1
|
Adams-Brown SE, Reid KZ. The Central FacilitaTOR: Coordinating Transcription and Translation in Eukaryotes. Int J Mol Sci 2025; 26:2845. [PMID: 40243440 PMCID: PMC11989106 DOI: 10.3390/ijms26072845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 03/11/2025] [Accepted: 03/17/2025] [Indexed: 04/18/2025] Open
Abstract
One of the biggest challenges to eukaryotic gene expression is coordinating transcription in the nucleus and protein synthesis in the cytoplasm. However, little is known about how these major steps in gene expression are connected. The Target of Rapamycin (TOR) signaling pathway is crucial in connecting these critical phases of gene expression. Highly conserved among eukaryotic cells, TOR regulates growth, metabolism, and cellular equilibrium in response to changes in nutrients, energy levels, and stress conditions. This review examines the extensive role of TOR in gene expression regulation. We highlight how TOR is involved in phosphorylation, remodeling chromatin structure, and managing the factors that facilitate transcription and translation. Furthermore, the critical functions of TOR extend to processing RNA, assembling RNA-protein complexes, and managing their export from the nucleus, demonstrating its wide-reaching impact throughout the cell. Our discussion emphasizes the integral roles of TOR in bridging the processes of transcription and translation and explores how it orchestrates these complex cellular processes.
Collapse
Affiliation(s)
| | - Ke Zhang Reid
- Department of Biology, Wake Forest University, Winston-Salem, NC 27109, USA
| |
Collapse
|
2
|
Dang W, Wang Z, Li H, Yuan H, Iqbal B, Zhang H. Negative Regulation of Kog1 on Lipid Accumulation in the Oleaginous Fungus Mucor circinelloides. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:6807-6819. [PMID: 40052636 DOI: 10.1021/acs.jafc.4c12093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
Oleaginous microorganisms can produce polyunsaturated fatty acids beneficial to human health through adjusting the nitrogen content in the medium. The target of rapamycin complex 1 (TORC1) is important for nitrogen sensing and then regulates lipid metabolism. However, the function of Kog1, a subunit of TORC1, in TORC1-regulated lipid metabolism in oleaginous microorganisms remains unclear. In this study, the gene kog1 was knocked out to explore the mechanism of lipid accumulation in the oleaginous fungus M. circinelloides under nitrogen-limited and nitrogen-rich conditions. The results showed that the cell dry weight (CDW) of the kog1 deletion mutant was obviously decreased from 22.2 to 15.4 g/L under nitrogen-limited conditions; however, the lipid content markedly increased by 43.2% compared to the control, from 20.8% of CDW to 29.9%. A similar trend was observed under nitrogen-rich conditions; the cell growth was significantly inhibited, the CDW was decreased from 28.6 to 23.0 g/L, and the lipid content increased by 79.6% compared to the control strain, reaching 9.7% of CDW. The addition of rapamycin further enhanced lipid accumulation in the kog1 knockout mutant but not in the tor knockout mutant, indicating that Kog1 is the upstream target of rapamycin (TOR) in regulating lipid regulation. Transcriptional analysis under both nitrogen-limited and nitrogen-rich conditions notably suggested that nitrogen stress may activate Snf1/AMPK to inhibit Kog1, facilitating SREBP-1c nuclear translocation and activating fatty acid biosynthesis genes.
Collapse
Affiliation(s)
- Wenrui Dang
- Colin Ratledge Center for Microbial Lipids, School of Agriculture Engineering and Food Science, Shandong University of Technology, 266 Xincun West Road, Zibo, Shandong 255000, People's Republic of China
| | - Zhen Wang
- School of public health, Qilu Medical University, Zibo, Shandong 255300, People's Republic of China
| | - Hequn Li
- Colin Ratledge Center for Microbial Lipids, School of Agriculture Engineering and Food Science, Shandong University of Technology, 266 Xincun West Road, Zibo, Shandong 255000, People's Republic of China
| | - Hongjuan Yuan
- Colin Ratledge Center for Microbial Lipids, School of Agriculture Engineering and Food Science, Shandong University of Technology, 266 Xincun West Road, Zibo, Shandong 255000, People's Republic of China
| | - Bushra Iqbal
- Colin Ratledge Center for Microbial Lipids, School of Agriculture Engineering and Food Science, Shandong University of Technology, 266 Xincun West Road, Zibo, Shandong 255000, People's Republic of China
| | - Huaiyuan Zhang
- Colin Ratledge Center for Microbial Lipids, School of Agriculture Engineering and Food Science, Shandong University of Technology, 266 Xincun West Road, Zibo, Shandong 255000, People's Republic of China
| |
Collapse
|
3
|
Wei Z, Hu X, Wu Y, Zhou L, Zhao M, Lin Q. Molecular Mechanisms Underlying Initiation and Activation of Autophagy. Biomolecules 2024; 14:1517. [PMID: 39766224 PMCID: PMC11673044 DOI: 10.3390/biom14121517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 11/15/2024] [Accepted: 11/26/2024] [Indexed: 01/11/2025] Open
Abstract
Autophagy is an important catabolic process to maintain cellular homeostasis and antagonize cellular stresses. The initiation and activation are two of the most important aspects of the autophagic process. This review focuses on mechanisms underlying autophagy initiation and activation and signaling pathways regulating the activation of autophagy found in recent years. These findings include autophagy initiation by liquid-liquid phase separation (LLPS), autophagy initiation in the endoplasmic reticulum (ER) and Golgi apparatus, and the signaling pathways mediated by the ULK1 complex, the mTOR complex, the AMPK complex, and the PI3KC3 complex. Through the review, we attempt to present current research progress in autophagy regulation and forward our understanding of the regulatory mechanisms and signaling pathways of autophagy initiation and activation.
Collapse
Affiliation(s)
| | | | | | | | | | - Qiong Lin
- School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China; (Z.W.); (X.H.); (Y.W.); (L.Z.); (M.Z.)
| |
Collapse
|
4
|
Wang B, Yang R, Wan C, Tian Y, Wu J, Roy S, Li S, Shen J, Yin Q. Structural basis of pseudoGTPase-mediated protein-protein interactions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.30.620932. [PMID: 39554064 PMCID: PMC11565788 DOI: 10.1101/2024.10.30.620932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
GTPases regulate various cellular processes through conformational changes triggered by GTP or GDP binding. Recently, pseudoGTPases, the catalytically inactive counterparts of GTPases, have been identified across species from bacteria to human, although their functions and mechanisms remain unexplored. In this study, we demonstrate that the N-terminal region of the assembly chaperone AAGAB is a type i pseudoGTPase using biochemistry and X-ray crystallography. Furthermore, we discovered that the AAGAB pseudoGTPase domain (psGD) interacts with the σ subunits of AP1 and AP2 adaptor complexes, heterotetrameric complexes involved in clathrin-mediated membrane trafficking. AAGAB psGD engages the σ subunits via a unique interface distinct from the conventional GTPase interacting regions. Further biochemical and cell-based assays confirmed the crucial role of the newly identified interface in binding and membrane trafficking. Collectively, our results establish AAGAB pseudoGTPase domain as a critical protein-protein interaction module. These findings offer new insight into the structural basis and molecular mechanisms of pseudoGTPases.
Collapse
Affiliation(s)
- Bing Wang
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA
- Current address: Department of Structural Biology, Van Andel Institute, Grand Rapids, MI 49503, USA
- These authors contributed equally to the work
| | - Rui Yang
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA
- These authors contributed equally to the work
| | - Chun Wan
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO 80309, USA
- These authors contributed equally to the work
| | - Yuan Tian
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA
- These authors contributed equally to the work
| | - Jingyi Wu
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO 80309, USA
| | - Sayantan Roy
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA
- Current address: Department of Molecular Biophysics and Biochemistry, Yale School of Medicine, New Haven, CT 06510, USA
| | - Suzhao Li
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Jingshi Shen
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO 80309, USA
| | - Qian Yin
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306, USA
- Lead contact
| |
Collapse
|
5
|
Sambri I, Ferniani M, Ballabio A. Ragopathies and the rising influence of RagGTPases on human diseases. Nat Commun 2024; 15:5812. [PMID: 38987251 PMCID: PMC11237164 DOI: 10.1038/s41467-024-50034-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 06/27/2024] [Indexed: 07/12/2024] Open
Abstract
RagGTPases (Rags) play an essential role in the regulation of cell metabolism by controlling the activities of both mechanistic target of rapamycin complex 1 (mTORC1) and Transcription factor EB (TFEB). Several diseases, herein named ragopathies, are associated to Rags dysfunction. These diseases may be caused by mutations either in genes encoding the Rags, or in their upstream regulators. The resulting phenotypes may encompass a variety of clinical features such as cataract, kidney tubulopathy, dilated cardiomyopathy and several types of cancer. In this review, we focus on the key clinical, molecular and physio-pathological features of ragopathies, aiming to shed light on their underlying mechanisms.
Collapse
Affiliation(s)
- Irene Sambri
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, (NA), Italy
- Scuola Superiore Meridionale (SSM, School of Advanced Studies), Genomics and Experimental Medicine Program (GEM), Naples, Italy
| | - Marco Ferniani
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Andrea Ballabio
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, (NA), Italy.
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA.
- Medical Genetics Unit, Department of Medical and Translational Science, Federico II University, Naples, Italy.
| |
Collapse
|
6
|
Chakraborty S, Kanade M, Gayathri P. Mechanism of GTPase activation of a prokaryotic small Ras-like GTPase MglA by an asymmetrically interacting MglB dimer. J Biol Chem 2024; 300:107197. [PMID: 38508314 PMCID: PMC11016934 DOI: 10.1016/j.jbc.2024.107197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 03/04/2024] [Indexed: 03/22/2024] Open
Abstract
Cell polarity oscillations in Myxococcus xanthus motility are driven by a prokaryotic small Ras-like GTPase, mutual gliding protein A (MglA), which switches from one cell pole to the other in response to extracellular signals. MglA dynamics is regulated by MglB, which functions both as a GTPase activating protein (GAP) and a guanine nucleotide exchange factor (GEF) for MglA. With an aim to dissect the asymmetric role of the two MglB protomers in the dual GAP and GEF activities, we generated a functional MglAB complex by coexpressing MglB with a linked construct of MglA and MglB. This strategy enabled us to generate mutations of individual MglB protomers (MglB1 or MglB2 linked to MglA) and delineate their role in GEF and GAP activities. We establish that the C-terminal helix of MglB1, but not MglB2, stimulates nucleotide exchange through a site away from the nucleotide-binding pocket, confirming an allosteric mechanism. Interaction between the N-terminal β-strand of MglB1 and β0 of MglA is essential for the optimal GEF activity of MglB. Specific residues of MglB2, which interact with Switch-I of MglA, partially contribute to its GAP activity. Thus, the role of the MglB2 protomer in the GAP activity of MglB is limited to restricting the conformation of MglA active site loops. The direct demonstration of the allosteric mechanism of GEF action provides us new insights into the regulation of small Ras-like GTPases, a feature potentially present in many uncharacterized GEFs.
Collapse
Affiliation(s)
- Sukanya Chakraborty
- Department of Biology, Indian Institute of Science Education and Research Pune, Pune, India
| | - Manil Kanade
- Department of Biology, Indian Institute of Science Education and Research Pune, Pune, India
| | - Pananghat Gayathri
- Department of Biology, Indian Institute of Science Education and Research Pune, Pune, India.
| |
Collapse
|
7
|
Tran LT, Akıl C, Senju Y, Robinson RC. The eukaryotic-like characteristics of small GTPase, roadblock and TRAPPC3 proteins from Asgard archaea. Commun Biol 2024; 7:273. [PMID: 38472392 PMCID: PMC10933270 DOI: 10.1038/s42003-024-05888-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 02/06/2024] [Indexed: 03/14/2024] Open
Abstract
Membrane-enclosed organelles are defining features of eukaryotes in distinguishing these organisms from prokaryotes. Specification of distinct membranes is critical to assemble and maintain discrete compartments. Small GTPases and their regulators are the signaling molecules that drive membrane-modifying machineries to the desired location. These signaling molecules include Rab and Rag GTPases, roadblock and longin domain proteins, and TRAPPC3-like proteins. Here, we take a structural approach to assess the relatedness of these eukaryotic-like proteins in Asgard archaea, the closest known prokaryotic relatives to eukaryotes. We find that the Asgard archaea GTPase core domains closely resemble eukaryotic Rabs and Rags. Asgard archaea roadblock, longin and TRAPPC3 domain-containing proteins form dimers similar to those found in the eukaryotic TRAPP and Ragulator complexes. We conclude that the emergence of these protein architectures predated eukaryogenesis, however further adaptations occurred in proto-eukaryotes to allow these proteins to regulate distinct internal membranes.
Collapse
Affiliation(s)
- Linh T Tran
- Research Institute for Interdisciplinary Science, Okayama University, Okayama, 700-8530, Japan
| | - Caner Akıl
- Research Institute for Interdisciplinary Science, Okayama University, Okayama, 700-8530, Japan
- Division of Structural Biology, University of Oxford, Oxford, England
| | - Yosuke Senju
- Research Institute for Interdisciplinary Science, Okayama University, Okayama, 700-8530, Japan
| | - Robert C Robinson
- Research Institute for Interdisciplinary Science, Okayama University, Okayama, 700-8530, Japan.
- School of Biomolecular Science and Engineering (BSE), Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, 21210, Thailand.
| |
Collapse
|
8
|
Metur SP, Klionsky DJ. Nutrient-dependent signaling pathways that control autophagy in yeast. FEBS Lett 2024; 598:32-47. [PMID: 37758520 PMCID: PMC10841420 DOI: 10.1002/1873-3468.14741] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/04/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023]
Abstract
Macroautophagy/autophagy is a highly conserved catabolic process vital for cellular stress responses and maintaining equilibrium within the cell. Malfunctioning autophagy has been implicated in the pathogenesis of various diseases, including certain neurodegenerative disorders, diabetes, metabolic diseases, and cancer. Cells face diverse metabolic challenges, such as limitations in nitrogen, carbon, and minerals such as phosphate and iron, necessitating the integration of complex metabolic information. Cells utilize a signal transduction network of sensors, transducers, and effectors to coordinate the execution of the autophagic response, concomitant with the severity of the nutrient-starvation condition. This review presents the current mechanistic understanding of how cells regulate the initiation of autophagy through various nutrient-dependent signaling pathways. Emphasizing findings from studies in yeast, we explore the emerging principles that underlie the nutrient-dependent regulation of autophagy, significantly shaping stress-induced autophagy responses under various metabolic stress conditions.
Collapse
Affiliation(s)
- Shree Padma Metur
- Department of Molecular, Cellular and Developmental Biology, Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
| | - Daniel J Klionsky
- Department of Molecular, Cellular and Developmental Biology, Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
9
|
Ivanova I, Shen K. Structures and Functions of the Human GATOR1 Complex. Subcell Biochem 2024; 104:269-294. [PMID: 38963491 PMCID: PMC11997690 DOI: 10.1007/978-3-031-58843-3_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
Eukaryotic cells coordinate available nutrients with their growth through the mechanistic target of rapamycin complex 1 (mTORC1) pathway, in which numerous evolutionarily conserved protein complexes survey and transmit nutrient inputs toward mTORC1. mTORC1 integrates these inputs and activates downstream anabolic or catabolic programs that are in tune with cellular needs, effectively maintaining metabolic homeostasis. The GAP activity toward Rags-1 (GATOR1) protein complex is a critical negative regulator of the mTORC1 pathway and, in the absence of amino acid inputs, is activated to turn off mTORC1 signaling. GATOR1-mediated inhibition of mTORC1 signaling is tightly regulated by an ensemble of protein complexes that antagonize or promote its activity in response to the cellular nutrient environment. Structural, biochemical, and biophysical studies of the GATOR1 complex and its interactors have advanced our understanding of how it regulates cellular metabolism when amino acids are limited. Here, we review the current research with a focus on GATOR1 structure, its enzymatic mechanism, and the growing group of proteins that regulate its activity. Finally, we discuss the implication of GATOR1 dysregulation in physiology and human diseases.
Collapse
Affiliation(s)
- Ilina Ivanova
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Kuang Shen
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA.
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Chan Medical School, Worcester, MA, USA.
| |
Collapse
|
10
|
Goul C, Peruzzo R, Zoncu R. The molecular basis of nutrient sensing and signalling by mTORC1 in metabolism regulation and disease. Nat Rev Mol Cell Biol 2023; 24:857-875. [PMID: 37612414 DOI: 10.1038/s41580-023-00641-8] [Citation(s) in RCA: 72] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/06/2023] [Indexed: 08/25/2023]
Abstract
The Ser/Thr kinase mechanistic target of rapamycin (mTOR) is a central regulator of cellular metabolism. As part of mTOR complex 1 (mTORC1), mTOR integrates signals such as the levels of nutrients, growth factors, energy sources and oxygen, and triggers responses that either boost anabolism or suppress catabolism. mTORC1 signalling has wide-ranging consequences for the growth and homeostasis of key tissues and organs, and its dysregulated activity promotes cancer, type 2 diabetes, neurodegeneration and other age-related disorders. How mTORC1 integrates numerous upstream cues and translates them into specific downstream responses is an outstanding question with major implications for our understanding of physiology and disease mechanisms. In this Review, we discuss recent structural and functional insights into the molecular architecture of mTORC1 and its lysosomal partners, which have greatly increased our mechanistic understanding of nutrient-dependent mTORC1 regulation. We also discuss the emerging involvement of aberrant nutrient-mTORC1 signalling in multiple diseases.
Collapse
Affiliation(s)
- Claire Goul
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Roberta Peruzzo
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Roberto Zoncu
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA.
| |
Collapse
|
11
|
Tettoni SD, Egri SB, Doxsey DD, Veinotte K, Ouch C, Chang JY, Song K, Xu C, Shen K. Structure of the Schizosaccharomyces pombe Gtr-Lam complex reveals evolutionary divergence of mTORC1-dependent amino acid sensing. Structure 2023; 31:1065-1076.e5. [PMID: 37453417 PMCID: PMC10529327 DOI: 10.1016/j.str.2023.06.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 05/14/2023] [Accepted: 06/19/2023] [Indexed: 07/18/2023]
Abstract
mTORC1 is a protein kinase complex that controls cellular growth in response to nutrient availability. Amino acid signals are transmitted toward mTORC1 via the Rag/Gtr GTPases and their upstream regulators. An important regulator is LAMTOR, which localizes Rag/Gtr on the lysosomal/vacuole membrane. In human cells, LAMTOR consists of five subunits, but in yeast, only three or four. Currently, it is not known how variation of the subunit stoichiometry may affect its structural organization and biochemical properties. Here, we report a 3.1 Å-resolution structural model of the Gtr-Lam complex in Schizosaccharomyces pombe. We found that SpGtr shares conserved architecture as HsRag, but the intersubunit communication that coordinates nucleotide loading on the two subunits differs. In contrast, SpLam contains distinctive structural features, but its GTP-specific GEF activity toward SpGtr is evolutionarily conserved. Our results revealed unique evolutionary paths of the protein components of the mTORC1 pathway.
Collapse
Affiliation(s)
- Steven D Tettoni
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, 373 Plantation Street, Worcester, MA 01605, USA
| | - Shawn B Egri
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, 373 Plantation Street, Worcester, MA 01605, USA
| | - Dylan D Doxsey
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, 373 Plantation Street, Worcester, MA 01605, USA
| | - Kristen Veinotte
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, 373 Plantation Street, Worcester, MA 01605, USA
| | - Christna Ouch
- Department of Biochemistry & Molecular Biotechnology, University of Massachusetts Chan Medical School, 364 Plantation Street, Worcester, MA 01605, USA
| | - Jeng-Yih Chang
- Department of Biochemistry & Molecular Biotechnology, University of Massachusetts Chan Medical School, 364 Plantation Street, Worcester, MA 01605, USA
| | - Kangkang Song
- Department of Biochemistry & Molecular Biotechnology, University of Massachusetts Chan Medical School, 364 Plantation Street, Worcester, MA 01605, USA
| | - Chen Xu
- Department of Biochemistry & Molecular Biotechnology, University of Massachusetts Chan Medical School, 364 Plantation Street, Worcester, MA 01605, USA
| | - Kuang Shen
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, 373 Plantation Street, Worcester, MA 01605, USA; Department of Biochemistry & Molecular Biotechnology, University of Massachusetts Chan Medical School, 364 Plantation Street, Worcester, MA 01605, USA.
| |
Collapse
|
12
|
Regulation of mTORC1 by the Rag GTPases. Biochem Soc Trans 2023; 51:655-664. [PMID: 36929165 DOI: 10.1042/bst20210038] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 02/21/2023] [Accepted: 02/23/2023] [Indexed: 03/18/2023]
Abstract
The Rag GTPases are an evolutionarily conserved family that play a crucial role in amino acid sensing by the mammalian target of rapamycin complex 1 (mTORC1). mTORC1 is often referred to as the master regulator of cell growth. mTORC1 hyperactivation is observed in multiple diseases such as cancer, obesity, metabolic disorders, and neurodegeneration. The Rag GTPases sense amino acid levels and form heterodimers, where RagA or RagB binds to RagC or RagD, to recruit mTORC1 to the lysosome where it becomes activated. Here, we review amino acid signaling to mTORC1 through the Rag GTPases.
Collapse
|
13
|
Dinet C, Mignot T. Unorthodox regulation of the MglA Ras-like GTPase controlling polarity in Myxococcus xanthus. FEBS Lett 2023; 597:850-864. [PMID: 36520515 DOI: 10.1002/1873-3468.14565] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/09/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
Motile cells have developed a large array of molecular machineries to actively change their direction of movement in response to spatial cues from their environment. In this process, small GTPases act as molecular switches and work in tandem with regulators and sensors of their guanine nucleotide status (GAP, GEF, GDI and effectors) to dynamically polarize the cell and regulate its motility. In this review, we focus on Myxococcus xanthus as a model organism to elucidate the function of an atypical small Ras GTPase system in the control of directed cell motility. M. xanthus cells direct their motility by reversing their direction of movement through a mechanism involving the redirection of the motility apparatus to the opposite cell pole. The reversal frequency of moving M. xanthus cells is controlled by modular and interconnected protein networks linking the chemosensory-like frizzy (Frz) pathway - that transmits environmental signals - to the downstream Ras-like Mgl polarity control system - that comprises the Ras-like MglA GTPase protein and its regulators. Here, we discuss how variations in the GTPase interactome landscape underlie single-cell decisions and consequently, multicellular patterns.
Collapse
Affiliation(s)
- Céline Dinet
- Laboratoire de Chimie Bactérienne, Institut de Microbiologie de la Méditerranée, CNRS-Aix-Marseille University, France
| | - Tâm Mignot
- Laboratoire de Chimie Bactérienne, Institut de Microbiologie de la Méditerranée, CNRS-Aix-Marseille University, France
| |
Collapse
|
14
|
Cui Z, Napolitano G, de Araujo MEG, Esposito A, Monfregola J, Huber LA, Ballabio A, Hurley JH. Structure of the lysosomal mTORC1-TFEB-Rag-Ragulator megacomplex. Nature 2023; 614:572-579. [PMID: 36697823 PMCID: PMC9931586 DOI: 10.1038/s41586-022-05652-7] [Citation(s) in RCA: 91] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 12/13/2022] [Indexed: 01/26/2023]
Abstract
The transcription factor TFEB is a master regulator of lysosomal biogenesis and autophagy1. The phosphorylation of TFEB by the mechanistic target of rapamycin complex 1 (mTORC1)2-5 is unique in its mTORC1 substrate recruitment mechanism, which is strictly dependent on the amino acid-mediated activation of the RagC GTPase activating protein FLCN6,7. TFEB lacks the TOR signalling motif responsible for the recruitment of other mTORC1 substrates. We used cryogenic-electron microscopy to determine the structure of TFEB as presented to mTORC1 for phosphorylation, which we refer to as the 'megacomplex'. Two full Rag-Ragulator complexes present each molecule of TFEB to the mTOR active site. One Rag-Ragulator complex is bound to Raptor in the canonical mode seen previously in the absence of TFEB. A second Rag-Ragulator complex (non-canonical) docks onto the first through a RagC GDP-dependent contact with the second Ragulator complex. The non-canonical Rag dimer binds the first helix of TFEB with a RagCGDP-dependent aspartate clamp in the cleft between the Rag G domains. In cellulo mutation of the clamp drives TFEB constitutively into the nucleus while having no effect on mTORC1 localization. The remainder of the 108-amino acid TFEB docking domain winds around Raptor and then back to RagA. The double use of RagC GDP contacts in both Rag dimers explains the strong dependence of TFEB phosphorylation on FLCN and the RagC GDP state.
Collapse
Affiliation(s)
- Zhicheng Cui
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, USA
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA, USA
| | - Gennaro Napolitano
- Telethon Institute of Genetics and Medicine (TIGEM), Naples, Italy
- Medical Genetics Unit, Department of Medical and Translational Science, Federico II University, Naples, Italy
| | - Mariana E G de Araujo
- Institute of Cell Biology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Alessandra Esposito
- Telethon Institute of Genetics and Medicine (TIGEM), Naples, Italy
- Medical Genetics Unit, Department of Medical and Translational Science, Federico II University, Naples, Italy
| | - Jlenia Monfregola
- Telethon Institute of Genetics and Medicine (TIGEM), Naples, Italy
- Medical Genetics Unit, Department of Medical and Translational Science, Federico II University, Naples, Italy
| | - Lukas A Huber
- Institute of Cell Biology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Andrea Ballabio
- Telethon Institute of Genetics and Medicine (TIGEM), Naples, Italy.
- Medical Genetics Unit, Department of Medical and Translational Science, Federico II University, Naples, Italy.
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA.
- SSM School for Advanced Studies, Federico II University, Naples, Italy.
| | - James H Hurley
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, USA.
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA, USA.
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA.
| |
Collapse
|
15
|
Egri SB, Ouch C, Chou HT, Yu Z, Song K, Xu C, Shen K. Cryo-EM structures of the human GATOR1-Rag-Ragulator complex reveal a spatial-constraint regulated GAP mechanism. Mol Cell 2022; 82:1836-1849.e5. [PMID: 35338845 PMCID: PMC9133170 DOI: 10.1016/j.molcel.2022.03.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 12/09/2021] [Accepted: 02/28/2022] [Indexed: 12/20/2022]
Abstract
mTORC1 controls cellular metabolic processes in response to nutrient availability. Amino acid signals are transmitted to mTORC1 through the Rag GTPases, which are localized on the lysosomal surface by the Ragulator complex. The Rag GTPases receive amino acid signals from multiple upstream regulators. One negative regulator, GATOR1, is a GTPase activating protein (GAP) for RagA. GATOR1 binds to the Rag GTPases via two modes: an inhibitory mode and a GAP mode. How these two binding interactions coordinate to process amino acid signals is unknown. Here, we resolved three cryo-EM structural models of the GATOR1-Rag-Ragulator complex, with the Rag-Ragulator subcomplex occupying the inhibitory site, the GAP site, and both binding sites simultaneously. When the Rag GTPases bind to GATOR1 at the GAP site, both Rag subunits contact GATOR1 to coordinate their nucleotide loading states. These results reveal a potential GAP mechanism of GATOR1 during the mTORC1 inactivation process.
Collapse
Affiliation(s)
- Shawn B Egri
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, 373 Plantation St, Worcester, MA 01605, USA
| | - Christna Ouch
- Department of Biochemistry & Molecular Pharmacology, University of Massachusetts Chan Medical School, 364 Plantation St, Worcester, MA 01605, USA
| | - Hui-Ting Chou
- Howard Hughes Medical Institute, Janelia Research Campus, 19700 Helix Drive, Ashburn, VA 20147, USA
| | - Zhiheng Yu
- Howard Hughes Medical Institute, Janelia Research Campus, 19700 Helix Drive, Ashburn, VA 20147, USA
| | - Kangkang Song
- Department of Biochemistry & Molecular Pharmacology, University of Massachusetts Chan Medical School, 364 Plantation St, Worcester, MA 01605, USA
| | - Chen Xu
- Department of Biochemistry & Molecular Pharmacology, University of Massachusetts Chan Medical School, 364 Plantation St, Worcester, MA 01605, USA
| | - Kuang Shen
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, 373 Plantation St, Worcester, MA 01605, USA.
| |
Collapse
|
16
|
Doxsey DD, Veinotte K, Shen K. A New Crosslinking Assay to Study Guanine Nucleotide Binding in the Gtr Heterodimer of S. cerevisiae. Small GTPases 2022; 13:327-334. [PMID: 36328771 PMCID: PMC9639563 DOI: 10.1080/21541248.2022.2141019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The mechanistic target of rapamycin (mTOR) complex is responsible for coordinating nutrient availability with eukaryotic cell growth. Amino acid signals are transmitted towards mTOR via the Rag/Gtr heterodimers. Due to the obligatory heterodimeric architecture of the Rag/Gtr GTPases, investigating their biochemical properties has been challenging. Here, we describe an updated assay that allows us to probe the guanine nucleotide-binding affinity and kinetics to the Gtr heterodimers in Saccharomyces cerevisiae. We first identified the structural element that Gtr2p lacks to enable crosslinking. By using a sequence conservation-based mutation, we restored the crosslinking between Gtr2p and the bound nucleotides. Using this construct, we determined the nucleotide-binding affinities of the Gtr heterodimer, and found that it operates under a different form of intersubunit communication than human Rag GTPases. Our study defines the evolutionary divergence of the Gtr/Rag-mTOR axis of nutrient sensing.
Collapse
Affiliation(s)
- Dylan D. Doxsey
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, 373 Plantation St, Worcester, MA, 01605, USA
| | - Kristen Veinotte
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, 373 Plantation St, Worcester, MA, 01605, USA
| | - Kuang Shen
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, 373 Plantation St, Worcester, MA, 01605, USA,Department of Biochemistry & Molecular Biotechnology, University of Massachusetts Chan Medical School, 364 Plantation St, Worcester, MA, 01605, USA,CONTACT Kuang Shen Program in Molecular Medicine, University of Massachusetts Chan Medical School, 373 Plantation St, Worcester, MA, 01605, USA
| |
Collapse
|
17
|
Fingar DC. The yoga of Rag GTPases: Dynamic structural poses confer amino acid sensing by mTORC1. J Biol Chem 2021; 297:101103. [PMID: 34419448 PMCID: PMC8416955 DOI: 10.1016/j.jbc.2021.101103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Heterodimeric Rag GTPases play a critical role in relaying fluctuating levels of cellular amino acids to the sensor mechanistic target of rapamycin complex 1. Important mechanistic questions remain unresolved, however, regarding how guanine nucleotide binding enables Rag GTPases to transition dynamically between distinct yoga-like structural poses that control activation state. Egri and Shen identified a critical interdomain hydrogen bond within RagA and RagC that stabilizes their GDP-bound states. They demonstrate that this long-distance interaction controls Rag structure and function to confer appropriate amino acid sensing by mechanistic target of rapamycin complex 1.
Collapse
Affiliation(s)
- Diane C Fingar
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan, USA.
| |
Collapse
|
18
|
An interdomain hydrogen bond in the Rag GTPases maintains stable mTORC1 signaling in sensing amino acids. J Biol Chem 2021; 297:100861. [PMID: 34116056 PMCID: PMC8254048 DOI: 10.1016/j.jbc.2021.100861] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/27/2021] [Accepted: 06/07/2021] [Indexed: 01/09/2023] Open
Abstract
Cellular growth and proliferation are primarily dictated by the mechanistic target of rapamycin complex 1 (mTORC1), which balances nutrient availability against the cell’s anabolic needs. Central to the activity of mTORC1 is the RagA–RagC GTPase heterodimer, which under favorable conditions recruits the complex to the lysosomal surface to promote its activity. The RagA–RagC heterodimer has a unique architecture in that both subunits are active GTPases. To promote mTORC1 activity, the RagA subunit is loaded with GTP and the RagC subunit is loaded with GDP, while the opposite nucleotide-loading configuration inhibits this signaling pathway. Despite its unique molecular architecture, how the Rag GTPase heterodimer maintains the oppositely loaded nucleotide state remains elusive. Here, we applied structure–function analysis approach to the crystal structures of the Rag GTPase heterodimer and identified a key hydrogen bond that stabilizes the GDP-loaded state of the Rag GTPases. This hydrogen bond is mediated by the backbone carbonyl of Asn30 in the nucleotide-binding domain of RagA or Lys84 of RagC and the hydroxyl group on the side chain of Thr210 in the C-terminal roadblock domain of RagA or Ser266 of RagC, respectively. Eliminating this interdomain hydrogen bond abolishes the ability of the Rag GTPase to maintain its functional state, resulting in a distorted response to amino acid signals. Our results reveal that this long-distance interdomain interaction within the Rag GTPase is required for the maintenance and regulation of the mTORC1 nutrient-sensing pathway.
Collapse
|
19
|
Lypaczewski P, Zhang WW, Matlashewski G. Evidence that a naturally occurring single nucleotide polymorphism in the RagC gene of Leishmania donovani contributes to reduced virulence. PLoS Negl Trop Dis 2021; 15:e0009079. [PMID: 33621241 PMCID: PMC7901767 DOI: 10.1371/journal.pntd.0009079] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 12/16/2020] [Indexed: 11/18/2022] Open
Abstract
Leishmaniasis is a widespread neglected tropical disease transmitted by infected sand flies resulting in either benign cutaneous infection or fatal visceral disease. Leishmania donovani is the principal species responsible for visceral leishmaniasis, yet an atypical L. donovani has become attenuated in several countries including Sri Lanka and causes cutaneous leishmaniasis. Previous studies have identified 91 genes altered in the atypical cutaneous L. donovani compared to typical visceral disease associated L. donovani including mutations in the RagC and Raptor genes that are part of the eukaryotic conserved TOR pathway and its upstream sensing pathway. In the present study, we investigate whether the RagC R231C mutation present in atypical cutaneous L. donovani introduced into the virulent L. donovani 1S2D chromosome by CRISPR gene editing could affect virulence for survival in visceral organs. Through bioinformatic analysis, we further investigated the presence of sensing pathway components upstream of TOR in L. donovani including RagC complexing proteins, RagA and Raptor. L. donovani 1S2D edited to express mutant RagC R231C were viable in promastigote but had reduced visceral parasitemia in infected BALB/c mice. The RagC R231C mutant retained the ability to interact with RagA and gene knockout experiments revealed that although the RagA gene was essential, the RagC gene was not essential under promastigote culture conditions but was essential for survival in the liver of experimentally infected mice. These results provide evidence that the TOR associated sensing pathway plays a prominent role in L. donovani visceral disease and the RagC R231C mutation contributed to the atypical pathology of cutaneous L. donovani in Sri Lanka.
Collapse
Affiliation(s)
- Patrick Lypaczewski
- Department of Microbiology and Immunology, McGill University, Montreal, Canada
| | - Wen-Wei Zhang
- Department of Microbiology and Immunology, McGill University, Montreal, Canada
| | - Greg Matlashewski
- Department of Microbiology and Immunology, McGill University, Montreal, Canada
| |
Collapse
|
20
|
Uemura S, Mochizuki T, Amemiya K, Kurosaka G, Yazawa M, Nakamoto K, Ishikawa Y, Izawa S, Abe F. Amino acid homeostatic control by TORC1 in Saccharomyces cerevisiae under high hydrostatic pressure. J Cell Sci 2020; 133:jcs245555. [PMID: 32801125 DOI: 10.1242/jcs.245555] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 08/05/2020] [Indexed: 12/30/2022] Open
Abstract
Mechanical stresses, including high hydrostatic pressure, elicit diverse physiological effects on organisms. Gtr1, Gtr2, Ego1 (also known as Meh1) and Ego3 (also known as Slm4), central regulators of the TOR complex 1 (TORC1) nutrient signaling pathway, are required for the growth of Saccharomyces cerevisiae cells under high pressure. Here, we showed that a pressure of 25 MPa (∼250 kg/cm2) stimulates TORC1 to promote phosphorylation of Sch9, which depends on the EGO complex (EGOC) and Pib2. Incubation of cells at this pressure aberrantly increased glutamine and alanine levels in the ego1Δ, gtr1Δ, tor1Δ and pib2Δ mutants, whereas the polysome profiles were unaffected. Moreover, we found that glutamine levels were reduced by combined deletions of EGO1, GTR1, TOR1 and PIB2 with GLN3 These results suggest that high pressure leads to the intracellular accumulation of amino acids. Subsequently, Pib2 loaded with glutamine stimulates the EGOC-TORC1 complex to inactivate Gln3, downregulating glutamine synthesis. Our findings illustrate the regulatory circuit that maintains intracellular amino acid homeostasis and suggest critical roles for the EGOC-TORC1 and Pib2-TORC1 complexes in the growth of yeast under high hydrostatic pressure.
Collapse
Affiliation(s)
- Satoshi Uemura
- Department of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara 252-5258, Japan
- Division of Medical Biochemistry, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, 1-15-1, Fukumuro, Miyagino-ku, Sendai, Miyagi 983-8536, Japan
| | - Takahiro Mochizuki
- Department of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara 252-5258, Japan
| | - Kengo Amemiya
- Department of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara 252-5258, Japan
| | - Goyu Kurosaka
- Department of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara 252-5258, Japan
| | - Miho Yazawa
- Department of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara 252-5258, Japan
| | - Keiko Nakamoto
- Department of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara 252-5258, Japan
| | - Yu Ishikawa
- Laboratory of Microbial Technology, Department of Applied Biology, Graduate School of Science and Technology, Kyoto Institute of Technology, Kyoto 606-8585, Japan
| | - Shingo Izawa
- Laboratory of Microbial Technology, Department of Applied Biology, Graduate School of Science and Technology, Kyoto Institute of Technology, Kyoto 606-8585, Japan
| | - Fumiyoshi Abe
- Department of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara 252-5258, Japan
| |
Collapse
|
21
|
Tafur L, Kefauver J, Loewith R. Structural Insights into TOR Signaling. Genes (Basel) 2020; 11:E885. [PMID: 32759652 PMCID: PMC7464330 DOI: 10.3390/genes11080885] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 07/31/2020] [Accepted: 08/02/2020] [Indexed: 12/31/2022] Open
Abstract
The Target of Rapamycin (TOR) is a highly conserved serine/threonine protein kinase that performs essential roles in the control of cellular growth and metabolism. TOR acts in two distinct multiprotein complexes, TORC1 and TORC2 (mTORC1 and mTORC2 in humans), which maintain different aspects of cellular homeostasis and orchestrate the cellular responses to diverse environmental challenges. Interest in understanding TOR signaling is further motivated by observations that link aberrant TOR signaling to a variety of diseases, ranging from epilepsy to cancer. In the last few years, driven in large part by recent advances in cryo-electron microscopy, there has been an explosion of available structures of (m)TORC1 and its regulators, as well as several (m)TORC2 structures, derived from both yeast and mammals. In this review, we highlight and summarize the main findings from these reports and discuss both the fascinating and unexpected molecular biology revealed and how this knowledge will potentially contribute to new therapeutic strategies to manipulate signaling through these clinically relevant pathways.
Collapse
Affiliation(s)
- Lucas Tafur
- Department of Molecular Biology, University of Geneva, 30 quai Ernest-Ansermet, CH1211 Geneva, Switzerland; (L.T.); (J.K.)
| | - Jennifer Kefauver
- Department of Molecular Biology, University of Geneva, 30 quai Ernest-Ansermet, CH1211 Geneva, Switzerland; (L.T.); (J.K.)
| | - Robbie Loewith
- Department of Molecular Biology, University of Geneva, 30 quai Ernest-Ansermet, CH1211 Geneva, Switzerland; (L.T.); (J.K.)
- Swiss National Centre for Competence in Research (NCCR) in Chemical Biology, University of Geneva, Sciences II, Room 3-308, 30 Quai Ernest-Ansermet, CH1211 Geneva, Switzerland
| |
Collapse
|
22
|
Molinet J, Salinas F, Guillamón JM, Martínez C. GTR1 Affects Nitrogen Consumption and TORC1 Activity in Saccharomyces cerevisiae Under Fermentation Conditions. Front Genet 2020; 11:519. [PMID: 32523604 PMCID: PMC7261904 DOI: 10.3389/fgene.2020.00519] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 04/28/2020] [Indexed: 01/18/2023] Open
Abstract
The TORC1 pathway coordinates cell growth in response to nitrogen availability present in the medium, regulating genes related to nitrogen transport and metabolism. Therefore, the adaptation of Saccharomyces cerevisiae to changes in nitrogen availability implies variations in the activity of this signaling pathway. In this sense, variations in nitrogen detection and signaling pathway are one of the main causes of differences in nitrogen assimilation during alcoholic fermentation. Previously, we demonstrated that allelic variants in the GTR1 gene underlying differences in ammonium and amino acids consumption between Wine/European (WE) and West African (WA) strains impact the expression of nitrogen transporters. The GTR1 gene encodes a GTPase that participates in the EGO complex responsible for TORC1 activation in response to amino acids availability. In this work, we assessed the role of the GTR1 gene on nitrogen consumption under fermentation conditions, using a high sugar concentration medium with nitrogen limitation and in the context of the WE and WA genetic backgrounds. The gtr1Δ mutant presented a reduced TORC1 activity and increased expression levels of nitrogen transporters, which in turn favored ammonium consumption, but decreased amino acid assimilation. Furthermore, to identify the SNPs responsible for differences in nitrogen consumption during alcoholic fermentation, we studied the polymorphisms present in the GTR1 gene. We carried out swapping experiments for the promoter and coding regions of GTR1 between the WE and WA strains. We observed that polymorphisms in the coding region of the WA GTR1 gene are relevant for TORC1 activity. Altogether, our results highlight the role of the GTR1 gene on nitrogen consumption in S. cerevisiae under fermentation conditions.
Collapse
Affiliation(s)
- Jennifer Molinet
- Departamento de Ciencia y Tecnología de los Alimentos, Universidad de Santiago de Chile (USACH), Santiago, Chile
| | - Francisco Salinas
- Millennium Institute for Integrative Biology (iBio), Santiago, Chile.,Centro de Estudios en Ciencia y Tecnología de Alimentos (CECTA), Universidad de Santiago de Chile (USACH), Santiago, Chile.,Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| | - José Manuel Guillamón
- Departamento de Biotecnología de los Alimentos, Instituto de Agroquímica y Tecnología de los Alimentos (CSIC), Valencia, Spain
| | - Claudio Martínez
- Departamento de Ciencia y Tecnología de los Alimentos, Universidad de Santiago de Chile (USACH), Santiago, Chile.,Centro de Estudios en Ciencia y Tecnología de Alimentos (CECTA), Universidad de Santiago de Chile (USACH), Santiago, Chile
| |
Collapse
|
23
|
Zhu M, Wang XQ. Regulation of mTORC1 by Small GTPases in Response to Nutrients. J Nutr 2020; 150:1004-1011. [PMID: 31965176 DOI: 10.1093/jn/nxz301] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 10/07/2019] [Accepted: 11/18/2019] [Indexed: 12/15/2022] Open
Abstract
Mechanistic target of rapamycin complex 1 (mTORC1) is a highly evolutionarily conserved serine/threonine kinase that regulates cell growth and metabolism in response to multiple environmental cues, such as nutrients, hormones, energy, and stress. Deregulation of mTORC1 can lead to diseases such as diabetes, obesity, and cancer. A series of small GTPases, including Rag, Ras homolog enriched in brain (Rheb), adenosine diphosphate ribosylation factor 1 (Arf1), Ras-related protein Ral-A, Ras homolog (Rho), and Rab, are involved in regulating mTORC1 in response to nutrients, and mTORC1 is differentially regulated via these small GTPases according to specific conditions. Leucine and arginine sensing are considered to be well-confirmed amino acid-sensing signals, activating mTORC1 via a Rag GTPase-dependent mechanism as well as the Ragulator complex and vacuolar H+-adenosine triphosphatase (v-ATPase). Glutamine promotes mTORC1 activation via Arf1 independently of the Rag GTPase. In this review, we summarize current knowledge regarding the regulation of mTORC1 activity by small GTPases in response to nutrients, focusing on the function of small GTPases in mTORC1 activation and how small GTPases are regulated by nutrients.
Collapse
Affiliation(s)
- Min Zhu
- College of Animal Science, South China Agricultural University/Guangdong Provincial Key Laboratory of Animal Nutrition Control/National Engineering Research Center for Breeding Swine Industry, Guangzhou, Guangdong, China
| | - Xiu-Qi Wang
- College of Animal Science, South China Agricultural University/Guangdong Provincial Key Laboratory of Animal Nutrition Control/National Engineering Research Center for Breeding Swine Industry, Guangzhou, Guangdong, China
| |
Collapse
|
24
|
de Martín Garrido N, Aylett CHS. Nutrient Signaling and Lysosome Positioning Crosstalk Through a Multifunctional Protein, Folliculin. Front Cell Dev Biol 2020; 8:108. [PMID: 32195250 PMCID: PMC7063858 DOI: 10.3389/fcell.2020.00108] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 02/10/2020] [Indexed: 12/16/2022] Open
Abstract
FLCN was identified as the gene responsible for Birt-Hogg-Dubé (BHD) syndrome, a hereditary syndrome associated with the appearance of familiar renal oncocytomas. Most mutations affecting FLCN result in the truncation of the protein, and therefore loss of its associated functions, as typical for a tumor suppressor. FLCN encodes the protein folliculin (FLCN), which is involved in numerous biological processes; mutations affecting this protein thus lead to different phenotypes depending on the cellular context. FLCN forms complexes with two large interacting proteins, FNIP1 and FNIP2. Structural studies have shown that both FLCN and FNIPs contain longin and differentially expressed in normal versus neoplastic cells (DENN) domains, typically involved in the regulation of small GTPases. Accordingly, functional studies show that FLCN regulates both the Rag and the Rab GTPases depending on nutrient availability, which are respectively involved in the mTORC1 pathway and lysosomal positioning. Although recent structural studies shed light on the precise mechanism by which FLCN regulates the Rag GTPases, which in turn regulate mTORC1, how FLCN regulates membrane trafficking through the Rab GTPases or the significance of the intriguing FLCN-FNIP-AMPK complex formation are questions that still remain unanswered. We discuss the recent progress in our understanding of FLCN regulation of both growth signaling and lysosomal positioning, as well as future approaches to establish detailed mechanisms to explain the disparate phenotypes caused by the loss of FLCN function and the development of BHD-associated and other tumors.
Collapse
Affiliation(s)
| | - Christopher H. S. Aylett
- Section for Structural and Synthetic Biology, Department of Infectious Disease, Imperial College London, London, United Kingdom
| |
Collapse
|
25
|
Meng D, Yang Q, Wang H, Melick CH, Navlani R, Frank AR, Jewell JL. Glutamine and asparagine activate mTORC1 independently of Rag GTPases. J Biol Chem 2020; 295:2890-2899. [PMID: 32019866 DOI: 10.1074/jbc.ac119.011578] [Citation(s) in RCA: 152] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 01/24/2020] [Indexed: 12/14/2022] Open
Abstract
Nutrient sensing by cells is crucial, and when this sensing mechanism is disturbed, human disease can occur. mTOR complex 1 (mTORC1) senses amino acids to control cell growth, metabolism, and autophagy. Leucine, arginine, and methionine signal to mTORC1 through the well-characterized Rag GTPase signaling pathway. In contrast, glutamine activates mTORC1 through a Rag GTPase-independent mechanism that requires ADP-ribosylation factor 1 (Arf1). Here, using several biochemical and genetic approaches, we show that eight amino acids filter through the Rag GTPase pathway. Like glutamine, asparagine signals to mTORC1 through Arf1 in the absence of the Rag GTPases. Both the Rag-dependent and Rag-independent pathways required the lysosome and lysosomal function for mTORC1 activation. Our results show that mTORC1 is differentially regulated by amino acids through two distinct pathways.
Collapse
Affiliation(s)
- Delong Meng
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390; Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas 75390; Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Qianmei Yang
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390; Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas 75390; Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Huanyu Wang
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390; Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas 75390; Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Chase H Melick
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390; Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas 75390; Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Rishika Navlani
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390; Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas 75390; Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Anderson R Frank
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390; Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas 75390; Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Jenna L Jewell
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390; Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas 75390; Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390.
| |
Collapse
|
26
|
Abstract
Amino acid signaling through the Rag GTPases promotes mTORC1 lysosomal localization and subsequent activation. Two new cryo-EM structures examine the architecture of the Rag GTPase heterodimers complexed with mTORC1.
Collapse
Affiliation(s)
- Wei Peng
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jenna L Jewell
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
27
|
Shen K, Rogala KB, Chou HT, Huang RK, Yu Z, Sabatini DM. Cryo-EM Structure of the Human FLCN-FNIP2-Rag-Ragulator Complex. Cell 2019; 179:1319-1329.e8. [PMID: 31704029 PMCID: PMC7008705 DOI: 10.1016/j.cell.2019.10.036] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 10/08/2019] [Accepted: 10/28/2019] [Indexed: 12/22/2022]
Abstract
mTORC1 controls anabolic and catabolic processes in response to nutrients through the Rag GTPase heterodimer, which is regulated by multiple upstream protein complexes. One such regulator, FLCN-FNIP2, is a GTPase activating protein (GAP) for RagC/D, but despite its important role, how it activates the Rag GTPase heterodimer remains unknown. We used cryo-EM to determine the structure of FLCN-FNIP2 in a complex with the Rag GTPases and Ragulator. FLCN-FNIP2 adopts an extended conformation with two pairs of heterodimerized domains. The Longin domains heterodimerize and contact both nucleotide binding domains of the Rag heterodimer, while the DENN domains interact at the distal end of the structure. Biochemical analyses reveal a conserved arginine on FLCN as the catalytic arginine finger and lead us to interpret our structure as an on-pathway intermediate. These data reveal features of a GAP-GTPase interaction and the structure of a critical component of the nutrient-sensing mTORC1 pathway.
Collapse
Affiliation(s)
- Kuang Shen
- Whitehead Institute for Biomedical Research and Department of Biology, Massachusetts Institute of Technology, 455 Main Street, Cambridge, MA 02142, USA; Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Koch Institute for Integrative Cancer Research, 77 Massachusetts Avenue, Cambridge, MA 02139, USA; Broad Institute of Harvard and Massachusetts Institute of Technology, 7 Cambridge Center, Cambridge, MA 02142, USA; Program in Molecular Medicine, University of Massachusetts Medical School, 373 Plantation Street, Worcester, 01605, USA
| | - Kacper B Rogala
- Whitehead Institute for Biomedical Research and Department of Biology, Massachusetts Institute of Technology, 455 Main Street, Cambridge, MA 02142, USA; Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Koch Institute for Integrative Cancer Research, 77 Massachusetts Avenue, Cambridge, MA 02139, USA; Broad Institute of Harvard and Massachusetts Institute of Technology, 7 Cambridge Center, Cambridge, MA 02142, USA
| | - Hui-Ting Chou
- Howard Hughes Medical Institute, Janelia Research Campus, 19700 Helix Drive, Ashburn, VA 20147, USA
| | - Rick K Huang
- Howard Hughes Medical Institute, Janelia Research Campus, 19700 Helix Drive, Ashburn, VA 20147, USA
| | - Zhiheng Yu
- Howard Hughes Medical Institute, Janelia Research Campus, 19700 Helix Drive, Ashburn, VA 20147, USA.
| | - David M Sabatini
- Whitehead Institute for Biomedical Research and Department of Biology, Massachusetts Institute of Technology, 455 Main Street, Cambridge, MA 02142, USA; Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Koch Institute for Integrative Cancer Research, 77 Massachusetts Avenue, Cambridge, MA 02139, USA; Broad Institute of Harvard and Massachusetts Institute of Technology, 7 Cambridge Center, Cambridge, MA 02142, USA.
| |
Collapse
|
28
|
Lawrence RE, Fromm SA, Fu Y, Yokom AL, Kim DJ, Thelen AM, Young LN, Lim CY, Samelson AJ, Hurley JH, Zoncu R. Structural mechanism of a Rag GTPase activation checkpoint by the lysosomal folliculin complex. Science 2019; 366:971-977. [PMID: 31672913 DOI: 10.1126/science.aax0364] [Citation(s) in RCA: 117] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 10/23/2019] [Indexed: 12/16/2022]
Abstract
The tumor suppressor folliculin (FLCN) enables nutrient-dependent activation of the mechanistic target of rapamycin complex 1 (mTORC1) protein kinase via its guanosine triphosphatase (GTPase) activating protein (GAP) activity toward the GTPase RagC. Concomitant with mTORC1 inactivation by starvation, FLCN relocalizes from the cytosol to lysosomes. To determine the lysosomal function of FLCN, we reconstituted the human lysosomal FLCN complex (LFC) containing FLCN, its partner FLCN-interacting protein 2 (FNIP2), and the RagAGDP:RagCGTP GTPases as they exist in the starved state with their lysosomal anchor Ragulator complex and determined its cryo-electron microscopy structure to 3.6 angstroms. The RagC-GAP activity of FLCN was inhibited within the LFC, owing to displacement of a catalytically required arginine in FLCN from the RagC nucleotide. Disassembly of the LFC and release of the RagC-GAP activity of FLCN enabled mTORC1-dependent regulation of the master regulator of lysosomal biogenesis, transcription factor E3, implicating the LFC as a checkpoint in mTORC1 signaling.
Collapse
Affiliation(s)
- Rosalie E Lawrence
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA 94720, USA.,The Paul F. Glenn Center for Aging Research at the University of California, Berkeley, Berkeley, CA 94720, USA
| | - Simon A Fromm
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA 94720, USA
| | - Yangxue Fu
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA 94720, USA
| | - Adam L Yokom
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA 94720, USA
| | - Do Jin Kim
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA 94720, USA
| | - Ashley M Thelen
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA 94720, USA.,The Paul F. Glenn Center for Aging Research at the University of California, Berkeley, Berkeley, CA 94720, USA
| | - Lindsey N Young
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA 94720, USA
| | - Chun-Yan Lim
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA 94720, USA.,The Paul F. Glenn Center for Aging Research at the University of California, Berkeley, Berkeley, CA 94720, USA
| | - Avi J Samelson
- The Paul F. Glenn Center for Aging Research at the University of California, Berkeley, Berkeley, CA 94720, USA.,Institute for Neurodegenerative Diseases, University of California at San Francisco, San Francisco, CA 94158, USA
| | - James H Hurley
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA 94720, USA. .,California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA 94720, USA.,Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Roberto Zoncu
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA 94720, USA. .,The Paul F. Glenn Center for Aging Research at the University of California, Berkeley, Berkeley, CA 94720, USA.,California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA 94720, USA
| |
Collapse
|
29
|
Brito AS, Soto Diaz S, Van Vooren P, Godard P, Marini AM, Boeckstaens M. Pib2-Dependent Feedback Control of the TORC1 Signaling Network by the Npr1 Kinase. iScience 2019; 20:415-433. [PMID: 31622882 PMCID: PMC6817644 DOI: 10.1016/j.isci.2019.09.025] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 05/10/2019] [Accepted: 09/13/2019] [Indexed: 01/21/2023] Open
Abstract
To adjust cell growth and metabolism according to environmental conditions, the conserved TORC1 signaling network controls autophagy, protein synthesis, and turnover. Here, we dissected the signals controlling phosphorylation and activity of the TORC1-effector kinase Npr1, involved in tuning the plasma membrane permeability to nitrogen sources. By evaluating a role of pH as a signal, we show that, although a transient cytosolic acidification accompanies nitrogen source entry and is correlated to a rapid TORC1-dependent phosphorylation of Npr1, a pH drop is not a prerequisite for TORC1 activation. We show that the Gtr1/Gtr2 and Pib2 regulators of TORC1 both independently and differently contribute to regulate Npr1 phosphorylation and activity. Finally, our data reveal that Npr1 mediates nitrogen-dependent phosphorylation of Pib2, as well as a Pib2-dependent inhibition of TORC1. This work highlights a feedback control loop likely enabling efficient downregulation and faster re-activation of TORC1 in response to a novel stimulating signal.
Collapse
Affiliation(s)
- Ana Sofia Brito
- Laboratory of Biology of Membrane Transport, IBMM, Université Libre de Bruxelles, rue des Professeurs Jeener et Brachet 12, 6041 Gosselies, Belgium
| | - Silvia Soto Diaz
- Laboratory of Biology of Membrane Transport, IBMM, Université Libre de Bruxelles, rue des Professeurs Jeener et Brachet 12, 6041 Gosselies, Belgium
| | - Pascale Van Vooren
- Laboratory of Biology of Membrane Transport, IBMM, Université Libre de Bruxelles, rue des Professeurs Jeener et Brachet 12, 6041 Gosselies, Belgium
| | - Patrice Godard
- UCB Pharma, Chemin du Foriest, 1420 Braine-l'Alleud, Belgium
| | - Anna Maria Marini
- Laboratory of Biology of Membrane Transport, IBMM, Université Libre de Bruxelles, rue des Professeurs Jeener et Brachet 12, 6041 Gosselies, Belgium
| | - Mélanie Boeckstaens
- Laboratory of Biology of Membrane Transport, IBMM, Université Libre de Bruxelles, rue des Professeurs Jeener et Brachet 12, 6041 Gosselies, Belgium.
| |
Collapse
|
30
|
Rogala KB, Gu X, Kedir JF, Abu-Remaileh M, Bianchi LF, Bottino AMS, Dueholm R, Niehaus A, Overwijn D, Fils ACP, Zhou SX, Leary D, Laqtom NN, Brignole EJ, Sabatini DM. Structural basis for the docking of mTORC1 on the lysosomal surface. Science 2019; 366:468-475. [PMID: 31601708 PMCID: PMC7176403 DOI: 10.1126/science.aay0166] [Citation(s) in RCA: 138] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 10/01/2019] [Indexed: 12/14/2022]
Abstract
The mTORC1 (mechanistic target of rapamycin complex 1) protein kinase regulates growth in response to nutrients and growth factors. Nutrients promote its translocation to the lysosomal surface, where its Raptor subunit interacts with the Rag guanosine triphosphatase (GTPase)-Ragulator complex. Nutrients switch the heterodimeric Rag GTPases among four different nucleotide-binding states, only one of which (RagA/B•GTP-RagC/D•GDP) permits mTORC1 association. We used cryo-electron microscopy to determine the structure of the supercomplex of Raptor with Rag-Ragulator at a resolution of 3.2 angstroms. Our findings indicate that the Raptor α-solenoid directly detects the nucleotide state of RagA while the Raptor "claw" threads between the GTPase domains to detect that of RagC. Mutations that disrupted Rag-Raptor binding inhibited mTORC1 lysosomal localization and signaling. By comparison with a structure of mTORC1 bound to its activator Rheb, we developed a model of active mTORC1 docked on the lysosome.
Collapse
Affiliation(s)
- Kacper B Rogala
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
- Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Koch Institute for Integrative Cancer Research, Cambridge, MA 02139, USA
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Xin Gu
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
- Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Koch Institute for Integrative Cancer Research, Cambridge, MA 02139, USA
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Jibril F Kedir
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
- Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Koch Institute for Integrative Cancer Research, Cambridge, MA 02139, USA
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Monther Abu-Remaileh
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
- Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Koch Institute for Integrative Cancer Research, Cambridge, MA 02139, USA
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Laura F Bianchi
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | | | - Rikke Dueholm
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Anna Niehaus
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Daan Overwijn
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | | | - Sherry X Zhou
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Daniel Leary
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Nouf N Laqtom
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Edward J Brignole
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- MIT.nano, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - David M Sabatini
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA.
- Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Koch Institute for Integrative Cancer Research, Cambridge, MA 02139, USA
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
31
|
Anandapadamanaban M, Masson GR, Perisic O, Berndt A, Kaufman J, Johnson CM, Santhanam B, Rogala KB, Sabatini DM, Williams RL. Architecture of human Rag GTPase heterodimers and their complex with mTORC1. Science 2019; 366:203-210. [PMID: 31601764 PMCID: PMC6795536 DOI: 10.1126/science.aax3939] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 09/03/2019] [Indexed: 12/11/2022]
Abstract
The Rag guanosine triphosphatases (GTPases) recruit the master kinase mTORC1 to lysosomes to regulate cell growth and proliferation in response to amino acid availability. The nucleotide state of Rag heterodimers is critical for their association with mTORC1. Our cryo-electron microscopy structure of RagA/RagC in complex with mTORC1 shows the details of RagA/RagC binding to the RAPTOR subunit of mTORC1 and explains why only the RagAGTP/RagCGDP nucleotide state binds mTORC1. Previous kinetic studies suggested that GTP binding to one Rag locks the heterodimer to prevent GTP binding to the other. Our crystal structures and dynamics of RagA/RagC show the mechanism for this locking and explain how oncogenic hotspot mutations disrupt this process. In contrast to allosteric activation by RHEB, Rag heterodimer binding does not change mTORC1 conformation and activates mTORC1 by targeting it to lysosomes.
Collapse
Affiliation(s)
| | - Glenn R Masson
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Olga Perisic
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Alex Berndt
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | | | | | | | - Kacper B Rogala
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - David M Sabatini
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Koch Institute for Integrative Cancer Research, Cambridge, MA 02139, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | | |
Collapse
|
32
|
Zhang T, Péli-Gulli MP, Zhang Z, Tang X, Ye J, De Virgilio C, Ding J. Structural insights into the EGO-TC-mediated membrane tethering of the TORC1-regulatory Rag GTPases. SCIENCE ADVANCES 2019; 5:eaax8164. [PMID: 31579828 PMCID: PMC6760929 DOI: 10.1126/sciadv.aax8164] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 08/26/2019] [Indexed: 06/10/2023]
Abstract
The Rag/Gtr GTPases serve as a central module in the nutrient-sensing signaling network upstream of TORC1. In yeast, the anchoring of Gtr1-Gtr2 to membranes depends on the Ego1-Ego2-Ego3 ternary complex (EGO-TC), resulting in an EGO-TC-Gtr1-Gtr2 complex (EGOC). EGO-TC and human Ragulator share no obvious sequence similarities and also differ in their composition with respect to the number of known subunits, which raises the question of how the EGO-TC fulfills its function in recruiting Gtr1-Gtr2. Here, we report the structure of EGOC, in which Ego1 wraps around Ego2, Ego3, and Gtr1-Gtr2. In addition, Ego3 interacts with Gtr1-Gtr2 to stabilize the complex. The functional roles of key residues involved in the assembly are validated by in vivo assays. Our structural and functional data combined demonstrate that EGOC and Ragulator-Rag complex are structurally conserved and that EGO-TC is essential and sufficient to recruit Gtr1-Gtr2 to membranes to ensure appropriate TORC1 signaling.
Collapse
Affiliation(s)
- Tianlong Zhang
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031, China
| | | | - Zhen Zhang
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031, China
- School of Life Science and Technology, ShanghaiTech University, 393 Hua-Xia Zhong Road, Shanghai 201210, China
| | - Xin Tang
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031, China
- School of Life Science and Technology, ShanghaiTech University, 393 Hua-Xia Zhong Road, Shanghai 201210, China
| | - Jie Ye
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031, China
| | - Claudio De Virgilio
- Department of Biology, University of Fribourg, CH-1700 Fribourg, Switzerland
| | - Jianping Ding
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031, China
- School of Life Science and Technology, ShanghaiTech University, 393 Hua-Xia Zhong Road, Shanghai 201210, China
| |
Collapse
|
33
|
Rasheed N, Lima TB, Mercaldi GF, Nascimento AF, Silva AL, Righetto GL, Bar‐Peled L, Shen K, Sabatini DM, Gozzo FC, Aparicio R, Smetana JH. C7orf59/LAMTOR4 phosphorylation and structural flexibility modulate Ragulator assembly. FEBS Open Bio 2019; 9:1589-1602. [PMID: 31314152 PMCID: PMC6722880 DOI: 10.1002/2211-5463.12700] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 06/28/2019] [Accepted: 07/15/2019] [Indexed: 01/09/2023] Open
Abstract
Ragulator is a pentamer composed of p18, MP1, p14, C7orf59, and hepatitis B virus X-interacting protein (HBXIP; LAMTOR 1-5) which acts as a lysosomal scaffold of the Rag GTPases in the amino acid sensitive branch of TORC1 signaling. Here, we present the crystal structure of human HBXIP-C7orf59 dimer (LAMTOR 4/5) at 2.9 Å and identify a phosphorylation site on C7orf59 which modulates its interaction with p18. Additionally, we demonstrate the requirement of HBXIP-C7orf59 to stabilize p18 and allow further binding of MP1-p14. The structure of the dimer revealed an unfolded N terminus in C7orf59 (residues 1-15) which was shown to be essential for p18 binding. Full-length p18 does not interact stably with MP1-p14 in the absence of HBXIP-C7orf59, but deletion of p18 residues 108-161 rescues MP1-p14 binding. C7orf59 was phosphorylated by protein kinase A (PKA) in vitro and mutation of the conserved Ser67 residue to aspartate prevented phosphorylation and negatively affected the C7orf59 interaction with p18 both in cell culture and in vitro. C7orf59 Ser67 was phosphorylated in human embryonic kidney 293T cells. PKA activation with forskolin induced dissociation of p18 from C7orf59, which was prevented by the PKA inhibitor H-89. Our results highlight the essential role of HBXIP-C7orf59 dimer as a nucleator of pentameric Ragulator and support a sequential model of Ragulator assembly in which HBXIP-C7orf59 binds and stabilizes p18 which allows subsequent binding of MP1-p14.
Collapse
Affiliation(s)
- Nadia Rasheed
- Brazilian Biosciences National Laboratory (LNBio)Brazilian Center for Research in Energy and Materials (CNPEM)CampinasBrazil
- Institute of BiologyUniversity of CampinasBrazil
| | - Tatiani B. Lima
- Brazilian Biosciences National Laboratory (LNBio)Brazilian Center for Research in Energy and Materials (CNPEM)CampinasBrazil
- Institute of ChemistryUniversity of CampinasBrazil
| | - Gustavo F. Mercaldi
- Brazilian Biosciences National Laboratory (LNBio)Brazilian Center for Research in Energy and Materials (CNPEM)CampinasBrazil
| | - Andrey F.Z. Nascimento
- Brazilian Synchrotron Light Laboratory (LNLS)Brazilian Center for Research in Energy and Materials (CNPEM)CampinasBrazil
| | - Ana L.S. Silva
- Brazilian Biosciences National Laboratory (LNBio)Brazilian Center for Research in Energy and Materials (CNPEM)CampinasBrazil
| | - Germanna L. Righetto
- Brazilian Biosciences National Laboratory (LNBio)Brazilian Center for Research in Energy and Materials (CNPEM)CampinasBrazil
| | | | - Kuang Shen
- Department of BiologyMassachusetts Institute of TechnologyCambridgeMAUSA
- Whitehead Institute for Biomedical ResearchCambridgeMAUSA
- Howard Hughes Medical InstituteCambridgeMAUSA
- Koch Institute for Integrative Cancer ResearchCambridgeMAUSA
- Broad Institute of Harvard and Massachusetts Institute of TechnologyCambridgeMAUSA
| | - David M. Sabatini
- Department of BiologyMassachusetts Institute of TechnologyCambridgeMAUSA
- Whitehead Institute for Biomedical ResearchCambridgeMAUSA
- Howard Hughes Medical InstituteCambridgeMAUSA
- Koch Institute for Integrative Cancer ResearchCambridgeMAUSA
- Broad Institute of Harvard and Massachusetts Institute of TechnologyCambridgeMAUSA
| | | | | | - Juliana H.C. Smetana
- Brazilian Biosciences National Laboratory (LNBio)Brazilian Center for Research in Energy and Materials (CNPEM)CampinasBrazil
| |
Collapse
|
34
|
Molinet J, Cubillos FA, Salinas F, Liti G, Martínez C. Genetic variants of TORC1 signaling pathway affect nitrogen consumption in Saccharomyces cerevisiae during alcoholic fermentation. PLoS One 2019; 14:e0220515. [PMID: 31348805 PMCID: PMC6660096 DOI: 10.1371/journal.pone.0220515] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 07/17/2019] [Indexed: 12/27/2022] Open
Abstract
In the alcoholic fermentation process, Saccharomyces cerevisiae strains present differences in their nitrogen consumption profiles, these phenotypic outcomes have complex genetic and molecular architectures. In this sense, variations in nitrogen signaling pathways regulated by TORC1 represent one of the main sources of phenotypic diversity in nitrogen consumption. This emphasizes the possible roles that allelic variants from the TORC1 pathway have in the nitrogen consumption differences observed in yeast during the alcoholic fermentation. Here, we studied the allelic diversity in the TORC1 pathway across four yeast strains and determined how these polymorphisms directly impact nitrogen consumption during alcoholic fermentation. Using a reciprocal hemizygosity approach combined with phenotyping under fermentative conditions, we found that allelic variants of GTR1, TOR2, SIT4, SAP185, EAP1, NPR1 and SCH9 underlie differences in the ammonium and amino acids consumption phenotypes. Among these, GTR1 alleles from the Wine/European and West African genetic backgrounds showed the greatest effects on ammonium and amino acid consumption, respectively. Furthermore, we identified allelic variants of SAP185, TOR2, SCH9 and NPR1 from an oak isolate that increased the amino acid consumption preference over ammonium; representing putative candidates coming from a non-domesticated strain that could be used for genetic improvement programs. In conclusion, our results demonstrated that a large number of allelic variants within the TORC1 pathway significantly impacts on regulatory mechanisms of nitrogen assimilation during alcoholic fermentation.
Collapse
Affiliation(s)
- Jennifer Molinet
- Departamento de Ciencia y Tecnología de los Alimentos, Universidad de Santiago de Chile (USACH), Santiago, Chile
| | - Francisco A. Cubillos
- Millennium Institute for Integrative Biology (iBio), Santiago, Chile
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile (USACH), Santiago, Chile
- Centro de Estudios en Ciencia y Tecnología de Alimentos (CECTA), Universidad de Santiago de Chile (USACH), Santiago, Chile
| | - Francisco Salinas
- Millennium Institute for Integrative Biology (iBio), Santiago, Chile
- Centro de Estudios en Ciencia y Tecnología de Alimentos (CECTA), Universidad de Santiago de Chile (USACH), Santiago, Chile
- Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| | - Gianni Liti
- Institute for Research on Cancer and Ageing of Nice (IRCAN), Centre National de la Recherche Scientifique (CNRS), INSERM, University of Côte d’Azur, Nice, France
| | - Claudio Martínez
- Departamento de Ciencia y Tecnología de los Alimentos, Universidad de Santiago de Chile (USACH), Santiago, Chile
- Centro de Estudios en Ciencia y Tecnología de Alimentos (CECTA), Universidad de Santiago de Chile (USACH), Santiago, Chile
| |
Collapse
|
35
|
Cherfils J. Encoding Allostery in mTOR Signaling: The Structure of the Rag GTPase/Ragulator Complex. Mol Cell 2019; 68:823-824. [PMID: 29220648 DOI: 10.1016/j.molcel.2017.11.027] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
In this issue of Molecular Cell, Su et al. (2017) describe the structure of the Rag/Ragulator complex, a key relay in nutrient sensing by mTOR. The structure sheds new light on how signals are conveyed from the lysosome to mTOR.
Collapse
Affiliation(s)
- Jacqueline Cherfils
- Laboratoire de Biologie et Pharmacologie Appliquée, CNRS and Ecole Normale Supérieure Paris-Saclay, Cachan, France.
| |
Collapse
|
36
|
Gan L, Seki A, Shen K, Iyer H, Han K, Hayer A, Wollman R, Ge X, Lin JR, Dey G, Talbot WS, Meyer T. The lysosomal GPCR-like protein GPR137B regulates Rag and mTORC1 localization and activity. Nat Cell Biol 2019; 21:614-626. [PMID: 31036939 PMCID: PMC6649673 DOI: 10.1038/s41556-019-0321-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 03/27/2019] [Indexed: 12/13/2022]
Abstract
Cell growth is controlled by a lysosomal signaling complex containing Rag small GTPases and mTORC1 kinase. Here we carried out a microscopy-based genome-wide human siRNA screen and discovered a lysosome-localized G-protein coupled receptor (GPCR)-like protein, GPR137B, that interacts with Rag GTPases, increases Rag localization and activity, and thereby regulates mTORC1 translocation and activity. High GPR137B expression can recruit and activate mTORC1 in the absence of amino acids. Furthermore, GPR137B also regulates the dissociation of activated Rag from lysosomes, suggesting that GPR137B controls a cycle of Rag activation and dissociation from lysosomes. GPR137B knockout cells exhibited defective autophagy and an expanded lysosome compartment, similar to Rag knockout cells. Like zebrafish RagA mutants, GPR137B mutant zebrafish had upregulated TFEB target gene expression and an expanded lysosome compartment in microglia. Thus, GPR137B is a GPCR-like lysosomal regulatory protein that controls dynamic Rag and mTORC1 localization and activity as well as lysosome morphology.
Collapse
Affiliation(s)
- Lin Gan
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA, USA
| | - Akiko Seki
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA, USA
| | - Kimberle Shen
- Department of Developmental Biology, Stanford University, Stanford, CA, USA
| | - Harini Iyer
- Department of Developmental Biology, Stanford University, Stanford, CA, USA
| | - Kyuho Han
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA, USA
| | - Arnold Hayer
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA, USA
| | - Roy Wollman
- Department of Integrative Biology and Physiology and Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, USA
| | - Xuecai Ge
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA, USA
| | - Jerry R Lin
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA, USA
| | - Gautam Dey
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA, USA
| | - William S Talbot
- Department of Developmental Biology, Stanford University, Stanford, CA, USA
| | - Tobias Meyer
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA, USA.
| |
Collapse
|
37
|
Rutherford JC, Bahn YS, van den Berg B, Heitman J, Xue C. Nutrient and Stress Sensing in Pathogenic Yeasts. Front Microbiol 2019; 10:442. [PMID: 30930866 PMCID: PMC6423903 DOI: 10.3389/fmicb.2019.00442] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 02/20/2019] [Indexed: 12/23/2022] Open
Abstract
More than 1.5 million fungal species are estimated to live in vastly different environmental niches. Despite each unique host environment, fungal cells sense certain fundamentally conserved elements, such as nutrients, pheromones and stress, for adaptation to their niches. Sensing these extracellular signals is critical for pathogens to adapt to the hostile host environment and cause disease. Hence, dissecting the complex extracellular signal-sensing mechanisms that aid in this is pivotal and may facilitate the development of new therapeutic approaches to control fungal infections. In this review, we summarize the current knowledge on how two important pathogenic yeasts, Candida albicans and Cryptococcus neoformans, sense nutrient availability, such as carbon sources, amino acids, and ammonium, and different stress signals to regulate their morphogenesis and pathogenicity in comparison with the non-pathogenic model yeast Saccharomyces cerevisiae. The molecular interactions between extracellular signals and their respective sensory systems are described in detail. The potential implication of analyzing nutrient and stress-sensing systems in antifungal drug development is also discussed.
Collapse
Affiliation(s)
- Julian C Rutherford
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Yong-Sun Bahn
- Department of Biotechnology, Yonsei University, Seoul, South Korea
| | - Bert van den Berg
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Joseph Heitman
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, United States
| | - Chaoyang Xue
- Public Health Research Institute, Rutgers University, Newark, NJ, United States.,Department of Molecular Genetics, Biochemistry and Microbiology, Rutgers University, Newark, NJ, United States
| |
Collapse
|
38
|
Ragulator and SLC38A9 activate the Rag GTPases through noncanonical GEF mechanisms. Proc Natl Acad Sci U S A 2018; 115:9545-9550. [PMID: 30181260 DOI: 10.1073/pnas.1811727115] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The mechanistic target of rapamycin complex 1 (mTORC1) growth pathway detects nutrients through a variety of sensors and regulators that converge on the Rag GTPases, which form heterodimers consisting of RagA or RagB tightly bound to RagC or RagD and control the subcellular localization of mTORC1. The Rag heterodimer uses a unique "locking" mechanism to stabilize its active (GTPRagA-RagCGDP) or inactive (GDPRagA-RagCGTP) nucleotide states. The Ragulator complex tethers the Rag heterodimer to the lysosomal surface, and the SLC38A9 transmembrane protein is a lysosomal arginine sensor that upon activation stimulates mTORC1 activity through the Rag GTPases. How Ragulator and SLC38A9 control the nucleotide loading state of the Rag GTPases remains incompletely understood. Here we find that Ragulator and SLC38A9 are each unique guanine exchange factors (GEFs) that collectively push the Rag GTPases toward the active state. Ragulator triggers GTP release from RagC, thus resolving the locked inactivated state of the Rag GTPases. Upon arginine binding, SLC38A9 converts RagA from the GDP- to the GTP-loaded state, and therefore activates the Rag GTPase heterodimer. Altogether, Ragulator and SLC38A9 act on the Rag GTPases to activate the mTORC1 pathway in response to nutrient sufficiency.
Collapse
|
39
|
Varlakhanova NV, Tornabene BA, Ford MGJ. Feedback regulation of TORC1 by its downstream effectors Npr1 and Par32. Mol Biol Cell 2018; 29:2751-2765. [PMID: 30156471 PMCID: PMC6249832 DOI: 10.1091/mbc.e18-03-0158] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
TORC1 (target of rapamycin complex) integrates complex nutrient signals to generate and fine-tune a growth and metabolic response. Npr1 (nitrogen permease reactivator) is a downstream effector kinase of TORC1 that regulates the stability, activity, and trafficking of various nutrient permeases including the ammonium permeases Mep1, Mep2, and Mep3 and the general amino acid permease Gap1. Npr1 exerts its regulatory effects on Mep1 and Mep3 via Par32 (phosphorylated after rapamycin). Activation of Npr1 leads to phosphorylation of Par32, resulting in changes in its subcellular localization and function. Here we demonstrate that Par32 is a positive regulator of TORC1 activity. Loss of Par32 renders cells unable to recover from exposure to rapamycin and reverses the resistance to rapamycin of Δ npr1 cells. The sensitivity to rapamycin of cells lacking Par32 is dependent on Mep1 and Mep3 and the presence of ammonium, linking ammonium metabolism to TORC1 activity. Par32 function requires its conserved repeated glycine-rich motifs to be intact but, surprisingly, does not require its localization to the plasma membrane. In all, this work elucidates a novel mechanism by which Npr1 and Par32 exert regulatory feedback on TORC1.
Collapse
Affiliation(s)
- Natalia V Varlakhanova
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
| | - Bryan A Tornabene
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
| | - Marijn G J Ford
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
| |
Collapse
|
40
|
Lawrence RE, Cho KF, Rappold R, Thrun A, Tofaute M, Kim DJ, Moldavski O, Hurley JH, Zoncu R. A nutrient-induced affinity switch controls mTORC1 activation by its Rag GTPase-Ragulator lysosomal scaffold. Nat Cell Biol 2018; 20:1052-1063. [PMID: 30061680 PMCID: PMC6279252 DOI: 10.1038/s41556-018-0148-6] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 06/20/2018] [Indexed: 12/31/2022]
Abstract
A key step in nutrient sensing is the activation of the master growth regulator, mTORC1 kinase, on the surface of lysosomes. Nutrients enable mTORC1 scaffolding by a complex composed of the Rag GTPases (Rags) and Ragulator, but the underlying mechanism of mTORC1 capture is poorly understood. Combining dynamic imaging in cells and reconstituted systems, we uncover an affinity switch that controls mTORC1 lifetime and activation at the lysosome. Nutrients destabilize the Rag-Ragulator interface, causing cycling of the Rags between lysosome-bound Ragulator and the cytoplasm, and rendering mTORC1 capture contingent on simultaneous engagement of two Rag-binding interfaces. Rag GTPase domains trigger cycling by coordinately weakening binding of the C-terminal domains to Ragulator in a nucleotide-controlled manner. Cancer-specific Rag mutants override release from Ragulator and enhance mTORC1 recruitment and signaling output. Cycling in the active state sets the Rags apart from most signaling GTPases, and provides a mechanism to attenuate mTORC1 signaling.
Collapse
Affiliation(s)
- Rosalie E Lawrence
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA, USA.,The Paul F. Glenn Center for Aging Research at the University of California, Berkeley, Berkeley, CA, USA
| | - Kelvin F Cho
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA, USA.,The Paul F. Glenn Center for Aging Research at the University of California, Berkeley, Berkeley, CA, USA
| | - Ronja Rappold
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA, USA.,The Paul F. Glenn Center for Aging Research at the University of California, Berkeley, Berkeley, CA, USA
| | - Anna Thrun
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA, USA.,The Paul F. Glenn Center for Aging Research at the University of California, Berkeley, Berkeley, CA, USA
| | - Marie Tofaute
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA, USA.,The Paul F. Glenn Center for Aging Research at the University of California, Berkeley, Berkeley, CA, USA
| | - Do Jin Kim
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA, USA
| | - Ofer Moldavski
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA, USA.,The Paul F. Glenn Center for Aging Research at the University of California, Berkeley, Berkeley, CA, USA
| | - James H Hurley
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA, USA
| | - Roberto Zoncu
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA, USA. .,The Paul F. Glenn Center for Aging Research at the University of California, Berkeley, Berkeley, CA, USA.
| |
Collapse
|
41
|
Abstract
Background The protein kinase Target Of Rapamycin (TOR) is a nexus for the regulation of eukaryotic cell growth. TOR assembles into one of two distinct signalling complexes, TOR complex 1 (TORC1) and TORC2 (mTORC1/2 in mammals), with a set of largely non-overlapping protein partners. (m)TORC1 activation occurs in response to a series of stimuli relevant to cell growth, including nutrient availability, growth factor signals and stress, and regulates much of the cell's biosynthetic activity, from proteins to lipids, and recycling through autophagy. mTORC1 regulation is of great therapeutic significance, since in humans many of these signalling complexes, alongside subunits of mTORC1 itself, are implicated in a wide variety of pathophysiologies, including multiple types of cancer, neurological disorders, neurodegenerative diseases and metabolic disorders including diabetes. Methodology Recent years have seen numerous structures determined of (m)TOR, which have provided mechanistic insight into (m)TORC1 activation in particular, however the integration of cellular signals occurs upstream of the kinase and remains incompletely understood. Here we have collected and analysed in detail as many as possible of the molecular and structural studies which have shed light on (m)TORC1 repression, activation and signal integration. Conclusions A molecular understanding of this signal integration pathway is required to understand how (m)TORC1 activation is reconciled with the many diverse and contradictory stimuli affecting cell growth. We discuss the current level of molecular understanding of the upstream components of the (m)TORC1 signalling pathway, recent progress on this key biochemical frontier, and the future studies necessary to establish a mechanistic understanding of this master-switch for eukaryotic cell growth.
Collapse
Affiliation(s)
- Kailash Ramlaul
- Section of Structural Biology, Department of Medicine, Imperial College London, SW7 2AZ, UK
| | - Christopher H S Aylett
- Section of Structural Biology, Department of Medicine, Imperial College London, SW7 2AZ, UK
| |
Collapse
|
42
|
He L, Zhang J, Zhao J, Ma N, Kim SW, Qiao S, Ma X. Autophagy: The Last Defense against Cellular Nutritional Stress. Adv Nutr 2018; 9:493-504. [PMID: 30032222 PMCID: PMC6054220 DOI: 10.1093/advances/nmy011] [Citation(s) in RCA: 128] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Homeostasis of nutrient metabolism is critical for maintenance of the normal physiologic status of the cell and the integral health of humans and mammals. In vivo, there is a highly efficient and precise process involved in nutrient recycling and organelle cleaning. This process is named autophagy, and it can be induced in response to the dynamic change of nutrients. When cells face nutritional stress, such as stress caused by nutrient deficiency or nutrient excess, the autophagy pathway will be activated. Generally, when nutrients are withdrawn, cells will sense the signs of starvation and respond. AMP-activated protein kinase and the mammalian target of rapamycin, two of the major metabolic kinases, are responsible for monitoring cellular energy and the concentration of amino acids, respectively. Nutrient excess also induces autophagy, mainly via the reactive oxygen species and endoplasmic reticulum stress pathway. When nutritional stress activates the autophagy pathway, the nutrients or damaged organelles will be recycled for cell survival. However, if autophagy is overwhelmingly induced, autophagic cell death will possibly occur. The balance of the autophagy induction is the crucial factor for cell survival or death. Herein, we summarize the current knowledge on the induction of autophagy, the autophagy response under nutritional stresses, and autophagic cell death and related diseases, which will highlight the process of nutritional stress-induced autophagy and its important physiologic and/or pathologic roles in cell metabolism and diseases, and shed light on the research into the mechanism and clinical applications of autophagy induced by nutritional stresses.
Collapse
Affiliation(s)
- Long He
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Center, China Agricultural University, Beijing, China
| | - Jie Zhang
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Center, China Agricultural University, Beijing, China
| | - Jinshan Zhao
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
| | - Ning Ma
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Center, China Agricultural University, Beijing, China
| | - Sung Woo Kim
- Department of Animal Science, North Carolina State University, Raleigh, NC
| | - Shiyan Qiao
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Center, China Agricultural University, Beijing, China
| | - Xi Ma
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Center, China Agricultural University, Beijing, China,College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China,Department of Internal Medicine, Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX,Address correspondence to XM (e-mail: )
| |
Collapse
|
43
|
Meng J, Ferguson SM. GATOR1-dependent recruitment of FLCN-FNIP to lysosomes coordinates Rag GTPase heterodimer nucleotide status in response to amino acids. J Cell Biol 2018; 217:2765-2776. [PMID: 29848618 PMCID: PMC6080935 DOI: 10.1083/jcb.201712177] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Revised: 04/29/2018] [Accepted: 05/08/2018] [Indexed: 01/08/2023] Open
Abstract
A large number of lysosome-localized proteins control mTORC1 signaling. Rag guanosine triphosphatase (GTPase) heterodimers play a central role in this pathway by recruiting mTORC1 to lysosomes. Meng and Ferguson reveal how folliculin, a tumor suppressor, coordinates nucleotide states within Rag GTPase heterodimers. Folliculin (FLCN) is a tumor suppressor that coordinates cellular responses to changes in amino acid availability via regulation of the Rag guanosine triphosphatases. FLCN is recruited to lysosomes during amino acid starvation, where it interacts with RagA/B as a heterodimeric complex with FLCN-interacting proteins (FNIPs). The FLCN–FNIP heterodimer also has GTPase-activating protein (GAP) activity toward RagC/D. These properties raised two important questions. First, how is amino acid availability sensed to regulate lysosomal abundance of FLCN? Second, what is the relationship between FLCN lysosome localization, RagA/B interactions, and RagC/D GAP activity? In this study, we show that RagA/B nucleotide status determines the FLCN–FNIP1 recruitment to lysosomes. Starvation-induced FLCN–FNIP lysosome localization requires GAP activity toward Rags 1 (GATOR1), the GAP that converts RagA/B to the guanosine diphosphate (GDP)-bound state. This places FLCN–FNIP recruitment to lysosomes under the control of amino acid sensors that act upstream of GATOR1. By binding to RagA/BGDP and acting on RagC/D, FLCN–FNIP can coordinate nucleotide status between Rag heterodimer subunits in response to changes in amino acid availability.
Collapse
Affiliation(s)
- Jin Meng
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT.,Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT
| | - Shawn M Ferguson
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT .,Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT
| |
Collapse
|
44
|
Shen K, Huang RK, Brignole EJ, Condon KJ, Valenstein ML, Chantranupong L, Bomaliyamu A, Choe A, Hong C, Yu Z, Sabatini DM. Architecture of the human GATOR1 and GATOR1-Rag GTPases complexes. Nature 2018; 556:64-69. [PMID: 29590090 PMCID: PMC5975964 DOI: 10.1038/nature26158] [Citation(s) in RCA: 134] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2017] [Accepted: 02/16/2018] [Indexed: 12/22/2022]
Abstract
Nutrients, such as amino acids and glucose, signal through the Rag GTPases to activate mTORC1. The GATOR1 protein complex-comprising DEPDC5, NPRL2 and NPRL3-regulates the Rag GTPases as a GTPase-activating protein (GAP) for RAGA; loss of GATOR1 desensitizes mTORC1 signalling to nutrient starvation. GATOR1 components have no sequence homology to other proteins, so the function of GATOR1 at the molecular level is currently unknown. Here we used cryo-electron microscopy to solve structures of GATOR1 and GATOR1-Rag GTPases complexes. GATOR1 adopts an extended architecture with a cavity in the middle; NPRL2 links DEPDC5 and NPRL3, and DEPDC5 contacts the Rag GTPase heterodimer. Biochemical analyses reveal that our GATOR1-Rag GTPases structure is inhibitory, and that at least two binding modes must exist between the Rag GTPases and GATOR1. Direct interaction of DEPDC5 with RAGA inhibits GATOR1-mediated stimulation of GTP hydrolysis by RAGA, whereas weaker interactions between the NPRL2-NPRL3 heterodimer and RAGA execute GAP activity. These data reveal the structure of a component of the nutrient-sensing mTORC1 pathway and a non-canonical interaction between a GAP and its substrate GTPase.
Collapse
Affiliation(s)
- Kuang Shen
- Whitehead Institute for Biomedical Research and Massachusetts Institute of Technology, Department of Biology, 9 Cambridge Center, Cambridge, MA 02142, USA
- Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Koch Institute for Integrative Cancer Research, 77 Massachusetts Avenue, Cambridge, MA02139, USA
- Broad Institute of Harvard and Massachusetts Institute of Technology, 7 Cambridge Center, Cambridge, MA 02142, USA
| | - Rick K. Huang
- Howard Hughes Medical Institute, Janelia Research Campus, 19700 Helix Drive, Ashburn, VA 20147, USA
| | - Edward J. Brignole
- Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Kendall J. Condon
- Whitehead Institute for Biomedical Research and Massachusetts Institute of Technology, Department of Biology, 9 Cambridge Center, Cambridge, MA 02142, USA
- Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Koch Institute for Integrative Cancer Research, 77 Massachusetts Avenue, Cambridge, MA02139, USA
- Broad Institute of Harvard and Massachusetts Institute of Technology, 7 Cambridge Center, Cambridge, MA 02142, USA
| | - Max L. Valenstein
- Whitehead Institute for Biomedical Research and Massachusetts Institute of Technology, Department of Biology, 9 Cambridge Center, Cambridge, MA 02142, USA
- Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Koch Institute for Integrative Cancer Research, 77 Massachusetts Avenue, Cambridge, MA02139, USA
- Broad Institute of Harvard and Massachusetts Institute of Technology, 7 Cambridge Center, Cambridge, MA 02142, USA
| | - Lynne Chantranupong
- Whitehead Institute for Biomedical Research and Massachusetts Institute of Technology, Department of Biology, 9 Cambridge Center, Cambridge, MA 02142, USA
- Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Koch Institute for Integrative Cancer Research, 77 Massachusetts Avenue, Cambridge, MA02139, USA
- Broad Institute of Harvard and Massachusetts Institute of Technology, 7 Cambridge Center, Cambridge, MA 02142, USA
| | - Aimaiti Bomaliyamu
- Whitehead Institute for Biomedical Research and Massachusetts Institute of Technology, Department of Biology, 9 Cambridge Center, Cambridge, MA 02142, USA
| | - Abigail Choe
- Whitehead Institute for Biomedical Research and Massachusetts Institute of Technology, Department of Biology, 9 Cambridge Center, Cambridge, MA 02142, USA
| | - Chuan Hong
- Howard Hughes Medical Institute, Janelia Research Campus, 19700 Helix Drive, Ashburn, VA 20147, USA
| | - Zhiheng Yu
- Howard Hughes Medical Institute, Janelia Research Campus, 19700 Helix Drive, Ashburn, VA 20147, USA
| | - David M. Sabatini
- Whitehead Institute for Biomedical Research and Massachusetts Institute of Technology, Department of Biology, 9 Cambridge Center, Cambridge, MA 02142, USA
- Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Koch Institute for Integrative Cancer Research, 77 Massachusetts Avenue, Cambridge, MA02139, USA
- Broad Institute of Harvard and Massachusetts Institute of Technology, 7 Cambridge Center, Cambridge, MA 02142, USA
| |
Collapse
|
45
|
Regulation of Sensing, Transportation, and Catabolism of Nitrogen Sources in Saccharomyces cerevisiae. Microbiol Mol Biol Rev 2018; 82:82/1/e00040-17. [PMID: 29436478 DOI: 10.1128/mmbr.00040-17] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Nitrogen is one of the most important essential nutrient sources for biogenic activities. Regulation of nitrogen metabolism in microorganisms is complicated and elaborate. For this review, the yeast Saccharomyces cerevisiae was chosen to demonstrate the regulatory mechanism of nitrogen metabolism because of its relative clear genetic background. Current opinions on the regulation processes of nitrogen metabolism in S. cerevisiae, including nitrogen sensing, transport, and catabolism, are systematically reviewed. Two major upstream signaling pathways, the Ssy1-Ptr3-Ssy5 sensor system and the target of rapamycin pathway, which are responsible for sensing extracellular and intracellular nitrogen, respectively, are discussed. The ubiquitination of nitrogen transporters, which is the most general and efficient means for controlling nitrogen transport, is also summarized. The following metabolic step, nitrogen catabolism, is demonstrated at two levels: the transcriptional regulation process related to GATA transcriptional factors and the translational regulation process related to the general amino acid control pathway. The interplay between nitrogen regulation and carbon regulation is also discussed. As a model system, understanding the meticulous process by which nitrogen metabolism is regulated in S. cerevisiae not only could facilitate research on global regulation mechanisms and yeast metabolic engineering but also could provide important insights and inspiration for future studies of other common microorganisms and higher eukaryotic cells.
Collapse
|
46
|
Mu Z, Wang L, Deng W, Wang J, Wu G. Structural insight into the Ragulator complex which anchors mTORC1 to the lysosomal membrane. Cell Discov 2017; 3:17049. [PMID: 29285400 PMCID: PMC5742854 DOI: 10.1038/celldisc.2017.49] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 11/15/2017] [Indexed: 12/14/2022] Open
Abstract
The mechanistic target of rapamycin (mTOR) signal-transduction pathway plays a key role in regulating many aspects of metabolic processes. The central player of the mTOR signaling pathway, mTOR complex 1 (mTORC1), is recruited by the pentameric Ragulator complex and the heterodimeric Rag GTPase complex to the lysosomal membrane and thereafter activated. Here, we determined the crystal structure of the human Ragulator complex, which shows that Lamtor1 possesses a belt-like shape and wraps the other four subunits around. Extensive hydrophobic interactions occur between Lamtor1 and the Lamtor2-Lamtor3, Lamtor4-Lamtor5 roadblock domain protein pairs, while there is no substantial contact between Lamtor2-Lamtor3 and Lamtor4-Lamtor5 subcomplexes. Interestingly, an α-helix from Lamtor1 occupies each of the positions on Lamtor4 and Lamtor5 equivalent to the α3-helices of Lamtor2 and Lamtor3, thus stabilizing Lamtor4 and Lamtor5. Structural comparison between Ragulator and the yeast Ego1-Ego2-Ego3 ternary complex (Ego-TC) reveals that Ego-TC only corresponds to half of the Ragulator complex. Coupling with the fact that in the Ego-TC structure, Ego2 and Ego3 are lone roadblock domain proteins without another roadblock domain protein pairing with them, we suggest that additional components of the yeast Ego complex might exist.
Collapse
Affiliation(s)
- Zongkai Mu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Lei Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Wei Deng
- National Center for Protein Science Shanghai, Shanghai, China
| | - Jiawei Wang
- State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Geng Wu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
47
|
Yonehara R, Nada S, Nakai T, Nakai M, Kitamura A, Ogawa A, Nakatsumi H, Nakayama KI, Li S, Standley DM, Yamashita E, Nakagawa A, Okada M. Structural basis for the assembly of the Ragulator-Rag GTPase complex. Nat Commun 2017; 8:1625. [PMID: 29158492 PMCID: PMC5696360 DOI: 10.1038/s41467-017-01762-3] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 10/13/2017] [Indexed: 12/31/2022] Open
Abstract
The mechanistic target of rapamycin complex 1 (mTORC1) plays a central role in regulating cell growth and metabolism by responding to cellular nutrient conditions. The activity of mTORC1 is controlled by Rag GTPases, which are anchored to lysosomes via Ragulator, a pentameric protein complex consisting of membrane-anchored p18/LAMTOR1 and two roadblock heterodimers. Here we report the crystal structure of Ragulator in complex with the roadblock domains of RagA-C, which helps to elucidate the molecular basis for the regulation of Rag GTPases. In the structure, p18 wraps around the three pairs of roadblock heterodimers to tandemly assemble them onto lysosomes. Cellular and in vitro analyses further demonstrate that p18 is required for Ragulator-Rag GTPase assembly and amino acid-dependent activation of mTORC1. These results establish p18 as a critical organizing scaffold for the Ragulator-Rag GTPase complex, which may provide a platform for nutrient sensing on lysosomes. mTORC1 activity is controlled through Rag GTPases, which are anchored to the lysosome through the Ragulator. Here, the authors give molecular insights into Ragulator-Rag GTPase assembly and present the crystal structures of the Ragulator alone and in complex with the RagA-C roadblock domains.
Collapse
Affiliation(s)
- Ryo Yonehara
- Laboratory of Supramolecular Crystallography, Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Shigeyuki Nada
- Department of Oncogene Research, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Tomokazu Nakai
- Department of Oncogene Research, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Masahiro Nakai
- Department of Oncogene Research, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Ayaka Kitamura
- Department of Oncogene Research, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Akira Ogawa
- Department of Oncogene Research, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Hirokazu Nakatsumi
- Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-0054, Japan
| | - Keiichi I Nakayama
- Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-0054, Japan
| | - Songling Li
- Department of Genome Informatics, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Daron M Standley
- Department of Genome Informatics, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Eiki Yamashita
- Laboratory of Supramolecular Crystallography, Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Atsushi Nakagawa
- Laboratory of Supramolecular Crystallography, Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| | - Masato Okada
- Department of Oncogene Research, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
48
|
Structural basis for Ragulator functioning as a scaffold in membrane-anchoring of Rag GTPases and mTORC1. Nat Commun 2017; 8:1394. [PMID: 29123114 PMCID: PMC5680233 DOI: 10.1038/s41467-017-01567-4] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 09/29/2017] [Indexed: 01/26/2023] Open
Abstract
Amino acid-dependent activation of the mechanistic target of rapamycin complex 1 (mTORC1) is mediated by Rag GTPases, which are recruited to the lysosome by the Ragulator complex consisting of p18, MP1, p14, HBXIP and C7orf59; however, the molecular mechanism is elusive. Here, we report the crystal structure of Ragulator, in which p18 wraps around the MP1-p14 and C7orf59-HBXIP heterodimers and the interactions of p18 with MP1, C7orf59, and HBXIP are essential for the assembly of Ragulator. There are two binding sites for the Roadblock domains of Rag GTPases: helix α1 of p18 and the two helices side of MP1-p14. The interaction of Ragulator with Rag GTPases is required for their cellular co-localization and can be competitively inhibited by C17orf59. Collectively, our data indicate that Ragulator functions as a scaffold to recruit Rag GTPases to lysosomal membrane in mTORC1 signaling. Activated Rag GTPases recruit mTORC1 to lysosomes. Here the authors present the crystal structure of the Ragulator complex and identify the binding sites for the Roadblock domains of Rag GTPases, which gives insights how Rag GTPases are tethered to the lysosomal membrane.
Collapse
|
49
|
Hybrid Structure of the RagA/C-Ragulator mTORC1 Activation Complex. Mol Cell 2017; 68:835-846.e3. [PMID: 29107538 DOI: 10.1016/j.molcel.2017.10.016] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 10/09/2017] [Accepted: 10/16/2017] [Indexed: 12/22/2022]
Abstract
The lysosomal membrane is the locus for sensing cellular nutrient levels, which are transduced to mTORC1 via the Rag GTPases and the Ragulator complex. The crystal structure of the five-subunit human Ragulator at 1.4 Å resolution was determined. Lamtor1 wraps around the other four subunits to stabilize the assembly. The Lamtor2:Lamtor3 dimer stacks upon Lamtor4:Lamtor5 to create a platform for Rag binding. Hydrogen-deuterium exchange was used to map the Rag binding site to the outer face of the Lamtor2:Lamtor3 dimer and to the N-terminal intrinsically disordered region of Lamtor1. EM was used to reconstruct the assembly of the full-length RagAGTP:RagCGDP dimer bound to Ragulator at 16 Å resolution, revealing that the G-domains of the Rags project away from the Ragulator core. The combined structural model shows how Ragulator functions as a platform for the presentation of active Rags for mTORC1 recruitment, and might suggest an unconventional mechanism for Rag GEF activity.
Collapse
|
50
|
Shen K, Choe A, Sabatini DM. Intersubunit Crosstalk in the Rag GTPase Heterodimer Enables mTORC1 to Respond Rapidly to Amino Acid Availability. Mol Cell 2017; 68:552-565.e8. [PMID: 29056322 PMCID: PMC5674802 DOI: 10.1016/j.molcel.2017.09.026] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 08/14/2017] [Accepted: 09/19/2017] [Indexed: 01/03/2023]
Abstract
mTOR complex I (mTORC1) is a central growth regulator that senses amino acids through a pathway that converges on the Rag GTPases, an obligate heterodimer of two related GTPases. Despite their central role in amino acid sensing, it is unknown why the Rag GTPases are heterodimeric and whether their subunits communicate with each other. Here, we find that the binding of guanosine triphosphate (GTP) to one subunit inhibits the binding and induces the hydrolysis of GTP by the other. This intersubunit communication pushes the Rag GTPases into either of two stable configurations, which represent active "on" or "off" states that interconvert via transient intermediates. Subunit coupling confers on the mTORC1 pathway its capacity to respond rapidly to the amino acid level. Thus, the dynamic response of mTORC1 requires intersubunit communication by the Rag GTPases, providing a rationale for why they exist as a dimer and revealing a distinct mode of control for a GTP-binding protein.
Collapse
Affiliation(s)
- Kuang Shen
- Whitehead Institute for Biomedical Research and Massachusetts Institute of Technology, Department of Biology, 9 Cambridge Center, Cambridge, MA 02142, USA; Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Koch Institute for Integrative Cancer Research, 77 Massachusetts Avenue, Cambridge, MA 02139, USA; Broad Institute of Harvard and Massachusetts Institute of Technology, 7 Cambridge Center, Cambridge, MA 02142, USA
| | - Abigail Choe
- Whitehead Institute for Biomedical Research and Massachusetts Institute of Technology, Department of Biology, 9 Cambridge Center, Cambridge, MA 02142, USA
| | - David M Sabatini
- Whitehead Institute for Biomedical Research and Massachusetts Institute of Technology, Department of Biology, 9 Cambridge Center, Cambridge, MA 02142, USA; Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Koch Institute for Integrative Cancer Research, 77 Massachusetts Avenue, Cambridge, MA 02139, USA; Broad Institute of Harvard and Massachusetts Institute of Technology, 7 Cambridge Center, Cambridge, MA 02142, USA.
| |
Collapse
|