrin binding, NF-κB activation, and ETS family transcription factor binding has not been described in previous studies and may impact the pathophysiology of other diseases with ATRX loss, including other cancers and the ATR-X α thalassemia intellectual disability syndrome.
Collapse
Affiliation(s)
- Suzanne Bartholf DeWitt
- Department of Orthopaedic Surgery and
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, USA
| | | | | | | | | | - Maryam Zand
- Computer Science Department, The University of Texas at San Antonio, San Antonio, Texas, USA
| | - Vardhman Kumar
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA
| | - Maya U. Sheth
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, USA
- Duke Cancer Institute, Duke University Medical Center, Durham, North Carolina, USA
| | - Warren Floyd
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, USA
| | - Jacob V. Spruance
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, USA
| | - Nathan Hawkey
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, USA
| | - Shyni Varghese
- Department of Orthopaedic Surgery and
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina, USA
| | - Jianhua Ruan
- Computer Science Department, The University of Texas at San Antonio, San Antonio, Texas, USA
| | - David G. Kirsch
- Duke Cancer Institute, Duke University Medical Center, Durham, North Carolina, USA
- Department of Pharmacology and Cancer Biology and
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina, USA
| | - Jason A. Somarelli
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, USA
- Duke Cancer Institute, Duke University Medical Center, Durham, North Carolina, USA
| | - Ben Alman
- Department of Orthopaedic Surgery and
| | - William C. Eward
- Department of Orthopaedic Surgery and
- College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
42
|
Wu SC, Kim A, Gu Y, Martinez DI, Zocchi L, Chen CC, Lopez J, Salcido K, Singh S, Wu J, Nael A, Benavente CA. UHRF1 overexpression promotes osteosarcoma metastasis through altered exosome production and AMPK/SEMA3E suppression. Oncogenesis 2022; 11:51. [PMID: 36068209 PMCID: PMC9448786 DOI: 10.1038/s41389-022-00430-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 08/22/2022] [Accepted: 08/24/2022] [Indexed: 11/16/2022] Open
Abstract
Loss-of-function mutations at the retinoblastoma (RB1) gene are associated with increased mortality, metastasis, and poor therapeutic outcome in several cancers, including osteosarcoma. However, the mechanism(s) through which RB1 loss worsens clinical outcome remains understudied. Ubiquitin-like with PHD and Ring Finger domains 1 (UHRF1) has been identified as a critical downstream effector of the RB/E2F signaling pathway that is overexpressed in various cancers. Here, we determined the role and regulatory mechanisms of UHRF1 in rendering osteosarcoma cells more aggressive. Higher UHRF1 expression correlated with malignancy in osteosarcoma cell lines, clinical samples, and genetically engineered mouse models. Gain- and loss-of-function assays revealed that UHRF1 has cell-intrinsic and extrinsic functions promoting cell proliferation, migration, invasion, angiogenesis, and metastasis. UHRF1 overexpression induced angiogenesis by suppressing AMPK activation and Semaphorin 3E (SEMA3E) expression. Further, UHRF1-mediated migration and metastasis resulted, at least in part, through altered expression of extracellular vesicles and their cargo, including urokinase-type plasminogen activator (uPA). Novel osteosarcoma genetically engineered mouse models confirmed that knocking out Uhrf1 considerably decreased metastasis and reversed the poorer survival associated with Rb1 loss. This presents a new mechanistic insight into RB1 loss-associated poor prognosis and novel oncogenic roles of UHRF1 in the regulation of angiogenesis and exosome secretion, both critical for osteosarcoma metastasis. This provides substantial support for targeting UHRF1 or its downstream effectors as novel therapeutic options to improve current treatment for osteosarcoma.
Collapse
Affiliation(s)
- Stephanie C Wu
- Department of Pharmaceutical Sciences, University of California, Irvine, CA, 92697, USA
- Department of Developmental and Cell Biology, University of California, Irvine, CA, 92697, USA
| | - Ahhyun Kim
- Department of Pharmaceutical Sciences, University of California, Irvine, CA, 92697, USA
| | - Yijun Gu
- Department of Pharmaceutical Sciences, University of California, Irvine, CA, 92697, USA
| | - Daniel I Martinez
- Department of Developmental and Cell Biology, University of California, Irvine, CA, 92697, USA
| | - Loredana Zocchi
- Department of Pharmaceutical Sciences, University of California, Irvine, CA, 92697, USA
| | - Claire C Chen
- Department of Pharmaceutical Sciences, University of California, Irvine, CA, 92697, USA
| | - Jocelyne Lopez
- Department of Developmental and Cell Biology, University of California, Irvine, CA, 92697, USA
| | - Kelsey Salcido
- Department of Developmental and Cell Biology, University of California, Irvine, CA, 92697, USA
| | - Sarah Singh
- Department of Developmental and Cell Biology, University of California, Irvine, CA, 92697, USA
| | - Jie Wu
- Department of Biological Chemistry, University of California, Irvine, CA, 92697, USA
- Chao Family Comprehensive Cancer Center, University of California, Irvine, CA, 92697, USA
| | - Ali Nael
- Department of Pathology, University of California, Irvine, CA, 92697, USA
- Department of Pathology, Children's Hospital of Orange County, Orange, CA, 92868, USA
| | - Claudia A Benavente
- Department of Pharmaceutical Sciences, University of California, Irvine, CA, 92697, USA.
- Department of Developmental and Cell Biology, University of California, Irvine, CA, 92697, USA.
- Chao Family Comprehensive Cancer Center, University of California, Irvine, CA, 92697, USA.
| |
Collapse
|
43
|
Qin Q, Gomez-Salazar M, Tower RJ, Chang L, Morris CD, McCarthy EF, Ting K, Zhang X, James AW. NELL1 Regulates the Matrisome to Promote Osteosarcoma Progression. Cancer Res 2022; 82:2734-2747. [PMID: 35700263 PMCID: PMC9357190 DOI: 10.1158/0008-5472.can-22-0732] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/22/2022] [Accepted: 06/08/2022] [Indexed: 02/05/2023]
Abstract
Sarcomas produce an abnormal extracellular matrix (ECM), which in turn provides instructive cues for cell growth and invasion. Neural EGF like-like molecule 1 (NELL1) is a secreted glycoprotein characterized by its nonneoplastic osteoinductive effects, yet it is highly expressed in skeletal sarcomas. Here, we show that genetic deletion of NELL1 markedly reduces invasive behavior across human osteosarcoma (OS) cell lines. NELL1 deletion resulted in reduced OS disease progression, inhibiting metastasis and improving survival in a xenograft mouse model. These observations were recapitulated with Nell1 conditional knockout in mouse models of p53/Rb-driven sarcomagenesis, which reduced tumor frequency and extended tumor-free survival. Transcriptomic and phosphoproteomic analyses demonstrated that NELL1 loss skews the expression of matricellular proteins associated with reduced FAK signaling. Culturing NELL1 knockout sarcoma cells on wild-type OS-enriched matricellular proteins reversed the phenotypic and signaling changes induced by NELL1 deficiency. In sarcoma patients, high expression of NELL1 correlated with decreased overall survival. These findings in mouse and human models suggest that NELL1 expression alters the sarcoma ECM, thereby modulating cellular invasive potential and prognosis. Disruption of NELL1 signaling may represent a novel therapeutic approach to short-circuit sarcoma disease progression. SIGNIFICANCE NELL1 modulates the sarcoma matrisome to promote tumor growth, invasion, and metastasis, identifying the matrix-associated protein as an orchestrator of cell-ECM interactions in sarcomagenesis and disease progression.
Collapse
Affiliation(s)
- Qizhi Qin
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21205
| | | | - Robert J. Tower
- Department of Orthopaedics, Johns Hopkins University, Baltimore, MD 21205
| | - Leslie Chang
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21205
| | - Carol D. Morris
- Department of Orthopaedics, Johns Hopkins University, Baltimore, MD 21205
| | | | - Kang Ting
- Forsyth Institute, Cambridge, MA 02142
| | - Xinli Zhang
- Section of Orthodontics, Division of Growth and Development, School of Dentistry, University of California, Los Angeles, Los Angeles, CA, 90095
| | - Aaron W. James
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21205,Corresponding Author: Aaron W. James, M.D., Ph.D., 720 Rutland Avenue, Room 524A, Baltimore, MD 21205, Phone: (410) 502-4143,
| |
Collapse
|
44
|
Taylor AM, Sun JM, Yu A, Voicu H, Shen J, Barkauskas DA, Triche TJ, Gastier-Foster JM, Man TK, Lau CC. Integrated DNA Copy Number and Expression Profiling Identifies IGF1R as a Prognostic Biomarker in Pediatric Osteosarcoma. Int J Mol Sci 2022; 23:ijms23148036. [PMID: 35887382 PMCID: PMC9319262 DOI: 10.3390/ijms23148036] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/17/2022] [Accepted: 07/18/2022] [Indexed: 11/25/2022] Open
Abstract
Osteosarcoma is a primary malignant bone tumor arising from bone-forming mesenchymal cells in children and adolescents. Despite efforts to understand the biology of the disease and identify novel therapeutics, the survival of osteosarcoma patients remains dismal. We have concurrently profiled the copy number and gene expression of 226 osteosarcoma samples as part of the Strategic Partnering to Evaluate Cancer Signatures (SPECS) initiative. Our results demonstrate the heterogeneous landscape of osteosarcoma in younger populations by showing the presence of genome-wide copy number abnormalities occurring both recurrently among samples and in a high frequency. Insulin growth factor receptor 1 (IGF1R) is a receptor tyrosine kinase which binds IGF1 and IGF2 to activate downstream pathways involved in cell apoptosis and proliferation. We identify prevalent amplification of IGF1R corresponding with increased gene expression in patients with poor survival outcomes. Our results substantiate previously tenuously associated copy number abnormalities identified in smaller datasets (13q34+, 20p13+, 4q35-, 20q13.33-), and indicate the significance of high fibroblast growth factor receptor 2 (FGFR2) expression in distinguishing patients with poor prognosis. FGFR2 is involved in cellular proliferation processes such as division, growth and angiogenesis. In summary, our findings demonstrate the prognostic significance of several genes associated with osteosarcoma pathogenesis.
Collapse
Affiliation(s)
- Aaron M. Taylor
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA;
- Department of Pediatrics-Oncology, Baylor College of Medicine, Houston, TX 77030, USA; (J.M.S.); (A.Y.); (J.S.); (T.-K.M.)
- Program of Quantitative & Computational Biosciences, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jiayi M. Sun
- Department of Pediatrics-Oncology, Baylor College of Medicine, Houston, TX 77030, USA; (J.M.S.); (A.Y.); (J.S.); (T.-K.M.)
- Program of Quantitative & Computational Biosciences, Baylor College of Medicine, Houston, TX 77030, USA
| | - Alexander Yu
- Department of Pediatrics-Oncology, Baylor College of Medicine, Houston, TX 77030, USA; (J.M.S.); (A.Y.); (J.S.); (T.-K.M.)
| | - Horatiu Voicu
- Dan L. Duncan Cancer Center-Bioinformatics, Baylor College of Medicine, Houston, TX 77030, USA;
| | - Jianhe Shen
- Department of Pediatrics-Oncology, Baylor College of Medicine, Houston, TX 77030, USA; (J.M.S.); (A.Y.); (J.S.); (T.-K.M.)
| | - Donald A. Barkauskas
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA;
| | - Timothy J. Triche
- Pathology and Laboratory Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA;
| | | | - Tsz-Kwong Man
- Department of Pediatrics-Oncology, Baylor College of Medicine, Houston, TX 77030, USA; (J.M.S.); (A.Y.); (J.S.); (T.-K.M.)
- Dan L. Duncan Cancer Center-Bioinformatics, Baylor College of Medicine, Houston, TX 77030, USA;
| | - Ching C. Lau
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA;
- Department of Pediatrics-Oncology, Baylor College of Medicine, Houston, TX 77030, USA; (J.M.S.); (A.Y.); (J.S.); (T.-K.M.)
- Program of Quantitative & Computational Biosciences, Baylor College of Medicine, Houston, TX 77030, USA
- Dan L. Duncan Cancer Center-Bioinformatics, Baylor College of Medicine, Houston, TX 77030, USA;
- Cancer and Hematology Center, Texas Children’s Hospital, Houston, TX 77030, USA;
- Correspondence: ; Tel.: +1-207-288-6000
| |
Collapse
|
45
|
Kang MA, Rao PP, Matsui H, Mahajan SS. Delivery of mGluR5 siRNAs by Iron Oxide Nanocages by Alternating Magnetic Fields for Blocking Proliferation of Metastatic Osteosarcoma Cells. Int J Mol Sci 2022; 23:7944. [PMID: 35887290 PMCID: PMC9320330 DOI: 10.3390/ijms23147944] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/15/2022] [Accepted: 07/18/2022] [Indexed: 02/04/2023] Open
Abstract
Although osteosarcoma is the most common primary malignant bone tumor, chemotherapeutic drugs and treatment have failed to increase the five-year survival rate over the last three decades. We previously demonstrated that type 5 metabotropic glutamate receptor, mGluR5, is required to proliferate metastatic osteosarcoma cells. In this work, we delivered mGluR5 siRNAs in vitro using superparamagnetic iron oxide nanocages (IO-nanocages) as delivery vehicles and applied alternating magnetic fields (AMFs) to improve mGluR5 siRNAs release. We observed functional outcomes when mGluR5 expression is silenced in human and mouse osteosarcoma cell lines. The results elucidated that the mGluR5 siRNAs were successfully delivered by IO-nanocages and their release was enhanced by AMFs, leading to mGluR5 silencing. Moreover, we observed that the proliferation of both human and mouse osteosarcoma cells decreased significantly when mGluR5 expression was silenced in the cells. This novel magnetic siRNA delivery methodology was capable of silencing mGluR5 expression significantly in osteosarcoma cell lines under the AMFs, and our data suggested that this method can be further used in future clinical applications in cancer therapy.
Collapse
Affiliation(s)
- Min A Kang
- Ph.D. Program in Biochemistry, The Graduate Center of the City University of New York, 364 5th Ave., New York, NY 10016, USA; (M.A.K.); (P.P.R.); (H.M.)
- Department of Chemistry, Hunter College, City University of New York, 695 Park Ave., New York, NY 10065, USA
| | - Pooja P. Rao
- Ph.D. Program in Biochemistry, The Graduate Center of the City University of New York, 364 5th Ave., New York, NY 10016, USA; (M.A.K.); (P.P.R.); (H.M.)
- Department of Medical Laboratory Science, Hunter College, City University of New York, 425 East 25th Street, New York, NY 10010, USA
| | - Hiroshi Matsui
- Ph.D. Program in Biochemistry, The Graduate Center of the City University of New York, 364 5th Ave., New York, NY 10016, USA; (M.A.K.); (P.P.R.); (H.M.)
- Department of Chemistry, Hunter College, City University of New York, 695 Park Ave., New York, NY 10065, USA
- Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, 364 5th Ave., New York, NY 10016, USA
- Department of Biochemistry, Weill Cornell Medical College, 413 East 69th Street, New York, NY 10021, USA
| | - Shahana S. Mahajan
- Ph.D. Program in Biochemistry, The Graduate Center of the City University of New York, 364 5th Ave., New York, NY 10016, USA; (M.A.K.); (P.P.R.); (H.M.)
- Department of Medical Laboratory Science, Hunter College, City University of New York, 425 East 25th Street, New York, NY 10010, USA
- Ph.D. Program in Biology, The Graduate Center of the City University of New York, 364 5th Ave., New York, NY 10016, USA
- Brain Mind Research Institute, Weill Cornell Medical College, 413 East 69th Street, New York, NY 10021, USA
| |
Collapse
|
46
|
Origin and Therapies of Osteosarcoma. Cancers (Basel) 2022; 14:cancers14143503. [PMID: 35884563 PMCID: PMC9322921 DOI: 10.3390/cancers14143503] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/13/2022] [Accepted: 07/15/2022] [Indexed: 01/15/2023] Open
Abstract
Simple Summary Osteosarcoma is the most common malignant bone tumor in children, with a 5-year survival rate ranging from 70% to 20% depending on the aggressiveness of the disease. The current treatments have not evolved over the past four decades due in part to the genetic complexity of the disease and its heterogeneity. This review will summarize the current knowledge of OS origin, diagnosis and therapies. Abstract Osteosarcoma (OS) is the most frequent primary bone tumor, mainly affecting children and young adults. Despite therapeutic advances, the 5-year survival rate is 70% but drastically decreases to 20–30% for poor responders to therapies or for patients with metastasis. No real evolution of the survival rates has been observed for four decades, explained by poor knowledge of the origin, difficulties related to diagnosis and the lack of targeted therapies for this pediatric tumor. This review will describe a non-exhaustive overview of osteosarcoma disease from a clinical and biological point of view, describing the origin, diagnosis and therapies.
Collapse
|
47
|
Zou N, Liu R, Li C. Cathepsin K+ Non-Osteoclast Cells in the Skeletal System: Function, Models, Identity, and Therapeutic Implications. Front Cell Dev Biol 2022; 10:818462. [PMID: 35912093 PMCID: PMC9326176 DOI: 10.3389/fcell.2022.818462] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 05/31/2022] [Indexed: 11/13/2022] Open
Abstract
Cathepsin K (Ctsk) is a cysteine protease of the papain superfamily initially identified in differentiated osteoclasts; it plays a critical role in degrading the bone matrix. However, subsequent in vivo and in vitro studies based on animal models elucidate novel subpopulations of Ctsk-expressing cells, which display markers and properties of mesenchymal stem/progenitor cells. This review introduces the function, identity, and role of Ctsk+ cells and their therapeutic implications in related preclinical osseous disorder models. It also summarizes the available in vivo models for studying Ctsk+ cells and their progeny. Further investigations of detailed properties and mechanisms of Ctsk+ cells in transgenic models are required to guide potential therapeutic targets in multiple diseases in the future.
Collapse
Affiliation(s)
- Nanyu Zou
- Department of Endocrinology, Endocrinology Research Center, The Xiangya Hospital of Central South University, Changsha, China
| | - Ran Liu
- Department of Endocrinology, Endocrinology Research Center, The Xiangya Hospital of Central South University, Changsha, China
| | - Changjun Li
- Department of Endocrinology, Endocrinology Research Center, The Xiangya Hospital of Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders (Xiangya Hospital), Changsha, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China
- *Correspondence: Changjun Li,
| |
Collapse
|
48
|
Trp53 controls chondrogenesis and endochondral ossification by negative regulation of TAZ activity and stability via β-TrCP-mediated ubiquitination. Cell Death Dis 2022; 8:317. [PMID: 35831272 PMCID: PMC9279315 DOI: 10.1038/s41420-022-01105-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 06/21/2022] [Accepted: 06/27/2022] [Indexed: 11/09/2022]
Abstract
Transformation-related protein 53 (Trp53) is a critical regulator of cell fate determination by controlling cell proliferation and differentiation. Ablation of Trp53 signaling in osteoblast lineages significantly promotes osteogenesis, bone formation, and bone remodeling. However, how Trp53 regulates chondrogenesis and endochondral bone formation is undefined. In this study, we found that Trp53 expression gradually decreased in tibia growth plates during embryonic development in vivo and during chondrogenesis in vitro. By deleting Trp53 in chondrocyte lineage using Col2-Cre transgenic line, we found that loss of Trp53 in chondrocytes significantly increased growth plate growth and bone formation by increasing chondrocyte proliferation, matrix production and maturation, and bone dynamic formation rate. Mechanistically, our data revealed loss of Trp53 significantly promoted TAZ transcriptional activity through inhibition of TAZ phosphorylation and nuclear translocation, whereas its activity was pronouncedly inhibited after forced expression of Trp53. Furthermore, Co-IP data demonstrated that Trp53 associated with TAZ. Moreover, Trp53 decreased the stability of TAZ protein and promoted its degradation through β-TrCP-mediated ubiquitination. Ablation of TAZ in Col2-Cre;Trp53f/f mice rescued the phenotypes of enhanced chondrogenesis and bone formation caused by Trp53 deletion. Collectively, this study revealed that Trp53 modulates chondrogenesis and endochondral ossification through negative regulation of TAZ activity and stability, suggesting that targeting Trp53 signaling may be a potential strategy for fracture healing, heterotopic ossification, arthritis, and other bone diseases.
Collapse
|
49
|
Li Y, Yang S, Liu Y, Yang S. Mice with Trp53 and Rb1 deficiency in chondrocytes spontaneously develop chondrosarcoma via overactivation of YAP signaling. Cell Death Dis 2022; 13:570. [PMID: 35760773 PMCID: PMC9237030 DOI: 10.1038/s41419-022-04916-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 04/28/2022] [Accepted: 05/05/2022] [Indexed: 01/21/2023]
Abstract
Chondrosarcoma (CHS) is a rare type of soft sarcoma with increased production of cartilage matrix arising from soft bone tissues. Currently, surgical resection is the primary clinical treatment for chondrosarcoma due to the poor response to radiotherapy and chemotherapy. However, the therapeutic effect is not satisfactory due to the higher local recurrence rate. Thus, management and elucidation of the pathological mechanism of chondrosarcoma remain an ongoing challenge, and the development of effective chondrosarcoma mouse models and treatment options are urgently needed. Here, we generated a new transgenic chondrosarcoma model by double conditional deletions of Trp53 and Rb1 in chondrocyte lineage which spontaneously caused spinal chondrosarcoma and lung metastasis. Bioinformatic analysis of the human soft sarcoma database showed that Trp53 and Rb1 genes had higher mutations, reaching up to approximately 33.5% and 8.7%, respectively. Additionally, Trp53 and Rb1 signatures were decreased in the human and mouse chondrosarcoma tissues. Mechanistically, we found that YAP expression and activity were significantly increased in mouse Col2-Cre;Trp53f/f/Rb1f/f chondrosarcoma tissues compared to the adjacent normal cartilage. Knockdown of YAP in primary chondrosarcoma cells significantly inhibited chondrosarcoma proliferation, invasion, and tumorsphere formation. Chondrocyte lineage ablation of YAP delayed chondrosarcoma progression and lung metastasis in Col2-Cre;Trp53f/f/Rb1f/f mice. Moreover, we found that metformin served as a YAP inhibitor, which bound to the activity area of YAP protein, and inhibited chondrosarcoma cell proliferation, migration, invasion, and progression in vitro and significantly suppressed chondrosarcoma formation in vivo. Collectively, this study identifies the inhibition of YAP may be an effective therapeutic strategy for the treatment of chondrosarcoma.
Collapse
Affiliation(s)
- Yang Li
- Department of Basic & Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Shuting Yang
- Department of Basic & Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Yang Liu
- College of Fisheries and Life Science, Dalian Ocean University, 116023, Dalian, China
| | - Shuying Yang
- Department of Basic & Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Center for Innovation & Precision Dentistry, School of Dental Medicine, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- The Penn Center for Musculoskeletal Disorders, School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
50
|
Li Y, Yang S, Liu Y, Yang S. Deletion of Trp53 and Rb1 in Ctsk-expressing cells drives osteosarcoma progression by activating glucose metabolism and YAP signaling. MedComm (Beijing) 2022; 3:e131. [PMID: 35615117 PMCID: PMC9026232 DOI: 10.1002/mco2.131] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 02/28/2022] [Accepted: 03/02/2022] [Indexed: 12/23/2022] Open
Abstract
Glucose metabolism reprogramming is a critical factor in the progression of multiple cancers and is directly regulated by many tumor suppressors. However, how glucose metabolism regulates osteosarcoma development and progression is largely unknown. Cathepsin K (Ctsk) has been reported to express in chondroprogenitor cells and stem cells besides osteoclasts. Moreover, mutations in the tumor suppressors transformation-related protein 53 (Trp53) and retinoblastoma protein (Rb1) are evident in approximately 50%-70% of human osteosarcoma. To understand how deletion of Trp53 and Rb1 in Ctsk-expressing cells drives tumorigenesis, we generated the Ctsk-Cre;Trp53f/f/Rb1f/f mouse model. Our data revealed that those mice developed osteosarcoma without formation of tumor in osteoclast lineage. The level of cortical bone destruction was gradually increased in parallel to the osteosarcoma progression rate. Through mechanistic studies, we found that loss of Trp53/Rb1 in Ctsk-expressing cells significantly elevated Yes-associated protein (YAP) expression and activity. YAP/TEAD1 complex binds to the glucose transporter 1 (Glut1) promoter to upregulate Glut1 expression. Upregulated Glut1 expression led to overactive glucose metabolism, increasing osteosarcoma progression. Ablation of YAP signaling inhibited energy metabolism and delayed osteosarcoma progression in Ctsk-Cre;Trp53f/f/Rb1f/f mice. Collectively, these findings provide proof of principle that inhibition of YAP activity may be a potential strategy for osteosarcoma treatment.
Collapse
Affiliation(s)
- Yang Li
- Department of Basic & Translational SciencesSchool of Dental MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Shuting Yang
- Department of Basic & Translational SciencesSchool of Dental MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Yang Liu
- College of Fisheries and Life ScienceDalian Ocean UniversityDalianChina
| | - Shuying Yang
- Department of Basic & Translational SciencesSchool of Dental MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Center for Innovation & Precision DentistrySchool of Dental MedicineSchool of Engineering and Applied SciencesUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- The Penn Center for Musculoskeletal DisordersSchool of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| |
Collapse
|